
Recurrent Cartesian Genetic Programming
Applied to Series Forecasting

Andrew James Turner
The University of York

Department of Electronics
YO10 5DD, UK

andrew.turner@york.ac.uk

Julian Francis Miller
The University of York

Department of Electronics
YO10 5DD, UK

julian.miller@york.ac.uk

ABSTRACT
Recurrent Cartesian Genetic Programming is a recently pro-
posed extension to Cartesian Genetic Programming which
allows cyclic program structures to be evolved. We apply
both standard and Recurrent Cartesian Genetic Program-
ming to the domain of series forecasting. Their performance
is then compared to a number of well-known classical fore-
casting approaches. Our results show that not only does Re-
current Cartesian Genetic Programming outperform stan-
dard Cartesian Genetic Programming, but it also outper-
forms many standard forecasting techniques.
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1. INTRODUCTION
Cartesian Genetic Programming (CGP) [2] is a Genetic

Programming (GP) [3] method which represents computa-
tional structures as directed acyclic graphs. This brings
many advantages over the more commonly used tree struc-
ture. For instance: CGP is naturally suited to multiple-
input multiple-output (MIMO) tasks, it allows internally
calculated values to be reused many times, it benefits from
explicit neutral genetic drift and does not suffer from pro-
gram bloat.

It has recently been shown that with minor changes to the
encoding, CGP can also evolve cyclic graphs. This extended
form of CGP is called Recurrent Cartesian Genetic Pro-
gramming (RCGP) [6, 7]. Allowing recurrent connections
enables RCGP phenotypes to hold internal states based on
previous inputs. This enables RCGP to be applied to par-
tially observable tasks such as those which require memory
or feedback.

This paper applies, for the first time, both standard and
recurrent CGP to series forecasting. Series forecasting is
an important machine learning domain finding application
in many disciplines including: economics, politics and plan-
ning. Although previously alternative types of GP have been
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applied to series prediction, these results are not used here
for comparisons. This is due to many differences in bench-
mark implementation used, making any comparisons less
valid. Here we compare CGP and RCGP to many standard
forecasting methods ourselves using freely available open-
source implementations; ensuring a fair comparison.

The work compares CGP and RCGP to a range of stan-
dard forecasting techniques comprising Random Walk fore-
casting (RWF), MEAN, Exponential smoothing (ETS) and
Autoregressive integrated moving average (ARIMA). Com-
paring new forecasting methods with at least one naive and
one complex standard method (specifically ARIMA) is the
recommended methodology of Richard Hyndman, a recog-
nized expert in the field of forecasting, for evaluating new
forecasting methods; http://robjhyndman.com/hyndsight/
benchmarks/. The Forecast package [1] implementation was
used for RWF, MEAN, ETS and ARIMA.

2. RECURRENT CARTESIAN GENETIC
PROGRAMMING

Recurrent Cartesian Genetic Programming (RCGP) [6, 7]
is a recent extension to CGP [2] which allows for both acyclic
and recurrent connections. For an open source implementa-
tion of both CGP and RCGP see [5].

In regular CGP, connection genes are restricted to only
allow nodes to connect to previous nodes in the graph; in-
cluding inputs. In RCGP this restriction is lifted so that
it allows connection genes to connect a given node to any
node, including itself, or program input(s). Once the acyclic
restriction is removed, RCGP phenotypes can contain recur-
rent connections.

The level of recurrence present in RCGP is biased using
a recurrent connection probability. This parameter controls
the probability that when a connection gene is mutated it
will result in a recurrent connection. This parameter does
not however limit the maximum / minimum number of re-
current connections; except for values of 0% and 100%.

RCGP chromosomes are executed identically to standard
CGP chromosomes. The inputs are applied, each active
node is updated once in order of node index, and the out-
puts read. The next set of inputs are then applied and the
process repeated. The difference with RCGP is that the pro-
gram output(s) can be determined by the current input(s)
and the current state of the internal nodes.

One important aspect of RCGP is that it is possible for
node output values to be read before they have been calcu-
lated. For this reason all nodes are initialised to output zero
until they have calculated their own output value.
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3. APPLICATION TO FORECASTING
In this paper CGP and RCGP are applied to series fore-

casting using a recursive forecasting method. This method
involves making previously made forecasts available as in-
puts to be used for subsequent forecasts. The number of
previous forecasts used is determined by the embedding di-
mension of the training data.

The fitness function used here by CGP and RCGP repre-
sents how well the solutions recursively predict sections of
the training data. This is achieved by recursively predicting
the next fifty samples from t = 50, t = 100,..., t = 950; the
forecasts start from t = 50 and not t = 0 as a number of
previous values are required to make the initial forecasts.
The fitness awarded to each chromosome is the mean square
error (MSE) between the correct and produced forecasts.

Unlike CGP, when using RCGP the output of the pro-
grams are a function of the current inputs and the cur-
rent state of the network. This means the network must
be ‘primed’ before it can be used to make forecasts. The
priming process is to apply previous observed values to the
network, in sequence, and execute the phenotype in each
case. The outputs are not used. This causes the internal
nodes to calculate suitable values/states before forecasting
begins. Here when using RCGP the previous 50 samples
from each starting point are applied to the network before
making future predictions.

A validation scheme is also used to prevent over-training.
Generalisation is assessed by recording how well the solu-
tions perform beyond the forecast horizon used during train-
ing. Starting at t = 100, t = 200, ..., t = 900 forecasts are
made up to a horizon of 100 samples. The mean square
error of the forecasts between a horizon of 50 samples and
100 samples are then used as a validation fitness score. The
chromosome which achieves the best validation score on a
given generation is then retained once the maximum number
of generations have elapsed and used as the final solution.

In the work presented here CGP and RCGP use the follow-
ing “off-the shelf” parameters: (1+4)-ES, 10000 generations,
3% probabilistic mutation, 100 nodes, and a node arity of 2.
In the case of RCGP a 10% recurrent connection probability
is used. In both cases the function set contains: +, −, ∗, /,
sin, cos, exp and log.

4. EXPERIMENTS
Here three standard benchmarks are utilised to assess the

effectiveness of using CGP and RCGP as forecasting tech-
niques. In all cases 1000 samples are used for training and
the task is to predict the following 100 testing samples. Ad-
ditionally in all cases the series are normalised into the range
[0,1]. The benchmarks comprise, laser, Makey-Glass and
monthly sunspots. The laser benchmark is available at [8];
the first 1100 samples are used. The Mackey-Glass bench-
mark is created from Equation 1 using a = 0.2, b = 0.1,
c = 10 and τ = 17, x(t) = 0 when t ≤ 0. A series is pro-
duced using fourth order Runge-Kutta integration with a
time step of dt = 0.01 seconds. This series is then sampled
once a second to produce the series used as the benchmark.
The first 117 seconds (samples) are removed to avoid the
transient response time. Then the following 1100 seconds
(samples) are used for the training and testing sets. Finally,
the smoothed monthly sunspots benchmark is available from
[4]; November 1834 to June 1926 are used.

Table 1: MSE achieved by the Forecasting methods.

Method Laser Mackey-Glass Sunspots
RWF 0.034227 0.109334 0.176262

MEAN 0.027151 0.067324 0.034399
ETS 0.034223 0.357603 0.546006

ARIMA 0.034148 0.071481 0.034972
CGP 0.027091 0.058746 0.026894

RCGP 0.004424 0.025706 0.011922

dx(t)

dt
=

a · x(t− τ)

1 + xc(t− τ)
− b · x(t) (1)

The results of using the forecasting techniques to predict
the testing data are given in Table 1. In the case of RWF,
MEAN, ETS and ARIMA only one model is created and
so the performance of that model is given. In the case of
CGP and RCGP, 50 runs of training were carried out. The
results given are the testing performance of the run which
achieved the best validation score during training. This is
representative of how CGP and RCGP would be applied in
a real world scenario.

5. CONCLUSIONS
This paper has demonstrated how CGP and RCGP can

be applied towards series forecasting. From the compar-
isons with standard forecasting methods it has been shown
that CGP and RCGP represent powerful forecasting meth-
ods worthy of further investigation. Finally, it has also been
shown that the ability of RCGP to create recurrence in the
evolved solutions represents a major advantage over stan-
dard feed-forward CGP in the domain of series forecasting.
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