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ABSTRACT
We develop previous work by Cazenave, applying Monte
Carlo Tree Search (MCTS) to programming. We compare
MCTS to Genetic Programming (GP) and find that MCTS
is competitive with GP for standard benchmarks.

Categories and Subject Descriptors
SD I.2.8 [Artificial Intelligence]: Heuristic methods
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Genetic Programming, Monte Carlo Tree Search

1. INTRODUCTION
Monte Carlo Tree Search (MCTS) [2] is a family of heuris-

tic search algorithms that explore game trees, most success-
fully in playing the game of Go [5]. MCTS relies on a com-
bination of heuristics and stochastic playouts to assess the
likely result of taking an action from the current state: be-
yond a certain distance of lookahead, the consequences of
a given action are estimated by randomly playing the re-
maining moves and assessing the final state. Although orig-
inally designed to play games, Cazenave [4] demonstrates
that MCTS can be used for symbolic regression. We extend
Cazenave’s approach and make comparisons with Genetic
Programming (GP) on four standard benchmarks [7].

GP maintains a population, making it a global search al-
gorithm unlike MCTS, and has been applied more widely
than MCTS. However, MCTS o↵ers some advantages: it
is inherently resistant to bloat, has a sound mathematical
underpinning, and the trade-o↵ between exploration and ex-
ploitation can be explicitly controlled by a single parameter.

2. MCTS
We implement two MCTS algorithms: Upper Confidence

Bound for Trees (UCT) [6] and Nested Search [3]. We apply
them to incrementally build an expression. At each step, a
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function (terminal or nonterminal) is pushed onto a stack
representation of the expression. Each node in the game
tree branches according to the functions that may be used
at that point in the abstract syntax tree.

UCT repeatedly descends the game tree from the root to
a leaf node, selecting the child to follow (and hence the func-
tion to push onto the stack) that maximises the following:
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of times the child and its parent have been visited, and K

is the UCB constant that tunes the balance between explo-
ration and exploitation. Once a leaf node is reached that
has yet to be fully expanded, a new node is added to the
search tree representing a function pushed onto the stack.
A playout is then made from the new node, completing the
program using stochastically chosen functions. The program
is evaluated and its score used to update the search tree.

Nested Tree Search creates an empty stack to which
functions are added based on a recursive search. After one
recursive search for each possible function, the function re-
sulting in the best score is pushed permanently onto the
stack. The process is repeated until the stack expression is
complete, using a playout below a given depth. Expression
size is limited through the functions considered for insertion.
In contrast, UCT incrementally builds the game tree.

3. EXPERIMENTS
We compare UCT, Nested Search and traditional GP. We

provide our code online [8]. We use the version of ECJ from
GPBenchmarks.org [7]. We instantiate Ephemeral Random
Constants when adding them to a stack. We use four bench-
marks from gpbenchmarks.org, given in Table 1.

Parameter Settings We limit fitness evaluations to a
maximum of E, with an upper limit of 220. ECJ parameters
ensure p ⇤ g = E, where p is population size, and g the
number of generations. We measure performance using the
test set fitness f of the best individual, normalised to 1

1+f

.
We set GP population size p to 1024, the probability

of crossover to 0.9 and mutation to 0.1. Other settings
are left at ECJ defaults. Generations are limited to E/p.
For MCTS, the maximum expression length was 35 as per
Cazenave’s work. Nested“level”, which determines the depth
to which the expression space will be enumerated, was 4. For
UCT the constant K, which determines the balance between
exploration and exploitation to the popular value 1/

p
2 [6].
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Benchmark Target Function Function Set

Keijzer6
P

x

i=1 1/i ADD, MULT, INV,
NEG, SQRT, ERC

Nguyen7 ln(x+ 1) + ln(x2 + 1) ADD, MULT, DIV,
SUB, SIN, COS,
LOG, EXP

Pagie1 1
1+x

�4 + 1
1+y

�4
ADD, MULT, DIV,
SUB, SIN, COS,
LOG, EXP

Vladislavleva4 10
5+

P5
i=1(xi�3)2

ADD, MULT, DIV,
SUB, SQUARE, ERC

A

,
ERC

B

, ERC
C

Table 1: Benchmark symbolic regression problems

Benchmark p

E>U

p

E>N

p

U<N

Keijzer6 < 1e-5 0.32 < 1e-5

Vladislavleva4 < 1e-5 < 1e-5 < 1e-5

Pagie1 < 1e-5 < 1e-5 < 1e-5

Nguyen7 < 1e-5 0.16 < 1e-5

Table 2: Wilcoxon rank-sum p-values. p

A>B

is the P-

Value for the alternative hypothesis that Algorithm

A outperforms B. E is ECJ, U is UCT, N is Nested.

4. RESULTS
Table 2 gives the results of Mann-Whitney-Wilcoxon sig-

nificance tests for 30 runs of 220 evaluations. UCT performs
poorly on all benchmarks, possibly because it assumes nor-
mally distributed rewards in the game tree, which may not
be the case for expression spaces. Nested Search performs
as well as GP for two benchmarks, Keijzer and Nguyen, but
it is outperformed by GP on the other two. See Figures 1
and 2 for representative examples. We conjecture GP’s su-
perior performance is due to our naive playout algorithm,;
the final length of the expression is determined by the ratio
of terminals to non-terminals in the function set.

The variance of GP results was greater than MCTS. For
the Keijzer benchmark the median score even decreases at
higher numbers of evaluations, an observation that can only
be explained by stochastic variation. Given that Nested
Search contains a large element of systematic recursive ex-
ploration as well as randomised playouts, it is likely that the
di↵erence in variance is due to its more systematic approach.

5. CONCLUSIONS
Our naive implementation of UCT performs poorly com-

pared to GP and Nested Search, but Nested Search is com-
petitive with GP on two problems. We recommend a further
investigation of MCTS parameters, and alternative playout
functions. Also, we search expressions in a depth-first fash-
ion; breadth-first could be used, so that the functions highest
in the implicit expression tree would be determined first. We
conjecture that programming is a one-player game.

Thank you to: Juan E. Tapiador, Marc Schoenauer,
Francis Maes, Sean Luke, and the GPBenchmarks Team.
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Figure 1: Results for the Nguyen7 Benchmark
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Figure 2: Results for the Vladislavleva4 Benchmark
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