
An Effective Approach for Adapting the Size of
Subcomponents in Large-Scale Optimization with

Cooperative Coevolution

Giuseppe A. Trunfio
DADU, University of Sassari

P.zza Duomo, 6
Alghero, Italy

trunfio@uniss.it

ABSTRACT
The performance of cooperative co-evolutionary algorithms
for large-scale global optimization (LSGO) can be signifi-
cantly affected by the adopted problem decomposition. This
study investigates a new adaptive Cooperative Coevolution-
ary algorithm in which several decompositions are concur-
rently applied during short learning phases. Moreover, the
study includes some experimental results on a set of LSGO
problems and a comparison with a recent approach based
on reinforcement-learning. According to the numerical re-
sults, the proposed adaptive approach can provide a superior
search efficiency on several benchmark functions.

CCS Concepts
•Computing methodologies → Continuous space
search; Randomized search; Reinforcement learning;

Keywords
Cooperative coevolution, large scale optimization, differen-
tial evolution, adaptation

1. INTRODUCTION
The CC idea [2] consists of decomposing the original high-

dimensional problem into a set of lower-dimensional sub-
components, which are easier to solve. Typically, to each
subcomponent is assigned a subpopulation of candidate so-
lutions, which is evolved according to the adopted optimiza-
tion metaheuristic. During the process, the only cooperation
takes place in the fitness evaluation, through an exchange
of information between subcomponents based on a common
context vector.

A major challenge with the CC approach, consists of group-
ing variables into an optimal set of subcomponents. For fully
separable (i.e. without interacting variables) or fully non-
separable problems, a typical decomposition approach con-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2764711

sists of using equally sized subcomponents. However, also
their common size can be a critical factor in determining the
performance of the CC technique. The problem has been
addressed first in [6] (MLCC approach) and, more recently,
in [1] (MLSoft approach), where the authors: (i) showed
that in several cases there exists an optimal value for the
size of subcomponents; (ii) proposed an adaptive approach
based on a reinforcement learning technique for finding such
an optimal value. Unfortunately, as noted in [1], the non-
stationary nature of the problem makes hard the learning of
a suitable size for the subcomponents.

This study presents an alternative approach for effectively
adapting the size of subcomponents within a CC algorithm.
In the proposed method, the learning phases consist of a con-
current application of a pool of alternative ‘decomposers’.
Such an approach, compared with the activation of one de-
composer at a time proposed in [6, 1], enables a more reliable
comparative evaluation of the candidate decomposers.

2. THE CCAS APPROACH
In both the MLCC and MLSoft approaches mentioned

above, a decomposer (i.e. a size of subcomponents) is ran-
domly drawn at each cycle according to its current probabil-
ity, which is computed on the basis of a value function. The
latter reflects the rewards obtained by the decomposer at
the end of the cycles in which it has been used. Such adap-
tive methods can be seen in a perspective of a reinforcement
learning (RL) approach [3], where the improvement of fit-
ness is the reinforcement signal and the actions consist of
the choice of the decomposer.

Unfortunately, in such a learning scheme the rewards ob-
tained by the different decomposers may be strongly affected
by the state of the environment in which they have oper-
ated. This is because of the expected evolution of the pop-
ulation on the fitness landscape, which can be significantly
complex. In other words, an hypothetical agent that has
to choice a decomposer operates on a non-stationary and
history-dependent environment, for which RL schemes con-
ceived for Markovian environments are not guaranteed to
converge to the optimal policy (although they can still be
used with acceptable results in some cases [3]). Instead, the
proposed Cooperative Coevolution with Adaptive Subcom-
ponents (CCAS) approach consists of evaluating the differ-
ent decomposers under the same conditions. More in detail,
during the learning phases, the decomposers of a predefined
set are applied starting from the same state of the search,

1495

Table 1: Achieved results with CCAS (using ε = 0.05 and ε = 0.01) and comparison with the re-
sults achieved using our implementation of MLSoft (with τ = 0.5). The Table also shows the best
static decomposer tested in the numerical investigation. Standard deviations are in parentheses. The
used test functions are: f1 = Quartic function, f2 = Rastrigin’s function, f3 = Ackley’s function, f4 =
Schwefel’s function, f5 = Styblinski-Tang function, f6 = Shifted Sphere, f7 = Shifted Schwefel problem 2.21,
f8 = Shifted Rosenbrock function , f9 = Shifted Griewank function

Function CCAS (ε = 0.05) CCAS (ε = 0.01) MLSoft (c = 0.5) Static

f1 5.67E+00 (5.45E+00) 4.41E+00 (3.84E+00) 4.81E+00 (1.70E+00) 2.58E+00 (1.08E+00)
f2 6.63E−02 (2.48E−01) 6.63E−02 (2.48E−01) 3.09E+01 (6.27E+00) 4.81E+01 (2.78E+00)
f3 2.02E−13 (1.17E−12) 1.96E+00 (1.04E+00) 1.71E−12 (1.39E−12) 1.70E−13 (5.38E−15)
f4 5.76E+02 (2.59E+02) 6.17E+02 (4.26E+02) 7.03E+03 (1.39E+03) 9.90E+02 (2.26E+02)
f5 1.71E+00 (4.80E+00) 1.49E+01 (2.09E+01) 4.91E+01 (5.78E+01) 1.81E+01 (1.60E+01)
f6 0.00E+00 (0.00E+00) 3.36E−30 (1.25E−29) 7.66E−22 (2.17E−21) 3.15E−26 (2.43E−26)
f7 6.71E+01 (7.37E+00) 4.46E+01 (1.22E+01) 1.01E+02 (4.09E+00) 7.17E+01 (6.89E−01)
f8 6.75E+01 (5.01E+01) 1.62E+03 (4.10E+02) 1.42E+03 (6.88E+02) 1.44E+01 (2.26E+01)
f9 2.03E−13 (1.87E−14) 6.36E−02 (1.24E−01) 1.47E−03 (5.51E−03) 6.57E−04 (2.46E−03)

including the same context vector. In other words, they are
concurrently executed on the same initial environment in
order to estimate their value functions.

Moreover, in order to achieve a better allocation of the
available computational resources, the proposed approach is
devised in such a way to have a suitable number of individ-
uals for each population associated to the different decom-
posers. Indeed, in spite of the fact that the size of the popu-
lation should be suitably adjusted according to the problem
dimension, with few exceptions (e.g. [4]), the CC algorithms
typically adopt a fixed number of individuals.

In the proposed strategy, the CC optimizer can be in two
different states, namely learning and optimization. Both
phases keep carrying out the optimization process. However,
while in the learning phase all the available decomposers are
concurrently applied, in the non-learning one, only the best
decomposer is actually used. The duration of each learning
phase is expressed in cycles (i.e. number of invocations of
the optimizer). At the first cycle, the search is put in learn-
ing mode. At the end of the learning phase, all the rewards
obtained by each decomposer are used for the computation
of a value function qj . After the computation of all qj , the
algorithm ends the learning phase by selecting, for the subse-
quent optimization phase, the decomposer with the greatest
value function. In the current implementation, the learning
phase is randomly resumed with a low probability ε.

The CCAS approach was applied to the minimization of
nine typical benchmark test functions (see Table 1). The
last four non-separable functions have been taken from those
proposed for the CEC’08 special session on large scale global
optimization (LSGO). For all functions we used d = 1000 as
problem dimension. The adopted optimizer was JADE [7],
an adaptive Differential Evolution algorithm in which the
parameter adaptation is implemented by evolving the muta-
tion factors and crossover probabilities based on their histor-
ical record of success. We executed 25 independent runs on
the adopted test functions and the learning durations were
set to 3 cycles. Moreover, we investigated two different val-
ues of the resuming probability ε, namely 0.01 and 0.05. In
addition, we implemented a version of MLSoft [1], for which
we used c = 0.5 (see [1]). The average achieved results are
shown in Table 1, where they are also compared with the
best results obtained using the static (i.e. fixed) decompo-
sition. Using the Kruskal-Wallis test with significance 0.05

we assessed the significant differences between the different
approaches. Then, we carried out Mann-Whitney-Wilcoxon
(MWW) tests, with Bonferroni correction, for the between-
groups comparisons. In Table 1, we marked in bold the best
results, when the difference was statistically significant. As
can be seen, CCAS with ε = 0.05 outperformed MLSoft
with c = 0.5 in seven out of nine cases. In the remaining
two cases, the results provided by CCAS were statistically
equivalent to those of MLSoft.

According to the numerical results, the proposed approach
can effectively adapt the size of subcomponents during the
CC search. Thus, the method deserves to be investigated
more thoroughly, especially using a more extended suite of
benchmark functions.

More details on the proposed algorithm and its prelimi-
nary evaluation can be found in [5].

3. REFERENCES
[1] M. N. Omidvar, Y. Mei, and X. Li. Effective

decomposition of large-scale separable continuous
functions for cooperative co-evolutionary algorithms. In
Proceedings of the IEEE Congress on Evolutionary
Computatio. IEEE, 2014.

[2] M. A. Potter and K. A. De Jong. A cooperative
coevolutionary approach to function optimization. In
Parallel Problem Solving from Nature, PPSN III, pages
249–257. Springer-Verlag, 1994.

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[4] G. A. Trunfio. Enhancing the firefly algorithm through
a cooperative coevolutionary approach: an empirical
study on benchmark optimisation problems. IJBIC,
6(2):108–125, 2014.

[5] G. A. Trunfio. A cooperative coevolutionary differential
evolution algorithm with adaptive subcomponents.
Procedia Computer Science, (in press), 2015.

[6] Z. Yang, K. Tang, and X. Yao. Multilevel cooperative
coevolution for large scale optimization. In IEEE
Congress on Evolutionary Computation, pages
1663–1670. IEEE, 2008.

[7] J. Zhang and A. C. Sanderson. Jade: Adaptive
differential evolution with optional external archive.
IEEE Trans. Evolutionary Computation, 13(5):945–958,
2009.

1496

