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ABSTRACT
We present a population genetic algorithm which satisfies
detailed balance, and which has a stationary distribution
that factorises into an explicit form for arbitrary fitness
functions. For a population size of 1, it is the Metropolis
algorithm with a ‘breeder’ proposal distribution; it extends
to larger populations in a natural way, and the stationary
(that is, the mutation-selection equilibrium) distribution is
exactly known in a simple form for any population size. We
term this algorithm exchangeable breeding tuple product
sampling (EBT).

EBT is closely related to some non-parametric Bayesian
Markov-chain Monte Carlo sampling algorithms. EBT can
also be viewed as a generalisation of the Moran process.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
General; G.3 [Probability and statistics]: Probabilistic
algorithms (including Monte Carlo)
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Theory; Genetic Algorithms; Evolutionary Computation;
EDA; MCMC; Exchangeability

1. INTRODUCTION
Evolution can be viewed as a learning algorithm, in that

populations evolve improved solutions to the problem of how
to survive and reproduce. These improvements are the re-
sult of empirical experience in the sense that each organism
is an experiment that is evaluated according to its lifetime
reproductive success. Can evolution be connected in a nat-
ural way to existing learning algorithms, or is it a learning
process of a different type? We propose some probability
models of evolution that are analogous to Bayesian inference.
For these models, standard MCMC sampling algorithms can
have exactly the same form as evolutionary computation.
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2. EXCHANGEABLE BREEDING MODELS
We model breeding as conditional sampling from an ex-

changeable probability distribution pB(·) over genomes. Ex-
changeable distributions are surveyed in [3, 6].

In our algorithms, a new genome is always sampled con-
ditionally given an existing population of genomes. Given
a population G comprising N genomes (g1, . . . , gN ), we may:
breed children c1, . . . , cM sequentially by ci+1 ∼ pB(·|G, c1, . . . , ci)
and pB() is the probability of breeding the population with
no selection. The effect of exchangeability is to allow the
interchange of ancestors and descendants, which allows con-
struction of a reversible Markov chain of populations. The
exchangeable breeding (EB) models we suggest are some of
the most popular probability models in machine learning.

3. EXCHANGEABLE BREEDING WITH
TOURNAMENTS (EBT)

Any genetic algorithm, operating under constant condi-
tions, generates a Markov chain of populations, since each
population depends only upon the previous population. Pro-
vided there is mutation, this Markov chain is irreducible,
and therefore has a unique stationary distribution[4]. The
stationary distribution is a basic property of a genetic al-
gorithm and we desire to know what it is. Unfortunately,
calculating the stationary distribution even of simple genetic
algorithms is hard [8].

If a Markov chain satisfies the detailed balance conditions,
calculating the stationary distribution may be easy. Con-
sider a Markov chain over populations; let the probability
that if the current population is G, then the next popula-
tion is G′ be p(G→ G′), and let the stationary distribution
be pπ(G). The detailed balance conditions are that for all
populations G,G′:

pπ(G)p(G→ G′) = pπ(G′)p(G′ → G) (1)

Most importantly, if we know the transition probabilities
p(· → ·), and if we can find or guess a non-negative function
π(G) such that the detailed balance equations (1) hold for π
in place of pπ, then it follows that the stationary distribution

pπ(G) = π(G)
Z

, for some normalising constant Z.
The following genetic algorithm satisfies detailed balance.

Let there be a fitness function f , such that for all genomes
g, f(g) > 0. At the start of each generation, let the cur-
rent population be N genomes g1, . . . , gN , with fitnesses
f1, . . . , fN . In each generation, one new genome is bred,
and one genome is removed (the genome that is bred may
also be the one that is then removed).
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Algorithm 1:

1. Breed gN+1 by sampling from pB conditional on the
current population. That is: gN+1 ∼ pB(· | g1, . . . , gN )

2. Calculate fN+1 = f(gN+1). Add gN+1 into the popu-
lation.

3. Select one genome to remove; genome i is removed
from the population with probability

Pr(remove gi) =

1
fi

1
f1

+ · · ·+ 1
fN+1

(2)

The genomes {g1, . . . , gN+1} \ {gi} become the next
population of N genomes.

Theorem 1. If pB is exchangeable, Algorithm 1 defines a
Markov chain of (overlapping) populations that satisfies de-
tailed balance, and the stationary distribution is proportional
to π, where

π(g1, . . . , gN ) = pB(g1, . . . , gN )f(g1) · · · f(gN ) (3)

Proof. LetG = (g1, . . . , gN ), G+ = (g1, . . . , gN+1), G′ =
(g1, . . . , gi−1, gi+1, . . . , gN+1) and Rf = 1

f1
+· · ·+ 1

fN+1
. Ob-

serve that

p(G→ G′) =
pB(gN+1 | G)

fiRf
, and p(G′ → G) =

pB(gi | G′)
fN+1Rf

.

So π(G)p(G→ G′) = pB(G)f1 · · · fN pB(gN+1 | G)

1
fi

Rf

= pB(G+)
f1 · · · fN+1

fifN+1

1

Rf

which is symmetric in fi, fN+1, so
π(G)p(G→ G′) = π(G′)p(G′ → G).

Algorithm 1 can be extended to produce K > 1 children
in each generation, and to have tournament selection simi-
lar to, but also different from types of tournament selection
commonly used in genetic algorithms, as in [1].

3.1 Relations to existing evolutionary models
and nature

EBT with a population of N = 1 is exactly the Metropo-
lis algorithm with proposal distribution pB(· | g1), and the
stationary distribution is π(g) ∝ pB(g)f(g). EBT there-
fore seems a natural generalisation of Metropolis-Hastings
to a population algorithm. Note that EBT is quite different
from the ‘Differential Evolution’ algorithm of [7]: in our no-
tation, differential evolution has stationary distribution pro-
portional to f(g1) · · · f(gN ), whereas the stationary distribu-
tion of EBT is proportional to pB(g1, . . . , gN )f(g1) · · · f(gN ).

Our algorithm 1 is an overlapping-generations Moran pro-
cess. The more usual Wright-Fisher (WF) process is a non-
overlapping generations model, in which each new genera-
tion consists entirely of children none of the previous par-
ents: the genetic algorithms of [2] were of this type.

A significant difference between EBT and WF is that
for small population sizes, the level of fitness in WF sam-
pling is biased downwards as compared to EB. To obtain
insight into the biased sampling of WF for small popula-
tions, consider a population of size 1. EBT with a popula-
tion of 1 is the Metropolis-Hastings algorithm with proposal

distribution pB(· | g1), and the stationary distribution is
π(g) ∝ pB(g)f(g). An analogous WF GA would have a
different sampling procedure; in each generation, it would
generate 2 independent children g2, g3 ∼ pB(· | g1), and
it would then select the next generation g′1 to be g2 with
probability f2

f2+f3
and g3 otherwise. If g1 ∼ π(·), where π

is stationary distribution of EBT, then the expected fitness
of the next GA sample E(f(g′1) | g1) ≤ E(f(g1)), for any
f . We therefore conjecture that the mean log fitness in the
stationary distribution of the GA is lower than for EBT for
all fitness functions; this is hard to prove because the sta-
tionary distribution of the GA is itself hard to characterise.
For sufficiently large population, and sufficiently weak selec-
tion, this sampling bias becomes small, and algorithms that
replace their populations at each generation will have simi-
lar behaviour to EBT. For many natural species, biological
evolution itself is such a population-replacement algorithm.
However, there appears to be no virtue in a literal simulation
of nature here: unbiased sampling enables small populations
to have similar behaviour to large populations.

3.1.1 Non-parametric Bayesian MCMC inference
The factorisation for the stationary distribution of EBT:

π(G) ∝ pB(G)

N∏
i=1

f(gi) (4)

is reminiscent to the equation for a Bayes posterior distri-
bution, with pB as the prior, f as the likelihoods, and G
as the latent parameters. In Gibbs-within-Metropolis sam-
pling schemes, we may specify a different fitness function for
each of the N elements.In non-parametric clustering using
a Dirichlet Process prior, as in [5], genomes correspond to
cluster-parameters, and fi(gi) is the likelihood of cluster-
parameter gi according to data case i. Neal’s algorithm
5 in [5] can in be regarded as an evolutionary algorithm,
similar to EBT. Many non-parametric distributions used in
Bayesian MCMC Gibbs-sampling schemes are possible ex-
changeable distributions that can be used with EBT.
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