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ABSTRACT 
Portfolio optimization problems are challenging as they contain 
different kinds of constrains and their complexity becomes very 
high when the number of assets grows. In this paper, we develop a 
dimension-decreasing particle swarm optimization (DDPSO) for 
solving multi-constrained portfolio optimization problems. 
DDPSO improves the efficiency of PSO for solving portfolio 
optimization problems with a lot of asset and it can easily handle 
the cardinality constraint in portfolio optimization. To improve 
search diversity, the dimension-decreasing method is coupled with 
the comprehensive learning particle swarm optimization (CLPSO) 
algorithm. The proposed method is tested on benchmark problems 
from the OR library. Experimental results show that the proposed 
algorithm performs well.   

Categories and Subject Descriptors 
• Mathematics of computing~Mathematical optimization • 
Applied computing~Economics 

General Terms 
Algorithms,  Economics. 

Keywords 
Portfolio optimization, particle swarm optimization, cardinality 
constraint, dimension-decreasing. 

1. INTRODUCTION 
Portfolio means investors investing tradable assets into different 
securities and it can reduce risks. Portfolio optimization tries to 
find the best combination of assets according to investors’ needs 
[1]. In order to increase returns and reduce risks as much as 
possible, portfolio optimization has become an attractive topic in 
the modern portfolio theory (MPT) [2]. Markowitz [3] presented a 
mean-variance (MV) model of portfolio, which laid the theoretical 
foundation of MTP. There are two main challenges in portfolio 
optimization, i.e., the large number of assets and different kinds of 
constrains. 

This paper proposed a dimension-decreasing particle swarm 
optimization (DDPSO), for multi-constrained portfolio 

optimization. The proposed DDPSO adopts a comprehensive 
learning particle swarm optimization (CLPSO) [4] to prevent 
premature convergence. The most important part of the DDPSO is 
cutting dimensions dynamically during evolution process. Cutting 
dimensions means reducing complexity, which is a huge 
advantage when solving a large-scale portfolio optimization 
problem. Moreover, by decreasing the number of selected assets 
gradually, DDPSO can easily handle the cardinality constraint in 
portfolio optimization.  

2. MATHEMATICAL FORMULATION  
Assuming that there are N assets, μi is the expected return rate of 
the ith asset and the covariance between the returns of the ith and 
the jth assets can be denoted by σij. The portfolio optimization 
problem is a bi-objective problem [5], i.e., minimizing risk and 
maximizing return. Some researchers [1] have defined a 
parameter λ, which is called risk-aversion parameter, to make the 
portfolio optimization problem a single-target one. The more risks 
an investor can afford, the nearer to 1 its value will be. Then the  
portfolio optimization model [1] is as follows: 
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(2)(3)(4) are basic constraints. (5) is bounding constraint 
and i  is the upper bound of Wi. (6) is cardinality constraint, 

which means the investor just wants to invest in K out of N 
assets. 

3. A DDPSO OPTIMIZATION PROCESS 
CLPSO is a revised PSO [6], [7]. If the ith particle is denoted by

 1 2, , ,i i i iDX x x x , its velocity is denoted by 1 2 , ,( ),i i i iDV v v v . 
The update rule of a particle’s velocity and position is as (7) (8).  
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In (7), eid is the best position in dth dimension of the PBest 
position of a special particle.  

Figure 1. Structure of the DDPSO 

The most important part of DDPSO is cutting dimensions. If the 
total number of iterations is T, the dimensions a particle has at the 
beginning is N, and we need to maintain K dimensions at last, then 
we can cut C dimensions after every S iterations. And the 
relationship among these numbers should be (9). 
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Here are the DDPSO for portfolio optimization. Assuming that 
there are N assets in total and an investor is going to invest in K 
assets. We can consider a vector 1 2 3( , , ,..., )NW W W W W  as a 

particle, which represents the proportions of every asset to invest 
in a portfolio. Then generate NP different W randomly as a 
population. The rest of work is using DDPSO to find the best 
particle after a number of iterations. And we use a similar method 
in paper [1] to handle (3) and (4).  

4. EXPERIMENTAL TEST 
This experiment tests 8 test cases from the OR library (available: 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portrebinfo.html).  

We compare the DDPSO with a k-means cluster analysis [1] 
method. Table 1 shows  the comparative result. 

5. CONCLUSIONS 
A dimension-decreasing particle swarm optimization (DDPSO) 
algorithm has been proposed to solve the problem of portfolio 
optimization. This algorithm can deal with three kinds of 
constraints of the portfolio optimization problem and it performs 
well in dealing with cardinality constraint. At the same time, this 
algorithm is based on the comprehensive learning PSO (CLPSO), 
which is simple, efficient and won’t fall into local optimum. 
Furthermore, the DDPSO can solve a relatively large-scale 
portfolio optimization which the traditional methods can’t solve. 
Experimental results showed that the DDPSO is promising. 
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Table 1. Comparison of  DDPSO and k-means cluster analysis 
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01: procedure   DDPSO 
02:     initialization, counter=0; 
03:     while terminal condition not met 
04:          if (counter = S) 
05:             counter=0; 
06:             cut C worst dimensions for the population; 
07:         else 
08:             counter++; 
09:         end if 
10:         for each particle i  (i = 1, 2, … , NP) 
11:             velocity updating; 
12:             position updating; 
13:         end for 
14:     end while 
15: end procedure 

instance algorithm mean best std t-test 

Port 1 
DDPSO -0.00335 -0.00336 5.51E-06  

-33.371* k-means -0.00329 -0.00329 8.07E-06 

Port 2 
DDPSO -0.00401 -0.00404 5.75E-05  

-70.982* k-means -0.00348 -0.00348 4.28E-06 

Port 3 
DDPSO -0.00285 -0.00287 1.66E-05  

-106.072* k-means -0.00244 -0.00244 3.63E-06 

Port 4 
DDPSO -0.00359 -0.00364 2.18E-05  

-128.625* k-means -0.00264 -0.00264 2.50E-06 

Port 5 
DDPSO -0.00135 -0.00143 4.63E-05  

-33.281* k-means -0.00105 -0.00106 9.30E-06 

Port 6 
DDPSO 0.01435 0.01353 4.54E-04  

-957.976* k-means 0.09377 0.09377 0 

Port 7 
DDPSO 0.001338 0.000843 2.71E-04  

-818.792* k-means 0.04184 0.04183 5.28E-07 

SG 
DDPSO -0.52782 -0.53858 0.00314  

-11.572* k-means -0.5109 -0.52537 0.00522 
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