
An Algebraic Differential Evolution
for the Linear Ordering Problem

Valentino Santucci
Dept. of Math. and Comp. Sc.

University of Perugia, Italy
valentino.santucci@unipg.it

Marco Baioletti
Dept. of Math. and Comp. Sc.

University of Perugia, Italy
marco.baioletti@unipg.it

Alfredo Milani
Dept. of Math. and Comp. Sc.

University of Perugia, Italy
alfredo.milani@unipg.it

ABSTRACT
In this paper we propose a discrete algebraic-based Differ-
ential Evolution for the Linear Ordering Problem (LOP).
The search space of LOP is composed by permutations of
objects, thus it is possible to use some group theoretical
concepts and methods. Indeed, the proposed algorithm is a
fully discrete Differential Evolution scheme and has been de-
signed by exploiting the group structure of LOP solutions in
order to mimic the classical Differential Evolution behavior
observed in continuous numerical spaces. The performances
have been evaluated over widely known LOP benchmark
suites and have been compared to the state-of-the-art re-
sults.

1. INTRODUCTION
The Linear Ordering Problem (LOP) is a classical combi-

natorial optimization problem [3]. LOP has received consid-
erable attention because of its many applications in diverse
research fields such as, among the others, economy, graph
theory, archeology and computational social choice [3].

The goal of LOP is, given a n × n matrix H = (Hi,j),
to find a permutation π of the row and column indices
{1, . . . , n} which maximizes the objective function

f(π) =

n∑
i=1

n∑
j=i+1

Hπ(i),π(j). (1)

Since LOP is a NP-hard problem, exact methods are able
to find optimal solutions only in small problem instances.
Anyway, the permutation structure of the LOP solutions
allows to apply a variety of meta-heuristics and evolution-
ary algorithms specifically designed for permutation-based
search spaces.

According to [6] and the more recent [2], MA and ILS are
to be considered the state-of-the-art algorithms for LOP.

ILS [6], starting from a random solution, iteratively al-
ternates the two phases of local search (using the insertion

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOI: http://dx.doi.org/10.1145/2739482.2764693

neighborhood) and perturbation (shaking the local optimum
with a given number of interchange moves).

MA [6] evolves a small population of distinct local optima
by applying the same local search as in ILS to the offspring
solutions generated by the OBX crossover operator [7].

Further improvements to ILS and MA have been proposed
in [2], whose resulting variants of ILS and MA are referred,
respectively, as ILSR and MAR.

2. DIFFERENTIAL EVOLUTION FOR PER-
MUTATIONS

Differential Evolution for Permutations (DEP) algorithm
has been successfully proposed in [5] for the Permutation
Flowshop Scheduling Problem (PFSP), a combinatorial prob-
lem that share with LOP the same representation of solu-
tions as permutations.

DEP mainly consists in a completely discrete variant of
the popular numerical Differential Evolution (DE) algorithm
[4]. The core component of numerical DE is its differential
mutation operator that allows to self-adapt DE population
to the objective function landscape at hand by exploiting
the population solutions differences.

DEP mimics the same behavior of classical DE in the com-
binatorial space of permutations. Its key idea resides in the
definition of the operations of difference, sum, and trunca-
tion on the permutations space. These operations are some-
how consistent with their usual definitions in the classical
numerical space Rn. This is made possible by exploiting the
algebraic structure of the permutations space where its ele-
ments, i.e. the permutations, form a group in the algebraic
sense.

The Differential Evolution for the LOP Permutations space
(DEP) directly evolves a population of NP permutations
π1, . . . , πNP .

The population is initialized with NP uniformly random
permutations obtained by means of the well known Fisher-
Yates shuffle.

For each population individual πi, a mutant permutation
νi is generated according to

νi = πr0 ◦
(
F �

(
π−1
r2 ◦ πr1

))
where πr0 , πr1 , πr2 are three distinct randomly selected ele-
ments of the current population, ◦ is the permutation com-
position operator and � is the operator, described in [5],
which allows to compute the scaled difference.

The crossover between the population individual πi and
the mutant νi is performed according to the order based

crossover OBX [7], producing two offsprings υ
(1)
i , υ

(2)
i . OBX

1479



has been slightly modified in order to take into account the
crossover probability parameter of DE.

Then, the next generation population individual π′i is the

best among πi, υ
(1)
i , υ

(2)
i .

A restart mechanism, introduced to avoid the stagnation
of the population, is triggered when all the population el-
ements are the same. Half population is randomly regen-
erated using the Fisher-Yates method, while the remaining
individuals are shuffled each one by a random number of
adjacent swaps.

Finally, the population size NP is left free to be set by the
user, while the other two parameters, i.e., the scale factor
F and the crossover probability CR, are self-adapted using
the popular online scheme proposed in [1].

3. EXPERIMENTS
The performances of DEP have been evaluated on a large

set of widely known benchmark instances selected from [3].
Namely, we have selected the benchmark suites IO, SGB,
MB and XLOLIB. The resulting benchmarks collection is
composed by 183 LOP instances and it is quite heteroge-
neous regarding instance size and how they are generated.
Moreover, optimal values are known for IO, SGB and MB
instances, while the best known solutions of XLOLIB are
reported in [2].

DEP population size has been set to 100 after some pre-
liminary experiments and the algorithm has been run 10
times for each problem instance. Similarly to [2], the termi-
nation criterion has been set to 10 000 × n2 fitness evalua-
tions.

The performance measure employed is the commonly used
average relative percentage deviation (ARPD):

ARPD =

(
10∑
i=1

(Best−Algi)× 100

Best

)
/10 (2)

where Algi is the final fitness value found by the algorithm
Alg in its ith run, and Best is the best known value for the
problem instance at hand.

Owing to space constraints only the results for the XLOLIB
instances with n = 150 are reported in Table 1 where the
ARPDs obtained by DEP are compared with the state-of-
the-art ARPDs provided in [2].

However, it worths to note that, on IO, SGB and MB in-
stances, DEP was able to: (i) solve at least in one execution
the 82% of the instances, (ii) solve in every execution the
54% of instances, (iii) obtain an overall ARPD lower than
the 0.01%.

Regarding XLOLIB and considering that the proposed
DEP scheme for LOP is still a preliminary implementation,
Table 1 show that, although we were not able to match
the performances of the state-of-the-art algorithms MAR

and ILSR, DEP results are anyway satisfactory. Indeed, in
XLOLIB with n = 150, the overall ARPD of DEP is 0.66%
and it is less than 0.5% greater than that of MAR, i.e., the
best known algorithm to date. The difference is greater on
n = 250 instances, but still small, i.e., around the 1%.

Finally, it is worthwhile to note that DEP typically reaches
a good enough solution very soon and employs more than
3/4 of the evolution for small refinements. By also consider-
ing the satisfactory results on small and easy instances, this
aspect clearly reveals that DEP looks to have potentialities
for further improvements.

Table 1: Experimental results on XLOLIB benchmarks with
n = 150

Instance
Best DEP

Instance
Best DEP

ARPD ARPD ARPD ARPD
be75eec 150 0.13 0.32 t70f11xx 150 0.46 1.35
be75np 150 0.19 0.68 t70l11xx 150 0.04 0.81
be75oi 150 0.12 0.40 t70n11xx 150 0.29 0.85
be75tot 150 0.23 1.18 t74d11xx 150 0.18 0.83
stabu1 150 0.15 0.59 t75d11xx 150 0.19 0.88
stabu2 150 0.09 0.43 t75e11xx 150 0.33 0.72
stabu3 150 0.11 0.46 t75k11xx 150 0.13 0.30

t59b11xx 150 0.28 0.49 t75n11xx 150 0.25 1.04
t59d11xx 150 0.09 0.60 tiw56n54 150 0.14 0.51
t59f11xx 150 0.22 0.75 tiw56n58 150 0.16 0.91
t59n11xx 150 0.11 0.50 tiw56n62 150 0.18 0.68
t65b11xx 150 0.18 0.57 tiw56n66 150 0.24 0.55
t65d11xx 150 0.19 0.87 tiw56n67 150 0.08 0.47
t65f11xx 150 0.19 0.82 tiw56n72 150 0.16 0.51
t65l11xx 150 0.14 0.49 tiw56r54 150 0.06 0.52
t65n11xx 150 0.14 0.54 tiw56r58 150 0.15 0.65
t69r11xx 150 0.24 0.40 tiw56r66 150 0.27 0.77
t70b11xx 150 0.24 0.57 tiw56r67 150 0.18 0.69
t70d11xn 150 0.21 0.59 tiw56r72 150 0.14 0.70
t70d11xx 150 0.33 0.96
Avg ARPDs: DEP 0.66, MAR 0.19, ILSR 0.24, MA 0.19, ILS 0.24

4. ACKNOWLEDGMENTS
This work was partially supported by the University of

Perugia–DMI project “Mobile Knowledge Agents in Evolu-
tionary Environments” and by the DMI laboratory KITLab
(“Knowledge and Information Technology Laboratory”).

5. REFERENCES
[1] J. Brest, B. Boskovic, M. Mernik, and V. Zumer.

Self-adapting control parameters in differential
evolution: A comparative study on numerical
benchmark problems. IEEE Transactions on
Evolutionary Computation, 10(6):646–657, 2006.

[2] J. Ceberio, A. Mendiburubu, and J. Lozano. The linear
ordering problem revisited. European Journal of
Operational Research, 241(3):686–696, 2015.

[3] R. Mart́ı and G. Reinelt. The Linear Ordering Problem:
Exact and Heuristic Methods in Combinatorial
Optimization. Springer-Verlag, Berlin Heidelberg, 2011.

[4] K. Price, R. Storn, and J. Lampinen. Differential
Evolution: A Practical Approach to Global
Optimization. Springer-Verlag, Berlin Heidelberg, 2005.

[5] V. Santucci, M. Baioletti, and A. Milani. A differential
evolution algorithm for the permutation flowshop
scheduling problem with total flow time criterion. In
Parallel Problem Solving from Nature - PPSN XIII,
Lecture Notes in Computer Science, vol. 8672, pages
161–170, 2014.

[6] T. Schiavinotto and T. Stutzle. The linear ordering
problem: instances, search space analysis and
algorithms. Journal of Mathematical Modelling and
Algorithms, 3(4):367–402, 2005.

[7] G. Syswerda. Schedule optimization using genetic
algorithms. In Handbook of Genetic Algorithms, pages
332–349, New York, 1991. Van Nostrand-Reinhold.

1480




