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ABSTRACT
This paper presents a comparison of two Evolutionary Ar-
tificial Neural Network (EANN) variants acting as the au-
tonomous control system for instances of the θ-Consensus
Avoidance Problem (θ-CAP). A novel variant of EANN is
proposed by adopting characteristics of a well-performing
heuristic into the structural bias of the neurocontroller. In-
formation theoretic landscape measures are used to analyze
the problem space as well as variants of the EANN.

The results obtained indicate that the two neurocontroller
variants learn distinctly different approaches to the θ-CAP,
however, the newly proposed variant demonstrates improve-
ments in both solution quality and execution time. A ramped-
difficulty evolution scheme is demonstrated to be effective at
creating higher quality results as compared to the standard
scheme for EANNs. A correlation between the proposed in-
stance difficulty and identifiable landscape characteristics is
discovered as well.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search
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Evolutionary algorithms, Neural networks, Influence, Con-
trol, Optimization

1. INTRODUCTION
Consensus in a social network is a terminal state relative

to the diffusion of new information. Such a lack of diversity
can leave a population susceptible to severe consequences.
For example, a consensus of opinion in a financial market
can lead to a bubble or a market run [2]. The imposition of
external influence to prevent consensus in large-scale social
networks is therefore an important problem. The automa-
tion of control in such cases can observe and inform human
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oversight, or where appropriate, take action with more speed
and precision than human counterparts.

The Network Control Problem (NCP) formalization [4]
describes a social network as a combination of structural
and behavioural components, known as the network and the
diffusion model respectively. The NCP then defines a pair
of dependant optimization problems in terms of discovering
both the structural and behavioural components of a control
system. The objective of the control system is to direct the
state of the social network via interactions at the node-state
level. The amount of direct influence a control system has on
the social network is constrained by a budget placed on the
size of the set of controlled nodes. Thus the control system
is required to determine both an optimal configuration of
connections to the social network, and an optimal state-to-
signal mapping for the control system’s ongoing output.

The NCP formalizes a relation among a set of subprob-
lems. In all subproblems the objective remains to control the
state of a network, however the evaluation of specific states
varies by problem. In the well-known case of the Influence
Maximization Problem (IMP) [1], the goal is to select a con-
troller configuration that maximizes the spread of a single
selected node state, implying a static single state output as
the fixed controller behaviour. Similarly, in [3], the prob-
lem of structural controllability is examined as a search for
the minimum number of control sites and optimal placement
thereof, without the associated search of an appropriate be-
havioural component for the control system. Solutions to
these problems offer insight to the optimization of the con-
figuration of the NCP, but not the behavioural component.

In [4], the θ-Consensus Avoidance Problem (θ-CAP) is
defined as an NCP subproblem with both configuration and
behavioural search requirements. In addition to consider-
ing the optimal configuration required to deliver appropriate
control signals, the θ-CAP considers the dependent search
for a state-to-signal mapping capable of maintaining an equi-
librium of node states within the network. This paper ex-
tends the previous work to consider the optimization of the
behavioural mapping for the θ-CAP.

To optimize the θ-CAP behavioural component, two vari-
ants of the Evolutionary Artificial Neural Network (EANN)
metaheuristic are applied. In addition to establishing new
benchmark results, this paper compares the implemented
neurocontrollers in terms of their relative fitness, speed, and
their evolved strategies of control. Landscape analysis is ap-
plied to distinguish characteristic differences in the search
spaces explored by either variant.
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2. ALGORITHM DESIGN
Results from [4] demonstrate that an EANN control sys-

tem is capable of consistently learning network balancing
behaviour over a variety of random control system configu-
rations and network types. Additionally, the Anti-Majority
(AM) control system showed results competitive to the EANN
over select problem instances of lower budget.

The AM heuristic can be modelled as a connectionist ar-
chitecture with fixed weights as shown in Figure 1(c). This
form of the AM is termed the Connectionist Anti-Majority
(CAM) heuristic. The CAM control system requires no
training, and computes an identical input-to-signal mapping
as the standard AM control system. The number of input
neurons is set to the number of unique observable nodes in
the social network (|NVC |). The number of hidden and out-
put neurons are both set to the number of controlled nodes
(|VC |). Axons between the input layer and hidden layer are
added if and only if there exists an edge in the social net-
work between the observed node and the controlled node.
Inputs to the CAM control system are scaled and shifted to
the range [-1,1]. Weights on axons between the input and
hidden layer are fixed at 1, thus the hidden layer neurons en-
code an observed majority feature for each controlled node.
The hidden layer connects in a 1-to-1 manner to the output
layer. Weights on the hidden-to-output axons are fixed at
-1 to produce an anti-majority value at each output.

The CAM control system performs identically to the AM:
fast, competitive results for low-budget instances, but se-
vere decrease in performance with high budgets. Alterna-
tively, the EANN control system achieves consistently high-
quality results at the cost of a slow training phase. This pa-
per proposes the Evolutionary Connectionist Anti-Majority
(ECAM) control system as a middle ground between the
prior two approaches. This is achieved by reducing the num-
ber of axons in the EANN scheme which require training
based on the fixed weights in the CAM scheme, as seen in
Figure 1(d). Axons between the input and hidden layers of
the ECAM are configured and fixed as in the CAM struc-
ture. The hidden-to-output layer is fully-connected and ad-
justable. Initialization of the ‘horizontal’ axons (bold in Fig.
1(d)) is to -1 as in the CAM scheme, but are still ajustable
through the EA training. All other axons are initialized
randomly in the standard [-0.5,0.5) range.

In addition to the standard EA scheme, this paper presents
a ramped difficulty evolution, in which the population be-
gins by initially evolving to solve a problem instance with a
high θG (=90%). Once the evolution is complete, or a single
individual reaches the simulation step limit (500000 steps),
the difficulty of the problem is increased by lowering the
value of θG by 10% and the evolution is begun again. The
population is evolved continuously through each level, so the
population that reached the limit condition for one value of
θG is the initial population for the next. This process is
described in Algorithm 1.

3. CONCLUSION
This paper demonstrates the ability of an evolutionary

neurocontroller to successfully act as the behavioural com-
ponent for the θ-CAP. A ramped evolution scheme was ob-
served to improve the quality of the evolved solutions. The
novel, problem specific EANN variant, ECAM, achieves bet-
ter quality results in less time on the more difficult small

Figure 1: Connectionist algorithms for control of a
social network. a) A sample social network with
3 controlled nodes b) Standard EANN. c) CAM
heuristic control system. d) ECAM control system.

Algorithm 1 Pseudo-code of the Ramped evolution EANN
for the θ-CAP.
Require: instance is a tuple (θG, B, G)
1: procedure RampedEANN(instance, maxGen)
2: instance.θG ← 0.9
3: Pop← InitPop(instance)
4: while instance.θG ≥ 0 do
5: Pop← TrainEANN(instance, maxGen, Pop)
6: Report(Pop)
7: instance.θG ← instance.θG − 0.1

budget instances. While the standard EANN attains con-
sistently better results for instances with large budgets, the
ECAM overcomes the weakness of the Anti-Majority heuris-
tic to demonstrate extended durations of control for these
instances as well. By limiting and biasing the search space
of all possible EANN weights to only those available in the
ECAM definition, the two algorithms converge to distinctly
different control strategies.

The landscape analysis comparison of the two algorithms
revealed unexpected similarity in the nature of the fitness
landscapes traversed. Slight changes in the observed values,
and increased average fitness over the majority of random
walks, suggests that both networks search on the same fit-
ness space, with the ECAM simply biased to a promising
region thereof.
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