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ABSTRACT
Crowdsourcing is a well-known method in which intelligence
tasks are completed by an anonymous group of human par-
ticipants. These are tasks that cannot yet be adequately
performed by computers. Rather than performing an intel-
ligence task outright, one crowdsourcing strategy is to use
human intelligence to complement machine intelligence. A
key point in determining the potential of such a strategy is
understanding the ways that human abilities most effectively
complement the strengths of machine intelligence. We shed
light on this relationship by ‘crowdseeding’ robot design:
we find morphological features common to human-generated
robot designs and incorporate them as an additional fitness
objective in an evolutionary algorithm that searches over
the same space of designs. We demonstrate that this ap-
proach outperforms the same evolutionary algorithm that is
not crowdseeded in this way.
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I.2.9 [Computing Methodologies]: Artificial Intelligence-
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1. INTRODUCTION
Crowdsourcing is a popular method for distributing intel-

ligence tasks to a group of anonymous human participants
over the World Wide Web. Recent research on crowdsourc-
ing has focused on how we can leverage the wisdom of the
crowd [3] to accomplish more complex tasks than those that
are simple and easily separable [2].

Here we present a novel crowdsourcing methodology that
we term crowdseeding. In this two-stage method, 1) partic-
ipants are asked to participate in a collective activity over
the Web, and then 2) features from the first stage are used to
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seed a machine learning algorithm with the aim of improv-
ing its performance, which in our case is an evolutionary
algorithm. We do this by incorporating features that were
favored by the crowd in stage 1 as an additional objective in
the evolutionary algorithm in stage 2. We demonstrate this
methodology using web-based interactive robot design.

2. STAGE ONE: CROWDSOURCING
In the first stage of the experiment, we deployed a web-

based interface that enabled participants to design robot
bodies and vet the quality of their designs using a hill-
climber. Participants were anonymous and unpaid. When
they visited the study site, they were presented with a de-
sign panel (Figure 1C) in which they were able to design
robot bodies within their web browser. This panel consisted
of a 5×5 grid of dots. When the user clicked on one dot and
dragged their mouse to another dot, a line would be drawn
between the dots. Only lines between adjacent dots were
allowed. When they were finished ’connecting the dots’,
they could click a GO button, which rendered their draw-
ing in a 3D web-embedded physics simulation (Figure 1B).
In this simulation, each line in the design was translated to
a rectangular parallelipiped segment and each dot that was
adjacent to a line was translated into a cube. Segments were
attached to cubes with hinge joints that were actuated with
a sinusoidal displacement-controlled signal. The sinusoidal
signal was fixed at a 1.5 Hz frequency and at a fixed ampli-
tude that caused the joint to sweep an angle of [−45◦,+45◦].
The phase offset of the signal was assigned to be either 0◦

or 180◦. This offset was determined by a hillclimber algo-
rithm unique to each unique robot design. Thus, each time
a user clicked GO they would be contributing one run of a
hillclimber for that particular design.

Users were exposed to a subsample of all of the designs
created by users, which were stored in a central repository.
Thirteen randomly selected designs created by other users
were displayed at the top of the interface (Figure 1A). Each
time a user refreshed their page or clicked GO, they would be
exposed to a new sample of these past robot designs. They
were free to use these to guide their own designs, to repeat
them and thus contribute one iteration to the hillclimber, or
they could create an altogether new design of their own.

3. STAGE TWO: CROWDSEEDING
In the second stage of the experiment, we used prominent

features observed in the first stage to construct an addi-
tional objective for a multiobjective genetic algorithm. One
characteristic that clearly stood out in designs created by
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Figure 1: Screenshot of user interface. Users could see a
sample of designs produced by other participants at the top
(A, yellow box). They could “connect the dots” to draw
robot morphologies on the right (C, blue box) and when they
clicked on GO, they would see a simulation of the robot (B,
green box).

the crowd in stage 1 of the experiment was a high degree
of reflective symmetry. Approximately seven out of every
ten unique designs were perfectly symmetric with respect to
reflection over a vertical, horizontal or diagonal axis (and
many more were highly symmetric), despite the paucity of
symmetric designs in the total number of designs possible
using this interface (approximately two per million).

In addition to the primary objective – the distance that
a particular robot was able to move from a fixed point – we
introduced a secondary objective to maximize symmetry of
the robot design to seed a genetic algorithm. The search
space of this genetic algorithm was the same as in the first
stage. Genotypes in the evolutionary population consisted
of a bitstring, composed of bit triplets for each possible line:
the first and third bits denoted whether a hinge joint was
actuated with a 0◦ (0) or 180◦ (1) phase-offset sinusoid and
the middle bit denoted the presence (1) or absence (0) of a
segment between each pair of neighboring dots.

4. RESULTS AND DISCUSSION
In the first stage of the experiment, 947 users participated

in designing 2292 unique robot bodies. We compared 100 in-
dependent trials of a uniobjective control treatment to 100
independent trials of the seeded, bi-objective experimental
treatment. The control treatment selected only on the ba-
sis of our primary objective: the distance that a particular
robot was able to move from an initial, fixed point. The ex-
perimental treatment selected for both the primary distance
objective as well as the additional, seeded objective, which
was to maximize symmetry.

We found that robots created using the experimental treat-
ment methodology were able to move significantly farther
than those in the control treatment (Figure 2, p < 0.05;
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Figure 2: Best distance of control treatment versus experi-
mental treatment at the end of the evolutionary run (Mann-
Whitney U-test; p=0.038).

Mann-Whitney U-Test) despite the decreased selection pres-
sure resulting from the introduction of an additional objec-
tive.

We hypothesize that the crowd was influenced by the pre-
dominance of symmetry in locomoting organisms found in
Nature; that the situatedness of the human participants in
the crowdsourced portion of the experiment contributed to
the ability of the evolutionary algorithm in the second stage
to find superior robot designs. Thus a group of loosely coor-
dinated non-experts were able to successfully contribute an
objective to a machine learning algorithm known through
scientific literature to be beneficial to forward locomotion [1]
but by no means obvious to that same group in the crowd-
sourced portion of the experiment. As such, this method-
ology shows promise as a means for extracting intuitions
from the crowd to complement a machine learning algo-
rithm. Future work will focus on developing methods to
automate the feature detection stage of this process and to
investigate whether there exist less obvious features in the
crowd-generated designs which might be complementary to
machine intelligence.
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