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ABSTRACT
Genetic Programming has been very successful in solving a
large area of problems but its use as a machine learning al-
gorithm has been limited so far. One of the reasons is the
problem of overfitting which cannot be solved or suppresed
as easily as in more traditional approaches. Another prob-
lem, closely related to overfitting, is the selection of the final
model from the population.
In this article we present our research that addresses both

problems: overfitting and model selection. We compare sev-
eral ways of dealing with ovefitting, based on Random Sam-
pling Technique (RST) and on using a validation set, all with
an emphasis on model selection. We subject each approach
to a thorough testing on artificial and real–world datasets
and compare them with the standard approach, which uses
the full training data, as a baseline.
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1. INTRODUCTION
Recent research related to Genetic Programming (GP)

as a Machine Learning (ML) algorithm has been focused
(among other aspects) on the issue of overfitting, i.e. a con-
dition when a model is fit to the training data too closely
that it caputres insignificant deviations or noise rather than
the general trend, leading to poor performance on unseen
cases.
Bloat is a phenomenon in GP which can be described as

an uncontrolled growth of the program size with a very small
or no impact on the fitness. Several succesful bloat control
techniques were developed (e.g. [9] and [11]). The problem
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of overfitting was often put into correlation with bloat. This
was led by the ideas that bloated models are more likely to
fit the noise rather than the short models. However, it was
shown [12] that even in a bloat-free envirnoment overfitting
can still occur.

One of the overfitting prevention technique is Backward-
ing (BW) [10], which uses a validation set to select the best
individuals. Another validation set based technique is Vali-
dation Start (VS) [4]. A technique called Random Subset Se-
lection or Random Sampling Technique was previously used
for the speedup of the GP run [3] and for reducing over-
fitting [8]. This technique was then further explored in [4,
6], yielding RST 1/1, which uses only a single-element sub-
set of training data changing every generation, and RI N%,
which uses RST 1/1-like scheme in N% of generations and
the whole training set in the other generations. These meth-
ods appeared to be successful both in reducing the runtime
and overfitting.

All the above mentioned techniques are described in more
detail in [13].

2. EXPERIMENTAL EVALUATION
Since there are several approaches of overfitting control,

we decided to compare all of them on several datasets, in-
cluding both classification and regression tasks, both arti-
ficial and real-world ones. In addition to the already men-
tioned approaches (STD, BW, VS, RST 1/1, RI 60%) we
added several approaches of our own, based on these ones:

VRST 1/1, VRI 60%. Identical to RST 1/1 and RI 60%
respectively, but the fitness evaluation datapoints are drawn
from a subset of the training data, but the best-so-far model
is selected according to the remaining subset of the training
data (a validation set).

RST R, VRST R. RST R is identical to RST 1/1, except
that not only the element selected for fitness evaluation is
selected randomly, the number of such elements is selected
randomly too. VRST R is then the extension of RST R
with a validation set in the same manner as in VRST 1/1
and VRI 60%.

2.1 Datasets
For evaluation we used six datasets – four artificial and

two real-world, which were taken from the UCI repository
[1]. Three of the four artificial datasets were binary classi-
fication datasets generated by scripts taken from the MAT-
LAB Central File Exchange [7]: the Two Spirals (TS), Clus-
ter in Cluster (CIC) and Halfkernel (HK) datasets. The
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fourth dataset is a regression dataset (called Sphere – SPH)
defined as f(x) =

∑30
i=0 x

2
i + noise. One of the real-world

datasets is a regression dataset Forest Fires (FF) [2], the
other one is a binary classification dataset Wisconsin Diag-
nostic Breast Cancer (WDBC).

3. RESULTS
The full version of the results can be seen in [13]. In

our experiments, no approach was significantly better than
the standard approach. This result is important since it
contradicts previous research [4, 6, 5].
Using a validation set (VRST 1/1, VRI 60%, VRST R)

did not result in significantly worse performance than the
corresponding non-validation variants, however, it is not sig-
nificantly better either. The reason might be the tradeoff
between overfitting control and giving the algorithm enough
information to learn.
In all the experiments there was no case of the (V)RST R

being significantly worse than (V)RST 1/1 or (V)RI 60%.
On CIC and WDBC datasets the (V)RST R was signifi-
cantly better than both (V)RI 60% and (V)RST 1/1 and
on FF dataset VRST R was significantly better than all
other RST-based approaches. This might suggest that using
random-sized subsets might be more beneficial than using ei-
ther only a single-element subsets or switching between the
full set and single-element subset. The reason for this might
be that when using a single-element subset the number of
fitness cases (meaning the part of the data the solutions are
to predict) the algorithm can encounter is much smaller than
in the case of random-sized subsets, causing lower variability
of the actual training data.

4. CONCLUSIONS
In this article we revised the issue of overfitting in GP. We

discussed the ways the data are handled and based on two
patterns (validation set and random sampling) we proposed
two new approaches: RST with random-sized subsets and
using a validation set in RST-based techniques, including
the combination of both. We have carried out a series of ex-
periments with all the presented approaches on six datasets
– artificial and real-world, classification and regression.
The good performance of standard approach, contradic-

tory to the previous research, suggests that the performance
is data dependent and therefore no general conclusion can
be made.
Using a validation set did not bring any significant change

in performance, but we tested only one division ratio and
different setups could have some impact on the performance
of such methods (or not).
Random-sized subsets performed well with respect to the

other two RST-based methods. However, this could be data
dependent too, and further investigation is also needed. An-
other aspect of this method is the distribution of the subset
size – we used a uniform distribution but other distributions,
e.g. favoring smaller subsets, could prove more beneficial.
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