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ABSTRACT
The Pareto Concavity Elimination Transformation (PaCcET) is a
promising new development in multi-objective optimization. It trans-
forms the objective space so that a computationally-cheap linear
combination of objectives can attain (even concave) Pareto-optimal
points. In this work we propose a simple extension to the PaC-
cET framework, which biases the optimization process toward less-
covered areas of the Pareto front.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods

1. INTRODUCTION
In multi-objective optimization, one common goal is to discover

the “Pareto optimal set" [2]. It represents the set of optimal trade-
offs between objectives, where no change can improve one ob-
jective without harming another. The Pareto optimal set can be
very difficult to find. Multi-Objective Evolutionary Algorithms
(MOEAs) such as NSGA-II are accomplished at approximating
these sets in many different types of problems. Their populations
represent an approximation (P ∗

I ) of the Pareto front. However,
these calculations can be expensive, and the population must be
very large to give good coverage over the entire Pareto front.

The Pareto Concavity Elimination Transformation (PaCcET),
achieves the same outcome using a fundamentally different mecha-
nism [6]. Instead of using population members to compare against
themselves, it keeps a constantly-improving upper bound estimate
of the Pareto frontier (P ∗

I ), and transforms the objective space such
that all solutions not dominated by this upper bound lie in the area
of the search space that will be discovered by a computationally
cheap linear combination of objectives.

In this work we provide a simple extension to PaCcET, The Com-
plete Coverage (CC) Extension, which manipulates a copy of P ∗

I in
such a way that it forces the underlying optimizer away from areas
of the space that already have a dense coverage of solutions.
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2. BACKGROUND: PACCET INTUITION
The core functionality of PaCcET is to transforms the objective

space such that the Pareto front will be non-concave. This imple-
mentation of PaCcET has been shown to approximate the Pareto
front faster on a per-member-evaluation basis than NSGA-II and
SPEA2, with comparable final solution quality [6].

Intuitively, the purpose of the PaCcET transformation is to make
the current Pareto approximate set equally valuable, as we are in-
different between these solutions [3]. It registers the Pareto approx-
imation (P ∗

I ) on to points on the normalized utopia hyperplane [5].
This can be achieved through a non-rigid registration [1], which
forms the core of the transformation.

PaCcET generalizes to k objectives, but for the intuition, con-
sider two objectives. PaCcET can be seen as radially expanding or
contracting the scaling of the space, centered on the approximate
utopia point (See Figure 1). In locations where P ∗

I is concave, that
scaling factor will be < 1, contracting the space along that vector
until that point in P ∗

I is on the utopia hyperplane. Where P ∗
I is

convex, that scaling factor will be > 1, expanding the space so that
the P ∗

I point is on the utopia hyperplane. The normalized utopia
hyperplane is equally valuable to an unweighted linear combina-
tion of objectives, guaranteeing that all points in P ∗

I have the same
linear combination evaluation.
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Figure 1: Intuition for the PaCcET process in a two-objective
problem (PaCcET generalizes to k objectives). Grey points
in P ∗

I are scaled radially (centered on the approximate utopia
point) away if they are in front of the utopia hyperplane, and
scaled radially closer if they are behind the utopia hyperplane.
All points in P ∗

I then have the same unweighted linear combi-
nation.
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This means that points that are not dominated by P ∗
I will have a

linear combination of < LC(P ∗
I ), while points that are dominated

by P ∗
I will have a linear combination of > LC(P ∗

I ). Thus, non-
dominated solutions are preferred, and will be discovered during
optimization. Complete details are available in [6].

3. COMPLETE COVERAGE (CC) EXTENSION
Algorithm 1 describes the process, and Figure 2 illustrates it.

At each iteration I , the members of P ∗
I are compared pairwise.

Those that are sufficiently close (< δ, a user-defined parameter)
generate a surrogate (Line 10). If any of their objective values are
too close (< ε), a modified surrogate is generated (Line 12), so that
the search is biased away from densely covered areas of the Pareto
front. This set S is used instead of P ∗

I during the calculation of
||v||B in the PaCcET Transformation [6].

3.1 Result
The KUR problem is a two-objective benchmark problem with

a discontinuous, locally concave Pareto front [4]. Figure 3 (Top)
shows the density of solutions produced by PaCcET on KUR. In
this implementation, the top curve is mostly ignored. With CC
(δ = 0.1) (Figure 3, Bottom), the entire Pareto front is more fairly
covered with solutions.
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Figure 2: Diagram of terms included in CC module, and visual-
ization of surrogate and modified surrogate process.

Algorithm 1 CC: S calculation for Iteration I
Require: Pareto Approximate Set P ∗

I ; Empty S.
1: for all Members p ∈ P ∗

I do
2: for all Members q 6= p, q ∈ P ∗

I do
3: z = size(S) = size(AS)
4: v1 = P ∗

I,p ; v2 = P ∗
I,q

5: if ||P ∗
I,p − P ∗

I,q|| > δ then S = S
6: end if
7: if ||P ∗

I,p − P ∗
I,q|| < δ then

8: ∀c ∈ C : ASz+1(c) = max(v1(c), v2(c)) (Anti-Surrogate)
9: if |P ∗

I,p(c)− P ∗
I,q(c)| > ε then

10: ∀c ∈ C : Sz+1(c) = min(v1(c), v2(c)) (Surrogate)
11: else
12: ∀c ∈ C : Sz+1(c) = max(v1(c) − ε, v2(c) − ε) (Modified

Surrogate)
13: end if
14: end if
15: S ← Pareto_Filter(P ∗

I ∪ S)
16: end for
17: end for
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Figure 3: PaCcET solution densities in KUR without (Top) and
with (Bottom) the CC Extension, which encourages a more even
spread of solutions across the Pareto front.
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