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ABSTRACT
The momentum parameter is common within numerous op-
timization and local search algorithms, particularly in the
popular back propagation neural network learning algorithm.
Computationally cheap and prevalent in gradient descent
approaches, it is not currently utilized within neuroevolu-
tion. In this paper we present some of the results produced
by a momentum enhanced neuroevolutionary algorithm. We
demonstrate how this computationally inexpensive param-
eter in most of the cases results in enhancing the system’s
performance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Evolutionary Computation; Momentum Parameter; Neu-
roevolution; Neural Network; Genetic Algorithm; Memetic
Algorithm; DXNN

1. INTRODUCTION
The utilization of momentum in evolutionary computa-

tion (EC) has been explored in the past [6,7], but not when
applied to the evolution of Neural Networks (NNs) [1]. In
gradient descent based algorithms, momentum plays two
main roles: 1. Promote larger weight changes in areas of
shallow gradients. and 2. Prevent the algorithm from get-
ting stuck in local optima prematurely. When it comes to
EC, the purpose of momentum is to cancel out, over the
long term, incorrect parameter perturbations. In this paper
we add the momentum parameter to a Memetic Algorithm
(MA) and Genetic Algorithm (GA) based neuroevolution-
ary system, and then explore, and demonstrate, its superior
resulting performance. Due to the length restrictions of this
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paper, it will not be possible to discuss the algorithm in de-
tail, and only two benchmarks, instead of six which span
multiple domains, will be presented in this paper.

2. METHOD
To demonstrate the advantages of incorporating the mo-

mentum parameter into neuroevolution, we will explore its
addition into a generic MA and genetic GA algorithm based
neuroevolutionary based on algorithm [8]. The GA variation
of the MA algorithm is derived by removing the local search
stochastic hill climbing phase, and thus resulting in a single
phase based neuroevolutionary algorithm similar to NEAT
[2] in performance.

2.1 Momentum Parameter
We create a version of the neuroevolutionary algorithms

using the momentum parameter by modifying the weight
perturbation phase (if MA), and weight perturbation muta-
tion operator (if GA) as follows:
λWt = (uniform() − 0.5) ∗ Spread+ λWt−1 ∗M
Wt = Wt−1 + λWt

Where λWt is Weight change, λWt−1 is previous weight
change, uniform() generates a random uniform value be-
tween 0 and 1, Spread is the perturbation spread range that
is based on the age of the neuron (it anneals over time) and
is discussed in [1], M is the momentum parameter specified
by the researcher which determines the percentage of the
previous weight change, set to a value between: 0 (no mo-
mentum) and: 1 (previous weight change is subtracted com-
pletely), that gets added to the new weight change, and Wt

and Wt−1 which are the new and old weights, respectively.
The momentum parameter M in the performed benchmarks
was set to 0.5, after determining that it is generally optimal
value best suited in most problem domains explored.

2.2 Benchmarks
To determine how momentum effects neuroevolution, we

perform benchmarks from different problem domains:
1. Double Pole Balancing [3] (DPB). (Presented in this pa-
per)
2. Multi-Double Pole Balancing (Multi-DPB): Here the NN
has to balance two double-pole carts at the same time. (Pre-
sented in this paper)
3. Visual Discrimination [4]. (Presented in full paper)
4. T-Maze navigation [9,10], with neurons that utilize Heb-
bian learning. (Presented in full paper)
5 & 6. Two versions of ALife where simulated robots using
range sensors, color sensors, and a differential drive, navi-
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gate through 2d space, avoid obstacles, and gather energy
particles [5]. (Presented in full paper)

3. RESULTS
Table-1 presents the average number of evaluations needed

in 100 evolutionary runs to solve the DPB problem using the
specified parameters.

WM% Evo-Type Mom. Avg/StDiv/Suc.%
0% memetic on 941/433/100%

0% memetic off 1223/979/100%

85% genetic on 1528/3123/100%

85% genetic off 2687/10644/100%

Table 1: DPB benchmark results for genetic &
memetic neuroevolution. WM% stands for Weight
Mutation percentage, where GA algorithm had 85%
of its mutation operators being weight perturba-
tions, and MA algorithm has 0% of its mutation
operators being weight perturbation, due to us-
ing weight perturbation in the local search phase
only. Evo-Type stands evolutionary type, genetic or
memetic in this case. Mom. flag notes whether mo-
mentum was turned on or off, and Suc. is the per-
centage of the evolutionary runs that were successful
in generating a solution in under 20000 evaluations.

In the DPB experiment, we can see from Table-1 that
the inclusion of momentum parameter improves the perfor-
mance of the system drastically. On average, the number
of needed evaluations to solve the problem decreases any-
where from 40% in the GA based system, to 25% in the
MA versions. The GA based neuroevolutionary algorithm
(such as NEAT for example) approach takes on average 2687
evaluations to solve the problem without momentum, and
is significantly improved when momentum term is added,
needing only 1528. The MA based system (such as DXNN
[1] for example) solves the problem on average in roughly
1223 evaluations, and is further improved through the use
of momentum to only needing 941 evaluations.

For the multi (2) DPB experiment, none of the runs were
able to solve it completely, with the fitness score graph of the
results presented in Fig-1. This benchmark tests how well
the system can handle solving problems where we have to
set multiple parameters to the right value simultaneously.
If only one of the sub-problems is solved (only 1 cart), the
fitness does not improve since it’s based on when the first
(on either cart) pole falls below the 35 degree mark. Here
too we see that momentum improves performance.

Though not shown in this short version of the paper, we
have also performed benchmarks within the domain of vi-
sual discrimination, T-Maze navigation, and Evolutionary
Robotics & ALife. We found the performance to be im-
proved in all but the ALife benchmarks/problem domains.

4. DISCUSSION & CONCLUSION
In this paper we demonstrated the improvements in per-

formance that a neuroevolutionary systems can achieve by
incorporating the computationally inexpensive momentum
parameter. We found that the momentum parameter im-
proves performance to a significant degree in problems such

Figure 1: Multi-DPB: Avg. Max Fitness Vs. Evals.

as DPB, Multi-DPB, Visual Discrimination, and T-Maze
navigation with plastic neurons. We also found that the
momentum parameter enhanced neuroevolution did not pro-
duce statistically significant improvements in the ALife prob-
lem domains. But, in no benchmark did we find the mo-
mentum parameter inclusion to decrease the systems’ per-
formance! Based on these results, due to the momentum
parameter’s extremely low computational cost, we strongly
believe that it should be become a standard part in all future
neuroevolutionary approaches.
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