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ABSTRACT

In this paper we propose an extension of the NM-landscape
to model multi-objective problems (MOPs). We illustrate
the link between the introduced model and previous land-
scapes used to study MOPs. Empirical results are presented
for a variety of configurations of the multi-objective NM-
landscapes.
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Methods, and Search
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1. NM-LANDSCAPE
Let X = (X1, . . . , XN ) denote a vector of discrete vari-

ables. We will use x = (x1, . . . , xN ) to denote an assignment
to the variables. S will denote a set of indices in {1, . . . , N},
and XS (respectively xS) a subset of the variables of X (re-
spectively x) determined by the indices in S.

A fitness landscape F can be defined for N variables using
a general parametric interaction model of the form [2]:

F (x) =
l∑

k=1

βUk

∏

i∈Uk

xi (1)

where l is the number of terms, and each of the l coefficients
βUk

∈ R. For k = 1, . . . , l, Uk ⊆ {1, 2, . . . , N}, where Uk

is a set of indices of the variables in the kth term, and the
length |Uk| is the order of the interaction. By convention
[2], it is assumed that when Uk = ∅,

∏
j∈Uk

xj ≡ 1. Also
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by convention, we assume the model is defined for binary
variables represented as xi ∈ {−1, 1}.

The NM models [2] comprise the set of all general inter-
actions models specified by Equation 1, with the following
constraints: 1) All coefficients βUk

are non-negative. 2) Each
feature value xi ranges from negative to positive values. 3)
The absolute value of the lower bound of the range is lower
or equal than the upper bound of the range of xi. We will
focus on NM-models defined on the binary alphabet. In
this case, the NM-landscape has a global maximum that is
reached at x = (1, . . . , 1) [2].

A number of multi-objective landscapes have been pro-
posed to study the behavior of MOEAs [1, 3, 4]. In the next
section we introduce a multi-objective NM-landscape model.

2. MULTI-OBJECTIVE NM-LANDSCAPES
The multi-objective NM-landscape model (mNM-landscape)

is defined as a vector function mapping binary vectors of so-
lutions into m real numbers f(.) = (f1(.), f2(.), . . . , fm(.)) :
BN → Rm, where N is the number of variables, m is the
number of objectives, fi(.) is the i-th objective function, and
B = {−1, 1}. M = {M1, . . . ,Mm} is a set of integers where
Mi is the maximum order of the interaction in the i-th land-
scape. Each fi(x) is defined similarly to Equation (1) as:

fi(x) =

li∑

k=1

βUki

∏

j∈Uki

xj , (2)

where li is the number of terms in objective i, and each
of the li coefficients βUki

∈ R. For k = 1, . . . , li, Uki
⊆

{1, 2, . . . , N}, where Uki
is a set of indices of the features

in the kth term, and the length |Uki
| is the order of the

interaction.
The mNM fitness landscape model allows that each ob-

jective may have a different maximum order of interactions.
We will focus on bi-objective mNM-landscapes. The follow-
ing transformation is applied to the two objectives:

f1(y) : yi = −2xi + 1 (3)

f2(z) : zi = 2xi − 1 (4)

where y = (y1, . . . , yN ) ∈ {−1, 1} and z = (z1, . . . , zN) ∈
{−1, 1} are the new variables after the corresponding trans-
formation have been applied to x = (x1, . . . , xN) ∈ {0, 1}.

The transformation guarantees that the optimal solutions
will be respectively reached at points (0, . . . , 0) and (1, . . . , 1)
for objectives f1 and f2. Another constraint we set in some
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Figure 1: L) mNM landscape solutions, M) Boltzmann distributions, R) Product of the univariate marginals.

of the experiments is that, if M1 < M2 then, βUk1
= βUk2

for

all |Uki
| ≤ M1. This means that all interactions contained in

f1 are also contained in f2, but f2 may also contains higher
order interactions.

3. EXPERIMENTS
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Figure 2: Influence of the maximum order of the in-
teractions and σ in the Kullback-Leibler divergence
between the Boltzmann distribution and its univari-
ate factorization.

Figure 1 Left) shows the evaluation of the 210 solutions
that are part of the search space of a bi-objective mNM
model. Figure 1 Middle) shows the Boltzmann probabil-
ities associated to each point, i.e., (p1Bi

(xi), p2Bi
(xi)). Fi-

nally, Figure 1 Right) shows approximations of the Boltz-
mann distributions for the two objectives, each approxima-
tion computed using the corresponding product of the uni-
variate marginals, i.e., (q1Bi

(xi), q2Bi
(xi)).

Since factorized approximations can be essential for fea-
sible modeling of the search space, one relevant question
is: Under which conditions can factorized approximations

respect the composition of the Pareto set?. It seems that
a sufficient condition is that the approximations keeps the
ranking of the original functions for all the objectives, but
this condition may not be necessary.

Figure 2 shows the values of the KL divergence for the
combinations of the maximum order of the interactions and

σ. When the maximum order of the interactions is 1, the
approximation given by the univariate factorization is exact,
therefore, the KL distance between the variables is 0 for all
values of σ.

We summarize some of the findings from the experiments:
1) The mNM landscape can be used to create test problems
with varying order of interactions. 2) Univariate factoriza-
tions are poor approximations for mNMmodels of maximum
order two and higher. 3) The mutual information between
the variables of the NM landscape is maximized for problems
with maximum order of interaction 2. 4) The parity of the
maximum order of the interactions of the mNM landscape
influences the number of solutions in the Pareto fronts.

4. CONCLUSIONS
We have introduced the mNM-landscape as an extension

of the NM-landscape to the multi-objective domain. Using
the introduced model and the Boltzmann distribution, we
have investigated the effect that interactions between the
variables have in the shapes of the fronts, in the correlations
between the objectives, and in the emergence of dependen-
cies between the variables.
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