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ABSTRACT
We present a novel diversity method named Grid Diversity
Operator (GDO) that can be incorporated into multiple
population-based optimization algorithms that guides the
containing algorithm in creating new individuals in sparsely
visited areas of the search space. Experimental tests on a set
of unimodal and multimodal benchmark functions from the
literature using GDO in conjunction with opt-aiNet algo-
rithm show that GDO maintains better diversity in most
cases, leading to an order-of-magnitude reduction in the
number of objective function evaluations needed to converge
while finding similar numbers of peaks in the majority of
benchmarks.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search
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1. INTRODUCTION
Managing the diversity of a population has been recog-

nized as one of the most influential factors within an Evolu-
tionary Algorithms (EAs) right from their inception. From
the exploration and exploitation perspective, an increase in
diversity correlates with exploration phase of an optimiza-
tion algorithm whilst a decrease correlates with the exploita-
tion phase. Maintaining a diverse population through the
use of exploration operators is key to achieving a balance
between the two phases.

In this work we extend research within the field of di-
versity maintenance [1], proposing a novel genotypic diver-
sity learning method named Grid Diversity Operator (GDO)
that make use of the long-term history of all populations in
order to suggest a biased distribution for new individuals.
GDO is not specific to any particular algorithm, but can be
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used with any optimization algorithm that supports the use
of infusion techniques, that is, through insertion of new in-
dividuals after a certain number of generations or through
special initialization techniques are used.

2. GRID DIVERSITY OPERATOR (GDO)
The Grid Diversity Operator (GDO) can be defined as

a hybrid, non-niching, population-based, genotype diversity
maintaining and learning technique. The basic idea is to
split the feasible space (the domain) into smaller sub-spaces
using the parameter R ∈ �n, which defines the number of
intervals per dimension, where n is the number of dimensions
for the problem. This process will form a 2D grid for 2-
dimensional problem etc. The GDO attempts to distribute
new individuals to the grid slots that have received fewer
visits over time, thus increasing the explorative power of
the algorithm.

First, A memory archive is created as an empty dictionary
that has n components key, where each key matches a single
value. The key components refer to the indices of a slot
within the grid, while the value represents the number of
individuals that have previously been placed in this slot.

The memory archive is updated every generation and af-
ter processing all individuals, the updated archive is used to
initialize new individuals. For each new required, we pick a
slot S at random and calculate its distribution probability PS

according to equation: PS = e(−NS) where NS is the value
matching the slot key in the archive or zero if the slot does
not yet belong to the archive. Finally, the calculated prob-
ability PS is compared to a uniformly distributed random
number, r and if PS > r then a new individual is initialized
randomly in this specific slot. If not, another slot is picked
at random, and the steps are repeated until the individual is
initialized successfully. The Grid Diversity Operator (GDO
is described in algorithm 1.

The process of updating the memory archive and dis-
tributing new individuals continues until the algorithm ter-
minates, at which point the final population is expected to
be more diverse than simply using a random initialisation
procedure.

3. EXPERIMENTAL RESULTS
GDO has been injected into Opt-aiNet algorithm [2] and

both versions (with and without GDO) were run 25 times
on a set of 10 unimodal optimization functions from the lit-
erature [3] (Ackley, Sphere, Rosenbrock function, Goldstein-
Price function, Booth, Bukin6, Matyas, Lévi13, Three-hump
camel, Easom). The GDO variant was able to find the best
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Algorithm 1 Pseudocode for Grid Diversity Operator
Input: MemoryArchive,Resolution,Nnew

Output: Snew

Snew ← ∅
for i = 1 to Nnew do

distributed ← FALSE
while ¬ distributed do

Key ← PickSlotAtRandom(Resolution)
if KeyExist(MemoryArchive,Key) then

V ← GetValueOfKey(MemoryArchive,Key)

P ← e−V

else
P ← 1

end if
r ← UniformRandom()
if P > r then

Individual ← CreateNewIndividualInSlot(Key)
InsertIndividual(Snew,Individual)
distributed← TRUE

end if
end while

end for
Return (Snew)

solution in 7 out of the 10 functions in the test and with
significantly less number of function evaluations as shown in
figure 1 and it was confirmed by a Wilcoxon rank sum test.
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Figure 1: Graph comparing number of function eval-
uations between the variant with random initializa-
tion (RND) and GDO version

A similar experiment were performed on 12 multimodal
optimization functions from the literature [4] (Bird, Vincent,
Roots, Hilly, Rastrigin, Himmemlblau, Foxholes, Guichi-
f4, HolderTable, Rastrigin49, Schwefel) and the results are
shown in figures 2 and 3. The GDO version was able to find
more optima than normal opt-aiNet in eight functions. The
average number of function evaluations however was signif-
icantly lower with GDO than without it for all functions,
according to a Wilcoxon rank sum test, showing improved
performance on 11 functions out of the 12.

4. CONCLUSION
The GDO operator was shown to achieve effective explo-

ration through testing on both unimodal and multimodal
benchmarks when incorporated within opt-ainet algorithm.
When compared to the original algorithm it was shown to be
an order of magnitude faster at converging, and at least as
good (and occasionally better) at finding peaks on the ma-
jority of functions. Although we have only provided results
obtained by incorporating the operator into op-aiNet, the
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Figure 2: Graph comparing number of peaks lo-
cated between the variant with random initialization
(RND) and GDO version
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Figure 3: Graph comparing number of function eval-
uations between the variant with random initializa-
tion (RND) and GDO version

operator is by no means restricted to this function. It can
be incorporated into any algorithm that includes an infusion
step, e.g. the Saw-Tooth algorithm of [5].
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