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ABSTRACT

Maritime data uniquely challenges imagery analysis. Such
data suffers from degradation, limited samples, and varied
formats. To this end, the Hypercube-based NeuroEvolution
of Augmenting Topologies (HyperNEAT) approach is inves-
tigated in addressing such challenges for classifying maritime
vessels in a satellite imagery data set. The results show that
HyperNEAT learns to extract features that allows better
classification than those from Principal Component Analy-
sis (PCA) and robust to differences in presentation of data.
Furthermore, HyperNEAT enables a unique capability to
scale trained solutions to different image resolutions.

Categories and Subject Descriptors
1.5.4 [Pattern Recognition]: Computer Vision
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1. INTRODUCTION

HyperNEAT has succeeded in visual discrimination tasks
[9] and handwritten digits [6, 7] but has yet to be fully ex-
plored in real-world imagery. Imagery from the maritime
domain presents barriers to learning in the form of small
data sets, many image formats, and occlusions, distortions,
or degradation [4], thus is a challenging problem [3, 4]. Re-
sults show that HyperNEAT creates feature extractors that
outperform PCA and effectively learns with different pre-
processing techniques. Interestingly, these different normal-
izations do impact the types of features learned and can aid
in overcoming challenges in the data set (e.g. biases towards
a particular class). Finally, indirect encoding allows solu-
tions to be applied at any image resolution.

2. BCCT200

Maritime classification is an important goal for many secu-
rity applications. Towards that goal, Harguess et al. [3] cre-
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Figure 1: BCCT200 Data Set Examples.
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Figure 2: Feature Learning HyperNEAT. Evolved
CPPNs (1) generate connectivity (2). The ANN extracts
features (3). Features train another learning algorithm (4)
to perform a task. Test performance determines fitness (5).

ated the Barge, Cargo, Container, and Tanker (BCCT200)
dataset (Figure 1) from the RAPid Image Exploitation Re-
source (RAPIER®), developed by the Space and Naval War-
fare Systems Center Pacific [1]. The BCCT200 dataset was
created by hand-labeling image chips into the vessel cate-
gories (4 classes / 200 images each ), then they were rotated,
cropped, and resized [3].

3. FEATURE LEARNING HYPERNEAT

HyperNEAT succeeds in challenging tasks [2, 8] by ex-
ploiting geometry, but is just beginning to address visual
domains [6, 5, 7]. Conventional HyperNEAT trains a CPPN
that defines an ANN that is the solution. However, Fea-
ture Learning HyperNEAT trains an ANN that transforms
inputs into features that then are given to another machine
learning approach to solve the problem. Performance of this
learned solution then defines the fitness score of the CPPN
for HyperNEAT (Figure 2). In this way, HyperNEAT acts
as a reinforcement learning approach that determines the
best features for a machine learning approach.
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Figure 3: Max Bipolar Normalization.

=———=Barge == Cargo == Container === Tanker === Overall

- 1

2

,ﬁ 09 g

2 0.

o]

© 08

©

L 07

£

S

- 06

kel

‘g 0.5 T T T T T T T T T T T T T

pas O O O O O O O O O O O O O o O

w O O O O O O O O O O O O 9O O
- AN O < 0O O MN~NWO0OO O - N M T

- - < <
Generation

Figure 4: Mean Per Image Bipolar Normalization.

4. EXPERIMENTAL SETUP

BCCT200 is scaled down to 28 x 28 pixels and split into
three sets: Training (400 images), Evaluation (200 images),
and Testing (200 images). KNN (k = 3) learns from the
training set, evaluation determines fitness, and testing is
data unseen during evolution. The ANN has no hidden lay-
ers to match PCA’s linearity. Image normalization is varied
in three ways. (1) Normalization is varied between divid-
ing by the max value, mean normalization, and deviation
normalization. (2) Normalization is varied between all the
pixels from all the images, within a single image, and at
a particular location. (3) Range is set to either unipolar
or bipolar. Scaling is implemented by applying a solution
trained at the 28 x 28 to 20 x 20, 50 x 50, and 100 x 100.

S. RESULTS

PCA provides baseline performance of 86% training and
75% testing. Peak training performance is 92% with [devi-
ation; all images; unipolar] normalization and peak testing
performance is 80% with [max; bipolar]. Peak combined per-
formance is [max; bipolar] normalization (89% training, 80%
testing). All normalization approaches except [mean; all
images; bipolar] exceed PCA’s training performance. How-
ever, HyperNEAT only exceeds PCA’s testing performance
with: [deviation; per image; unipolar], [max; bipolar|, and
[mean; all images; bipolar]. Figures 3, 4 show performance
per class over time of [max; bipolar] and [mean; per image;
bipolar]. [Max; bipolar] converges to correct classifications
95% (barges), 89% (tankers), 85% (container), 81% (cargo).
[Mean; per image; bipolar] differs by finding classification
rates of 97% (barges), 82% (container), and 80% (tanker,
cargo), but then learning balanced classification, with rates
of 93% (barges), 86% (cargo, container), and 85% (tankers).

Classification performance at the trained resolution is 90%
for training and 75% for testing. Scaling to different resolu-
tions does degrade training and testing performance to 81%
and 65%, 82% and 64%, and, 81% and 63% for the 20, 50,
and 100 scales, respectively. Note, these results have no fur-
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Figure 5: Scaling to Different Resolutions.

ther training. Traditional computer vision [4] performance
drops by more than half under similar scale changes.

6. DISCUSSION & CONCLUSION

Feature Learning HyperNEAT was invesitgated in the chal-
lenging classification maritime vessels from satellite imagery
represented by the BCCT200 data set. Results showed that
HyperNEAT discovers superior linear feature extractors ver-
sus PCA under different manipulations of the data. Further-
more, the correct pre-processing allows HyperNEAT to over-
come a strong bias present that can be present in small data
sets. Finally, HyperNEAT demonstrates an ability to scale
to different image resolutions. Thus HyperNEAT presents
a unique approach to feature learning for imagery that can
enable capabilities that are difficult for current approaches.
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