
GECCO 2015 Tutorial:

Cartesian Genetic Programming

Julian F. Miller, Andrew J. Turner
Dept of Electronics

University of York, UK
julian.miller@york.ac.uk

andrew.turner@york.ac.uk

Evolved pictureEvolved picture

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s). Copyright is held by
the author/owner(s).
GECCO'15 Companion, July 11–15, 2015, Madrid, Spain.
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2756571

Abstract

� Cartesian Genetic Programming (CGP) is a well-known form of Genetic Programming developed by Julian

Miller in 1999-2000. In its classic form, it uses a very simple integer address-based genetic representation of

a program in the form of a directed graph. Graphs are very useful program representations and can be applied

to many domains (e.g. electronic circuits, neural networks). It can handle cyclic or acyclic graphs.

� In a number of studies, CGP has been shown to be comparatively efficient to other GP techniques. It is also

very simple to program. The classical form of CGP has undergone a number of developments which have

made it more useful, efficient and flexible in various ways. These include self-modifying CGP (SMCGP),

cyclic connections (recurrent-CGP), encoding artificial neural networks and automatically defined functions

(modular CGP).

� SMCGP uses functions that cause the evolved programs to change themselves as a function of time. This

makes it possible to find general solutions to classes of problems and mathematical algorithms (e.g. arbitrary

parity, n-bit binary addition, sequences that provably compute pi and e to arbitrary precision, and so on).

� Recurrent-CGP allows evolution to create programs which contain cyclic, as well as acyclic, connections.

This enables application to tasks which require internal states or memory. It also allows CGP to create

recursive equations.

� CGP encoded artificial neural networks represent a powerful training method for neural networks. This is

because CGP is able to simultaneously evolve the networks connections weights, topology and neuron

transfer functions. It is also compatible with Recurrent-CGP enabling the evolution of recurrent neural

networks.

� The tutorial will cover the basic technique, advanced developments and applications to a variety of problem

domains. It will present a live demo of how the open source cgplibrary can be used.

Contents

�Classic

�CGP library demo

�Modular

�Self-modifying

�Cyclic and Recurrent

�Applications

�Resources

�Bibliography

Genetic Programming

�The automatic evolution of computer
programs
• Tree-based, Koza 1992

• Stack-based, Perkis 1994, Spector 1996
onwards (push-pop GP)

• Linear GP, Nordin and Banzhaf 1996

• Cartesian GP, Miller 1999

• Parallel Distributed GP, Poli 1996 (related to
CGP)

• Grammatical Evolution, Ryan 1998

• Lots of others…

179

Origins

�Grew out of work in the evolution of digital
circuits, Miller and Thomson 1997.
• First actual mention of the term Cartesian Genetic

Programming appeared at GECCO in 1999.

�Originally, represents programs or circuits as a
two dimensional grid of program primitives.
• Hence Cartesian GP

�This is loosely inspired by the architecture of
digital circuits called FPGAs (field
programmable gate arrays)

Why use CGP?

� Its performance is highly competitive with other forms of GP

� It is naturally suited to multiple input multiple-output (MIMO)

tasks

� It is simple and only requires a simple evolutionary algorithm

� It encodes cyclic or acyclic graphs which are highly flexible for

many applications

• It allows internally calculated values to be reused multiple times

• It can naturally encode artificial neural networks

� It benefits from explicit neutral genetic drift

� It does not suffer from program bloat. In fact, it naturally

compresses solutions.

Om

O1

f 0

C00

ni

C0a

f j

Cj0

ni+j

Cja

x0

xi-1

General form of CGP

f0 C0 0 … C0 a … f j Cj 0 … Cj a O1,…Om

All functions have as many inputs as the maximum function arity

Unused connections are ignored

Example

Function genes (are addresses in user defined lookup table)

0 + Add 1 - Subtract

2 * Multiply3 / Divide (protected)

genotype

180

So what does the graph represent?

genotype

phenotype

The CGP genotype-phenotype map

�When you decode a CGP genotype many nodes and

their genes can be ignored because they are not

referenced in the path from inputs to outputs

�These genes can be altered and make no difference to

the phenotype, they are non-coding

�Clearly there is a many-to-one genotype to phenotype

map

�How redundant is the mapping?
• Massively redundant.

• For example, a nine node genotype has 118,124 possible 3 node

phenotypes (assuming one program input and all nodes have arity equal

to one).

// L = MaxGraph.Length

// I = Number of program inputs

// N = Number of program outputs

bool ToEvaluate[L]

double NodeOutput[L+I]

int NodesUsed[M]

1

// identify initial nodes that need to be evaluated (once)
p = 0

do

ToEvaluate[OutputGene[p]] = true

p = p + 1

while (p < N)

// determine nodes needed

p = L-1

q=0

do

if (ToEvaluate[p])

x = Node[p].Connection1

y = Node[p].Connection2

ToEvaluate[x] = true

ToEvaluate[y] = true

q=q+1

NodesUsed[q]=p

endif

p = p - 1

while (p >= 0)

2

// load input data values

p = 0

do

NodeOutput[p] = InputData[p]

p = p + 1

while (p < I)

3

//Execute graph
for p = I to p < q+I

x = Node[NodesUsed[p]].Connection1

y = Node[NodesUsed[p]].Connection2

z = Node[NodesUsed[p]].Function

NodeOutput[p] = ComputeNode(NodeOutput[x], NodeOutput[y],z)

endfor

4

Decoding CGP chromosomes is easy and fast Why decoding the CGP genotype map

is extremely fast

� Some people wrongly think that CGP is slow
compared to other forms of GP because it has a
genotype-phenotype mapping stage.

� First one determines which nodes are used.
This is one pass and is only done once.

• Time is insignificant compared with fitness evaluation

� To determine the output from CGP only
requires looking up a few entries in an array

� Phenotypes in CGP are usually a fraction of the
genotype size

181

Point mutation

� Most CGP implementations only use mutation.

� Carrying out mutation is very simple. It
consists of the following steps. The genes must
be chosen to be valid alleles

• Of course, it can be also be done probabilistically

//Decide how many genes to change:num_mutations

while (mutation_counter < num_mutations)

{

get random gene to change

if (gene is a function gene)

change gene to randomly chosen new valid function

else if (gene is a connection gene)

change gene to a randomly chosen new valid connection

else

change gene to a new valid output connection

}

Advice on CGP parameters and experiments

�Only allow a small number of mutations

�Choose a fairly large number of nodes (100 to 1000)

�Use a 1+ 4 evolutionary strategy

�Only calculate fitness of genotypes that have different
phenotypes
• Check whether an offspring has exactly the same active nodes as the

parent, if so do not calculate its fitness and do not increment the
evaluation counter (Skip method – see next slide)

�Only evaluate active nodes

�When making comparisons with other GP methods
either give them the same budget in processed nodes
or the same number of fitness evaluations.

Single, a new mutation method?

�Single: Keep mutating until an active gene is
mutated (Goldman and Punch 2013)

�Exactly one active gene is mutated for all
offspring.

�It looks like no mutation rate is required,
however its effective mutation rate is determined
by the length of the genotype
• Remains to be investigated

Single active gene mutation strategy: results

(Goldman and Punch 2013)

� Normal = standard CGP

� Skip: set offspring’s fitness to parent if identical

� Single: mutate until one active gene is changed
• 29% less computation than Normal!

�3bit parallel multiplier
• Multiples two three-bit

numbers in parallel

• Hard problem

� On other problems the best
performance of single is
slightly worse than other
mutation schemes

182

Evolutionary Strategy

�CGP often uses a variant of a simple
algorithm called (1 + 4) Evolutionary
Strategy
• However, an offspring is always chosen if it is

equally as fit or has better fitness than the parent

18

CGP Library

�Andrew Turner – developer/maintainer
�cgplibrary.co.uk
�Cross Platform – Linux, Windows, Mac
�Open Source – GNU LGPL
�Fully Documented API
�Many Tutorials – beginner and advance
�Very Simple
�Written in C – fast, no dependencies
�Language Bindings – via SWIG

19

CGP Library – Overview

�Cartesian Genetic Programing (CGP)

�Recurrent CGP

�CGP Artificial Neural Networks

�Recurrent CGP Artificial Neural Networks

�What more could you want ;)

�Designed for:

– Teaching

– Research

– Applications

20

Live Demo

�Tutorials: cgplibrary.co.uk

�andrew.turner@york.ac.uk

�Please as questions!

�Or talk to me later :)

183

21

Additional Features

�Save, store and load chromosomes

�Embed CGP in other applications

�Highly Customisable

– Fitness functions

– Node Functions

– Selection Scheme

– Mutation Scheme

– Reproduction Scheme

�Additional Language bindings

22

Final Words

�Much more info @ cgplibrary.co.uk

�Hosted with GitHub:

Github.com/AndrewJamesTurner/CGP-
Library

�Citable using:
A. J. Turner, J. F. Miller, Introducing a cross

platform open source Cartesian Genetic

Programming library, GPEM, 2014, 83-91

Crossover or not?

� Recombination doesn’t seem to add anything
(Miller 1999, “An empirical study…”)

� However if there are multiple chromosomes with
independent fitness assessment then it helps a LOT
(Walker, Miller, Cavill 2006, Walker, Völk, Smith,
Miller, 2009)

� Some work using a floating point representation of
CGP shows that crossover is useful for symbolic
regression (Clegg, Walker, Miller 2007, Meier,
Gonter, Kruse 2013)

� Cone-based crossover (Kaufmann and Platzner
2007, 2008)

CGP samples the solution space in a

very interesting way

One gene mutation can create a wide variety of

offspring, since it can activate or deactivate large

number of nodes

184

Neutral search is fundamental to success

of CGP

�A number of studies have been carried

out to indicate the importance to

neutral search

• Miller and Thomson 2000, Vassilev and

Miller 2000, Yu and Miller 2001, Miller

and Smith 2006)

Neutral search and the three bit multiplier problem

(Vassilev and Miller 2000)

Graph shows final fitness

obtained in each of 100 runs

of 10 million generations

with neutral mutations

enabled compared with

disabled neutral mutations.

Importance of neutral search can be demonstrated by looking at

the success rate in evolving a correct three-bit digital parallel

multiplier circuit

How big should the genotype be?

� Miller and Smith investigated the efficiency of CGP search as a

function of the number of available nodes and mutation rate on

a couple of small problems (Miller and Smith 2006). It was

found that

• Least number of evaluations required for success when 95%

of the genes were inactive!

• Efficiency of the search appeared to continuously improve

as the number of nodes increased...

� Turner and Miller have recently investigated neutral drift in a

recent paper (Turner and Miller in press). Using 3%

probabilistic mutation and up to 100,000 nodes, the following

results were obtained:

Efficiency of search v. max number of nodes

185

Modular/Embedded CGP (Walker, Miller 2004, 2008,

Kaufmann and Platzner 2007, 2008)

� So far have described a form of CGP (classic) that does not

have an equivalent of Automatically Defined Functions (ADFs)

� Modular CGP allows the use of modules (ADFs)

• Modules are dynamically created and destroyed

• Modules can be evolved

• Modules can be re-used

Creating, Destroying, Replicating and

Evolving Modules

�Created by the compress operator
• Randomly acquires sections of the genotype into a module

– Sections cannot contain modules

�Destroyed by the expand operator
• Converts the original module back into a section of the

genotype

�Replicated by mutation operator
• Mutation can change a primitive function node to a module,

or change a module to a primitive function node

�Evolution of Module
• All instances of a module in the genotype can be changed by

a mutation to a module

Module Survival

�Twice the probability of a module being

destroyed than created

�Modules have to replicate to improve their

chance of survival

• This reduces the probability of their extinction

�Modules must also be associated with a

high fitness genotype in order to survive

• Offspring inherit the modules of the

fittest parent

Evolving Modules

�Structural mutation

• Add input

• Remove input

• Add output

• Remove output

�Module point-

mutation operator

• Restricted version

of genotype point-

mutation operator

– Uses only primitive

functions

186

Self-modifying Cartesian Genetic programming

(Harding, Miller, Banzhaf 2007 onwards)

�A developmental form of CGP

• Includes self modification functions in addition to

computational functions

• ‘General purpose’ GP system

• Phenotype can vary over time (with iteration)

• Can switch off its own self-modification

�Some representational changes from classic

CGP…

Changes to CGP: relative

addressing

�Replaced direct node addressing with

relative addressing

• Always use 1 row (not rectangular)

• Connection genes say how many nodes back

0

1

2

3

1

5

2

4

3

6

0

Changes to CGP: Inputs

�Replace input calls with a function.

• We call these functions INP, INPP, SKIPINP

�Pointer keeps track of ‘current input’.

• Call to INP returns the current input, and moves

the pointer to the next input.

�Connections beyond graph are assigned

value 0.

�Removed output nodes.

�Genotype specifies which nodes are

outputs.

�If no OUTPUT function then last active

node is used
• Other defaults are used in situations where the number

of outputs does not match the number required

Changes to CGP: Outputs

187

�Nodes also contain a number of

‘arguments’.

• 3 floating point numbers

• Used in various self-modification

instructions

• Cast to integers when required

Changes to CGP: Arguments SMCGP Nodes: summary

�Each node contains:

• Function type

• Connections as relative addresses

• 3 floating point numbers

SMCGP: Functions

�Two types of functions:

• Computational

– Usual GP computational functions

• Self-modifying

– Passive computational role (see later)

Some Self-Modification Functions

Operator Parameters:

use node address and the

three node arguments

Function

MOVE Start, End, Insert Moves each of the nodes between

Start and End into the position

specified by Insert

DUP Start, End, Insert Inserts copies of the nodes

between Start and End into the

position specified by Insert

DELETE Start, End Deletes the nodes between Start

and End indexes

CHF Node, New Function Changes the function of a

specified node to the specified

function

CHC Node, Connection1,

Connection2

Changes the connections in the

specified node

188

SMCGP Execution

�Important first step:

• Genotype is duplicated to phenotype.

• Phenotypes are executed:

� Self modifications are only made to the

phenotype.

Self Modification Process: The To Do list

�Programs are iterated.

�If triggered, self modification instruction is

added to a To Do list.

�At the end of each iteration, the instructions on

this list are processed.

�The maximum size of the To Do list can be

predetermined

Computation of a SM node

�Functions can be appended to the To Do list

under a variety of conditions (triggered)

• If active

• If value(first input) > value(the second input)

– Data dependent self-modification

�And:

• The To Do list isn’t too big.

Example: Evolving Even-Parity

�Each iteration of program should produce the

next parity circuit.

• On the first iteration the program has to solve 2 bit

parity. On the next iteration, 3 bit ... up to 22 parity

• Fitness is the cumulative sum of incorrect bits

�Aim to find general solution

• Solutions can be proved to general

– See GPEM 2010 paper

�CGP or GP cannot solve this problem as they

have a finite set of inputs (terminals)

189

Scaling behaviour of SMCGP on even-parity Evolving pi

�Iterate a maximum of 10 times

�If program output does not get closer to pi at the

next iteration, the program is stopped and large

fitness penalty applied

�Fitness at iteration, i, is absolute difference of

output at iteration i and pi

�One input: the numeric constant 1.

Evolving pi: an evolved solution

�An evolved solution

�f(10) is correct to the first 2048 digits of pi

�It can be proved that f(i) rapidly converges to

pi in the limit as i tends to infinity

Further results

�Other mathematically provable results found
so far:
• Evolved a program that can carry out the bitwise

addition of an arbitrary number of inputs

• Evolved a sequence that converges to e

�Other results
• Evolved a sequence function that generates the

first 10 Fibonacci numbers (probably general)

• Evolved a power function x n

• Bioinformatics classification problem (finite
inputs)

– SMCGP performed no worse than CGP

190

Application 1:

Digital circuit synthesis with CGP

�Digital Circuits with hundreds of variables can be

optimized using CGP (Vassicek and Sekanina 2011)

• Won the $3000 silver award in human competitive

workshop at GECCO 2011

�The method employs a SAT solver to identify whether

two circuits are logically equivalent

• In many cases this can be done in polynomial time

Circuit equivalence checking and SAT

�If C1 (reference) and C2 (evolved) are not functionally
equivalent then there is at least one assignment of the
inputs for which the output of G is 1.

CGP for optimizing conventionally

synthesized circuits

The seed for CGP is provided by using the logic synthesis package,
ABC (http://www.eecs.berkeley.edu/~alanmi/abc/)

The fitness function is as follows:
� Use a SAT solver to decide whether candidate circuit Ci and reference circuit

C1 are functionally equivalent.
• If so, then fitness(Ci) = the number of nodes – number of gates in Ci;

• Otherwise: fitness(Ci) = 0.

� The method is now much faster by using a circuit simulator prior to SAT

solver to disprove the equivalence between a candidate solution and its parent

(Vassicek 2015)

Conventional synthesis

ABC, SIS
CGP

Circuit C1 Optimized

circuit Ci

A seed for

initial CGP

population

Application 2: Evolving Image Filters with CGP

(Harding, Leitner, Schmidhüber 2013)

�Detecting/locating objects with the

iCub cameras

�Done by evolving image filters that

take a camera image, and return

only the objects of interest

Input Target

Evolved

filter

191

Grey

Red

Green

Blue

Hue

Saturation

Luminosity

Image from camera

Split colour image is used as inputs

Evolved

filter

Input data

1 23 OUTINP INP INP

3
-1
-2

4.3

Function

Connection 1

Connection 2

A real number

Genotype representation (like

SMCGP but no SM functions)

NOP LOG TRIANGLES

INP MAX LINES

INPP MIN SHIFTDOWN

SKIP EQ SHIFTUP

ADD GAMMA SHIFTLEFT

SUB GAUSS SHIFTRIGHT

CONST SOBELX SIFTa

MUL SOBELY GABOR

ADDC AVG NORMALIZE

SUBC UNSHARPEN RESCALE

MULC THRESHOLD GRABCUT

ABSDIFF THRESHOLDBW MINVALUE

CANNY SMOOTHMEDIAN MAXVALUE

DILATE GOODFEATURESTOTRACK AVGVALUE

ERODE SQUARES RESCALE

LAPLACE CIRCLES RESIZETHENGABOR

Large Function Set

•Fitness = sum of mean square error of pixel values

between each input/target

Fitness

192

Evolved

Filter code Output

Inputs

Evolved Filter

Dataflow

Tea-box filter: demonstration Application 3: CGP encoded Artificial

Neural Networks (CGPANN)

� CGP has been used to encode both feed-forward ANNs
and recursive ANNs. The nodes genes consist of:
• Connection genes (as usual)

• Function genes

– Sigmoid, hyperbolic tangent. Gaussian

• Weights

– Each connection gene carries a real-numbered weight

� Pole balancing, Arm Throwing, Classification
• Very competitive results with other TWEANN methods (Khan,

Khan and Miller 2010, Turner and Miller 2013)

� Breast cancer detection (Ahmad et al 2012, Turner and
Miller 2013)

193

Cyclic CGP

�When outputs are allowed to connect to

inputs through a clocked delay (flip-flop) it is

possible to allow CGP to include feedback.

�By feeding back outputs generated by CGP to

an input, it is possible to get CGP to generate

sequences

• In this way iteration is possible

�There are a couple of publications using

iteration in CGP (Khan, Khan and Miller

2010, Walker, Liu, Tempesti,Tyrrell 2010,

Minarik, Sekanina 2011)

Recurrent CGP

�By allowing nodes to receive inputs from the right

CGP can be easily extended to encode recursive

computational structures

�Recurrent CGP Artificial Neural Networks can be

explored in this framework

�Only just begun to be explored (Turner and Miller

2014)

Recurrent CGP: Details

� Probability of recursive links controlled by a user-
defined parameter recurrent connection probability
(rcp)

� Decoding

1. set all active nodes to output zero

2. apply the next set of program inputs

3. update all active nodes once from program inputs to
program outputs

4. read the program outputs

5. repeat from 2 until all program input sets have been
applied

2 1 2 0 0 5 1 3 4 5

CGP encoded algorithms (Ryser-Welch,

Miller, Asta 2015)

� Algorithms can be
encoded in CGP

� Here is one way

1. Assume all nodes
have an arity of one

2. Assume a single
input

3. Assume no data
passed through
graph

4. CGP defines a
variable length
ordered set of
instructions

194

CGP acceleration (Vassicek and Slany 2012)

� CGP decoding step is replaced with native machine
code that directly calculates response for a single
training vector.

� Requires little knowledge of assembly language or
target machine code.

� Integration of the machine code compiler requires
modifying only a few lines of code

� Achieves 5 times speedup over standard
implementation

Some Applications of CGP (incomplete)
� Circuit Design

• ALU, parallel multipliers, digital filters, analogue circuits, circuit synthesis and
optimization

� Machine Learning
• Classification

� Mathematical functions
• Prime generating polynomials

� Control systems
• Maintaining control with faulty sensors, helicopter control, general control, simulated

robot controller

� Image processing
• Image filters, Mammary Tumour classification, object recognition

� Robotics
• gait

� Bio-informatics
• Molecular Post-docking filters

� Artificial Neural Networks

� Developmental Neural Architectures
• Wumpus world, checkers, maze solving

� Evolutionary Art
� Artificial Life

• Regenerating ‘organisms’

� Optimization problems
• Applying CGP to solve GA problems

CGP Resources I:
http://www.cartesiangp.co.uk

� Julian Miller: C implementations of CGP and SMCGP
available at
http://www.cartesiangp.co.uk

� Andrew Turner: Easy to use, highly extendable, C
implementation that includes CGPANNs
http://www.cgplibrary.co.uk/

� Eduardo Pedroni: Java implementation with GUI
https://bitbucket.org/epedroni/jcgp/downloads

� Zdenek Vassicek: Highly optimised C/Machine Code
implementation
http://www.fit.vutbr.cz/~vasicek/cgp/

� Cartesian Genetic Programming book
• Published in 2011 by Springer

CGP Resources II:

� David Oranchak has implemented CGP in Java.
Documentation is available at
http://oranchak.com/cgp/doc/

� Brian Goldman has implemented CGP in Python
https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

� Jordan Pollack has implemented symbolic regression in
CGP with Matlab
• See CGP web site

� Lawrence Ashmore has implemented a Java evolutionary
art package using CGP
• See CGP web site

195

Conclusions

�Cartesian Genetic Programming is a graph based GP

method capable of representing many computational

structures

• programs, circuits, neural networks, systems of equations,

algorithms…

�Genetic encoding is compact, fast, simple and easy to

implement and can handle multiple outputs easily.

�The unique form of genetic redundancy in CGP

makes mutational search highly effective

�The effectiveness of CGP has been compared with

many other GP methods and it is highly competitive

Bibliography(incomplete) and references

Ahmad A. M., Khan G. M., Mahmud, S. A., Miller J. F. Breast Cancer Detection Using Cartesian Genetic
Programming evolved Artificial Neural Networks. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), (2012) 1031—1038.

Ashmore L. An investigation into cartesian genetic programming within the field of evolutionary art.
http://www.emoware.org/evolutionary_art.asp, Department of Computer Science, University of
Birmingham (2000)

Clegg J., Walker J. A., Miller J. F. A New Crossover Technique for Cartesian Genetic Programming. Proceedings
of Genetic and Evolutionary Computation Conference, ACM Press (2007) 1580-1587.

DiPaola S., Gabora L. Incorporating characteristics of human creativity into an evolutionary art algorithm, Genetic
Programming and Evolvable Machines (2009) Vol. 10. For further info see: http://dipaola.org/evolve/

DiPaolo S. Evolving Creative Portrait Painter Programs using Darwinian Techniques with an Automatic Fitness
Function. Electronic Visualizationa and the Arts Conference (2005)

Gajda, Z., Sekanina, L.. Gate-Level Optimization of Polymorphic Circuits Using Cartesian Genetic Programming,
Proceedings of Congress on Evolutionary Computation. IEEE Press (2009)

Gajda Z., Sekanina, L.. Reducing the Number of Transistors in Digital Circuits Using Gate-Level Evolutionary
Design, Proceedings of Genetic and Evolutionary Computation Conference. ACM, (2007) 245-252.

Garmendia-Doval B., Miller J.F., Morley S.D. Post Docking Filtering using Cartesian Genetic Programming.
Genetic Programming Theory and Practice II. O'Reilly U-M., Yu T., Riolo R., Worzel B. (Eds.).
University of Michigan Illinois USA. Springer (2004).

Glette K., Torresen J., Paul Kaufmann P., Platzner., M. A Comparison of Evolvable Hardware Architectures for
Classification Tasks. In Proceedings of the 8th International Conference on Evolvable Systems: From
Biology to Hardware, Springer LNCS 5216 (2008) 22-33.

Goldman, B. W., Punch, W. F. Reducing Wasted Evaluations in Cartesian Genetic Programming, Proceedings of
European Conference on Genetic Programming, Springer LNCS 7831 (2013) pp. 61–72.

Goldman, B. W., Punch, W. F. Analysis of Cartesian Genetic Programming’s Evolutionary Mechanisms, IEEE
Transactions on Evolutionary Computation, (In press)

Goldman, B. W., Punch, W. F. Length bias and search limitations in cartesian genetic programming.
In Proceedings of the 15th annual conference on Genetic and evolutionary computation, ACM, (2013)
933-940.

Harding S. L., Leitner, J., Schmidhuber, J.. Cartesian Genetic Programming for Image Processing, Genetic
Programming Theory and Practice, University of Michigan Illinois USA. Springer. 2012

Harding, S., Graziano, V., Leitner, J., Schmidhuber. J. MT-CGP: Mixed Type Cartesian Genetic Programming,
Proceedings of the Genetic and Evolutionary Computation Conference (2011) pp 751-758.

Harding, S., Miller, J. F., Banzhaf, W. SMCGP2: Self Modifying Cartesian Genetic Programming in Two
Dimensions, Proceedings of the Genetic and Evolutionary Computation Conference (2011) pp 1491-
1498.

Harding S. L., Miller J. F. Banzhaf W. Developments in Cartesian Genetic Programming: Self-modifying CGP.
Genetic Programming and Evolvable Machines, Vol. 11 (3/4) (2010) pp 397-439.

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Finding algorithms that
calculate pi and e to arbitrary precision, Proceedings of the Genetic and Evolutionary Computation
Conference, 2010.

Harding S. L., Miller J. F., Banzhaf W. A Survey of Self-Modifying CGP. Genetic Programming Theory and
Practice, Riolo R., (Eds.). University of Michigan Illinois USA. Springer. 2010

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Parity. Proceedings of
Congress on Evolutionary Computation, IEEE Press (2009) 285-292

Harding S. L., Miller J. F. Banzhaf W. Self Modifying Cartesian Genetic Programming: Fibonacci, Squares,
Regression and Summing, Proceedings of the 10th European Conference on Genetic Programming,
Springer LNCS (2009) 133-144

Harding S. L., Miller J. F., Banzhaf W. Self-Modifying Cartesian Genetic Programming, Proceedings of Genetic
and Evolutionary Computation Conference, ACM Press, (2007) 1021-1028.

Harding S., Banzhaf W. Fast Genetic Programming on GPUs. Proceedings of 10th European Conference on
Genetic Programming, Springer LNCS 4445 (2007) 90-101

Harding S. L., Miller J. F. Evolution of Robot Controller Using Cartesian Proceedings of the 6th European
Conference on Genetic Programming, Springer LNCS 3447 (2005) 62-72.

Hirayama Y., Clarke T, Miller J. F. Fault Tolerant Control Using Cartesian Genetic Programming, Proceedings
of Genetic and Evolutionary Computation Conference, ACM Press, (2008) 1523-1530 .

Hrbacek, R., Sekanina, S. Towards highly optimized Cartesian genetic programming: from sequential via SIMD
and thread to massive parallel implementation. Proceedings of the 2014 conference on Genetic and
evolutionary computation, ACM (2014) 1015-1022

Kalganova T., Miller J. F., Evolving More Efficient Digital Circuits by Allowing Circuit Layout Evolution and
Multi-Objective Fitness. Proceedings of the First NASA/DOD Workshop on Evolvable Hardware,
IEEE Computer Society (1999) 54-63.

Kalganova T., Miller J. F., Fogarty T. C. Some Aspects of an Evolvable Hardware Approach for Multiple-
Valued Combinational Circuit Design Proceedings of the 2nd International Conference on Evolvable
Systems: From Biology to Hardware. Springer LNCS 1478 (1998) 78-89.

Kaufmann P., Platzner M. Advanced Techniques for the Creation and Propagation of Modules in Cartesian
Genetic Programming. Proceedings of the Genetic and Evolutionary Computation Conference, ACM
Press, (2008) 1219-1226.

Kaufmann P., Platzner M. MOVES: A Modular Framework for Hardware Evolution. In Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems, IEEE Computer Society Press (2007)
447-454

Kaufmann P., Platzner M. Toward Self-adaptive Embedded Systems: Multiobjective Hardware Evolution.
In Proceedings of the 20th International Conference on Architecture of Computing Systems,
Springer, LNCS 4415 (2007) 119-208.

Khan, G. M., Miller, J. F., Halliday, D. M. Evolution of Cartesian Genetic Programs for Development of
Learning Neural Architecture, Evolutionary Computation, Vol. 19, No. 3 (2011) pp 469-523

Khan, M. M., Khan, G. M., J. F. Miller, J. F. “Efficient representation of recurrent neural networks for
markovian/non-markovian non-linear control problems,” in Proceedings of the 10th International
Conference on Intelligent Systems Design and Applications (ISDA2010) (2010) 615–620

Khan, G. M., Miller J. F., Khan, M. M. Evolution of Optimal ANNs for Non-Linear Control Problems Using
Cartesian Genetic Programming. Proceedings of International Conference on Artificial Intelligence
(ICAI 2010)

Khan, G. M., Halliday, D. M., Miller, J. F.,Intelligent agents capable of developing memory of their
environment, Angelo Loula A., Queiroz, J. (Eds.) Advances in Modelling Adaptive and Cognitive
Systems, Editora UEFS (2010)

Khan G. M., Halliday D. M., Miller J. F. In Search of Intelligent Genes: The Cartesian Genetic Programming
Neuron. Proceedings of Congress on Evolutionary Computation, IEEE Press (2009)

Khan G. M., Halliday D. M., Miller J. F. Breaking the synaptic dogma: evolving a neuro-inspired developmental
network. Proceedings of 7th International Conference on Simulated Evolution and Learning, LNCS,
5361 (2008) 11-20

Khan G. M., Halliday D. M., Miller J. F. Coevolution of neuro-developmental programs that play checkers.
Evolvable Systems: From Biology to Hardware. Springer LNCS 5216 (2008) 352 - 361.

Khan G. M., Halliday D. M., Miller J. F. Coevolution of Intelligent Agents using Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM Press, (2007)
269-276.

196

Kuyucu T., Trefzer M. A., Miller J. F., Tyrrell. A. M. On the Properties of Artificial Development and Its Use in
Evolvable Hardware. Proceedings of Symposium on Artificial Life , Part of IEEE Symposium on
Computational Intelligence, IEEE Press (2009).

Liu H., Miller J. F., Tyrrell A. M. , Intrinsic evolvable hardware implementation of a robust biological
development model for digital systems, Proceedings of the NASA/DOD Evolvable Hardware
Conference, IEEE Computer Society (2005) 87-92.

Liu H., Miller J. F., Tyrrell A. M. A Biological Development Model for the Design of Robust Multiplier.
Applications of Evolutionary Computing: EvoHot 2005, Springer LNCS 3449 (2005) 195-204

Liu H., Miller J. F., Tyrrell A. M. An Intrinsic Robust Transient Fault-Tolerant Developmental Model for
Digital Systems. Workshop on Regeneration and Learning in Developmental Systems, Genetic and
Evolutionary Computation Conference (2004).

Meier, A., Gonter, M., Kruse, R.. Accelerating convergence in cartesian genetic programming by using a new
genetic operator. In Proceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, pages 981–988. ACM, 2013.

Miller J. F. Cartesian Genetic Programming, Springer 2011.

Miller J.F., Smith S.L. Redundancy and Computational Efficiency in Cartesian Genetic Programming. IEEE
Transactions on Evolutionary Computation, 10 (2006) 167-174.

Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and
Evolutionary Computation Conference, Springer LNCS 3102 (2004) 129-139.

Miller J. F., Thomson P. Beyond the Complexity Ceiling: Evolution, Emergence and Regeneration. Workshop
on Regeneration and Learning in Developmental Systems, Genetic and Evolutionary Computation
Conference (2004).

Miller J.F., Banzhaf W., Evolving the Program for a Cell From French Flags to Boolean Circuits. Kumar S.,
Bentley P. On Growth, Form and Computers. Elsevier Academic Press (2003).

Miller J. F., Thomson P. A Developmental Method for Growing Graphs and Circuits. Proceedings of the 5th
International Conference on Evolvable Systems: From Biology to Hardware, Springer LNCS 2606
(2003) 93-104.

Miller J. F. Evolving developmental programs for adaptation, morphogenesis, and self-repair. Proceedings of the
7th European Conference on Artificial Life, Springer LNAI 2801 (2003) 256-265.

Miller J. F. What bloat? Cartesian Genetic Programming on Boolean problems. Genetic and Evolutionary
Computation Conference, Late breaking paper (2001) 295 - 302.

Miller J. F., Hartmann M. Evolving messy gates for fault tolerance: some preliminary findings. Proceedings of
the 3rd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2001) 116-123.

Miller J. F., Hartmann M. Untidy evolution: Evolving messy gates for fault tolerance. Proceedings of the 4th
International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS 2210
(2001) 14-25.

Miller J.F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles. Creative Evolutionary Systems. Morgan Kaufmann (2001).

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part I. Journal of
Genetic Programming and Evolvable Machines, 1 (2000) 8-35.

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part II. Journal of
Genetic Programming and Evolvable Machines, 3 (2000) 259-288.

Miller J. F., Thomson P. Cartesian Genetic Programming. Proceedings of the 3rd European Conference on
Genetic Programming. Springer LNCS 1802 (2000) 121-132.

Miller J. F. On the filtering properties of evolved gate arrays. Proceedings of the First NASA/DOD Workshop
on Evolvable Hardware. IEEE Computer Society (1999) 2-11.

Miller J. F. Digital Filter Design at Gate-level using Evolutionary Algorithms. Proceedings of the 1st Genetic
and Evolutionary Computation Conference. Morgan Kaufmann (1999) 1127-1134.

Miller J. F. An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic
Programming Approach. Proceedings of the 1st Genetic and Evolutionary Computation Conference.
Morgan Kaufmann (1999) 1135-1142.

Miller J. F. Evolution of Digital Filters using a Gate Array Model. Proceedings of the First Workshop on Image
Analysis and Signal Processing. Springer LNCS 1596 (1999) 17-30.

Miller J. F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles. Proceedings of the workshop on the AISB Symposium on Creative
Evolutionary Systems. AISB (1999) 65-74.

Miller J. F., Thomson P. Aspects of Digital Evolution: Evolvability and Architecture. Proceedings of The Fifth
International Conference on Parallel Problem Solving from Nature. Springer LNCS 1498 (1998) 927-
936.

Miller J. F., Thomson P. Aspects of Digital Evolution: Geometry and Learning. Proceedings of the 2nd
International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS 1478
(1998) 25-25.

Miller J. F., Thomson P. Evolving Digital Electronic Circuits for Real-Valued Function Generation using a
Genetic Algorithm . Proceedings of the 3rd Conference on Genetic Programming. Morgan Kaufmann
(1998) 863-868

.

Miller J.F., Thomson P., Fogarty T.C. Designing Electronic Circuits Using Evolutionary Algorithms:
Arithmetic Circuits: A Case Study. Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science: Recent Advancements and Industrial Applications. Quagliarella, D., Periaux J.,
Poloni C., Winter G. (Eds.). Wiley (1997)

Minarik, M., Sekanina, L. Evolution of Iterative Formulas Using Cartesian Genetic Programming.Proceedings
of the 15th International Conference on Knowledge-Based and Intelligent Information and Engineering
Systems (KES 2011) Part I, LNCS volume 6881 (2011) 11-20

Payne, A. J., Stepney, S.. Representation and Structural biases in CGP, Proceedings of Congress on
Evolutionary Computation, IEEE Press (2009)

Rothermich J., Wang F., Miller J. F. Adaptivity in Cell Based Optimization for Information Ecosystems.
Proceedings of the Congress on Evolutionary Computation. IEEE Press (2003) 490-497.

Rothermich J., Miller J. F. Studying the Emergence of Multicellularity with Cartesian Genetic Programming in
Artificial Life. Proceedings of the 2002 U.K. Workshop on Computational Intelligence (2002).

Ryser-Welch, P, Miller, J. F., Asta, S. Generating human-readable algorithms for the Travelling Salesman
Problem using Hyper-Heuristics, In proceedings of 5th Workshop on Evolutionary Computation for the
Automated Design of Algorithms (ECADA), GECCO 2015 (to appear)

Seaton, T, Miller, J. F. , Clarke, T. Semantic Bias in Program Coevolution. Proceedings of the European
Conference on Genetic Programming, (Krawiec, K et al. (Eds.) pp. 193-204, Springer, LNCS Vol.
7831, 2013.

Seaton, T, Miller, J. F. , Clarke, T. An Ecological Approach to Measuring Locality in Linear Genotype to
Phenotype Maps. Proceedings of the European Conference on Genetic Programming, Springer, LNCS
Vol. 7244 (2012) 170-181.

Seaton, T., Brown G., Miller J. F.., Analytic Solutions to Differential Equations under Graph-based Genetic
Programming. Proceedings of the 13th European Conference on Genetic Programming. Springer LNCS
6021 (2010) 232-243

Sekanina, L. Evolvable Components - From Theory to Hardware Implementations, Springer (2003)

Sekanina, L. Image Filter Design with Evolvable Hardware, Proceedings of Evolutionary Image Analysis and
Signal Processing, Springer LNCS 2279 (2002) 255-266.

Sekanina, L, Vašíček Z. On the Practical Limits of the Evolutionary Digital Filter Design at the Gate Level,
Proceedings of EvoHOT, Springer, LNCS 3907 (2006) 344-355.

Sekanina, L., Harding, S. L., Banzhaf, W., Kowaliw, T. Image Processing and CGP in Miller, J.F. (Ed.)
Cartesian Genetic Programming, Springer 2011.

.

Turner, A. J., Miller, J. F. Cartesian Genetic Programming encoded Artificial Neural Networks: A Comparison
using Three Benchmarks. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 1005--1012, ACM, 2013

Turner, A. J., Miller, J. F. Introducing A Cross Platform Open Source Cartesian Genetic Programming Library,
Genetic Programming and Evolvable Machines Vol. 16, pp. 83-91 (2015)

Turner, A. J., Miller, J. F. Recurrent Cartesian Genetic Programming, Proceedings of the 13th International
Conference on Parallel Problem Solving from Nature (PPSN). T. Bartz-Beielstein et al. (Eds.): PPSN
XIII 2014, Springer LNCS 8672 (2014) 476-486.

Turner, A. J., Miller, J. F. Recurrent Cartesian Genetic Programming Applied to Famous Mathematical
Sequences, York Doctoral symposium. Technical Report of Dept. Computer Science, Univ.of York
(2014)

Turner, A. J., Miller, J. F. Neutral Genetic Drift: An Investigation using Cartesian Genetic ProgrammingGenetic
Programming and Evolvable Machines (in press)

Kisung Seo, K., Hyun, S. Toward Automatic Gait Generation for Quadruped Robots Using Cartesian Genetic
Programming. EvoApplications 2013, LNCS Vol. 7835, pp. 599–605.

Vašíček Z, Sekanina L. Hardware Accelerators for Cartesian Genetic Programming, Proc. Eleventh European
Conference on Genetic Programming, Springer LNCS Vol. 4971 (2008) 230-241

Vašíček, Z. Sekanina, L.. Formal verification of candidate solutions for post-synthesis evolutionary optimization
in evolvable hardware. Genetic Programming and Evolvable Machines, 12(3) (2011) 305-327, 2011.

Vašíček Z. Slany, K. Efficient Phenotype Evaluation in Cartesian Genetic Programming. Proceedings of the 15th
European Conference on Genetic Programming, Springer LNCS Vol. 7244 (2012) 266-278.

Vašíček Z. Cartesian GP in Optimization of Combinational Circuits with Hundreds of Inputs and Thousands of
Gates. Proceedings of the 15th European Conference on Genetic Programming, Springer LNCS Vol.
9025 (2015) 139-150.

Vassilev V. K., Miller J. F. Scalability Problems of Digital Circuit Evolution. Proceedings of the 2nd
NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 55-64.

Vassilev V. K., Miller J. F. The Advantages of Landscape Neutrality in Digital Circuit Evolution. Proceedings of
the 3rd International Conference on Evolvable Systems: From Biology to Hardware. Springer LNCS
1801 (2000) 252-263.

Vassilev V. K., Miller J. F. Towards the Automatic Design of More Efficient Digital Circuits. Proceedings of the
2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 151-160.

Vassilev V. K., Miller J. F., Fogarty T. C. Digital Circuit Evolution and Fitness Landscapes. Proceedings of the
Congress on Evolutionary Computation. IEEE Press (1999) 1299-1306.

197

Vassilev V. K., Miller J. F., Fogarty T. C. On the Nature of Two-Bit Multiplier Landscapes. Proceedings of the
First NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (1999) 36-45.

Völk K., Miller J. F., Smith, S. L. Multiple Networks CGP for the Classification of Mammograms. Proceedings
of the 11th European Workshop on Image Analysis and Signal Processing (EvoIASP), Springer
LNCS (2009).

Voss M. S. Social programming using functional swarm optimization. In Proceedings of IEEE Swarm
Intelligence Symposium (2003)

Voss M. S., Howland, J. C. III.Financial modelling using social programming. Financial Engineering and
Applications (2003)

Walker J. A., Liu Y., Tempesti G., Tyrrell A. M., “Automatic Code Generation on a MOVE Processor Using
Cartesian Genetic Programming,” in Proceedings of the International Conference on Evolvable
Systems: From Biology to Hardware, Springer LNCS vol. 6274 (2010) 238–249

Walker J.A., Völk, K. , Smith, S. L., Miller, J. F. Parallel evolution using multi-chromosome cartesian genetic
programming, Genetic Programming and Evolvable Machines, 10 (4), (2009) pp 417-445

Walker J. A., Hilder, J. A., Tyrrell. A. M. Towards Evolving Industry-feasible Intrinsic Variability Tolerant
CMOS Designs, Proceedings of Congress on Evolutionary Computation, IEEE Press (2009)

Walker J.A., Miller J.F. The Automatic Acquisition, Evolution and Re-use of Modules in Cartesian Genetic
Programming. IEEE Transactions on Evolutionary Computation, 12 (2008) 397-417.

Walker J. A. Modular Cartesian Genetic Programming. PhD thesis, University of York, 2008.

Walker J. A., Miller J. F. Solving Real-valued Optimisation Problems using Cartesian Genetic Programming.
Proceedings of Genetic and Evolutionary Computation Conference, ACM Press (2007) 1724-1730.

Walker J. A., Miller J. F. Changing the Genospace: Solving GA Problems using Cartesian Genetic
Programming, Proceedings of 10th European Conference on Genetic Programming, Springer LNCS
4445 (2007) 261-270.

Walker J. A., Miller J. F. Predicting Prime Numbers using Cartesian Genetic Programming, Proceedings of 10th
European Conference on Genetic Programming. Springer LNCS 4445, (2007) 205-216

Walker J. A., Miller J. F., Cavill R. A Multi-chromosome Approach to Standard and Embedded Cartesian
Genetic Programming, Proceedings of the 2006 Genetic and Evolutionary Computation Conference.
ACM Press, (2006) 903-910.

Walker J. A., Miller J. F. Embedded Cartesian Genetic Programming and the Lawnmower and Hierarchical-if-
and-only-if Problems, Proceedings of the 2006 Genetic and Evolutionary Computation Conference.
ACM Press, (2006) 911-918.

Walker J. A., Miller J. F. Improving the Evolvability of Digital Multipliers Using Embedded Cartesian Genetic
Programming and Product Reduction. Proceedings of 6th International Conference in Evolvable
Systems. Springer, LNCS 3637 (2005) 131-142.

Walker J. A., Miller J. F. Investigating the performance of module acquisition in Cartesian Genetic
Programming, Proceedings of the 2005 conference on Genetic and Evolutionary Computation. ACM
Press (2005) 1649-1656.

Walker J. A., Miller J. F. Evolution and Acquisition of Modules in Cartesian Genetic Programming. Proceedings
of the 7th European Conference on Genetic Programming. Springer LNCS 3003 (2004) 187-197.

Yu T., Miller J.F., Through the Interaction of Neutral and Adaptive Mutations Evolutionary Search Finds a Way.
Artificial Life, 12 (2006) 525-551.

Yu T., Miller J. F. Finding Needles in Haystacks Is Not Hard with Neutrality. Proceedings of the 5th European
Conference on Genetic Programming. Springer LNCS 2278 (2002) 13-25.

Yu T., Miller J. F. Neutrality and Evolvability of a Boolean Function Landscape, Proceedings of the 4th
European Conference on Genetic Programming. Springer LNCS, 2038, (2001) 204-217.

Zhan S., J.F. Miller, A. M., Tyrrell. An evolutionary system using development and artificial Genetic Regulatory
Networks for electronic circuit design, Biosystems, 96 (3) (2009) pp 176-192

Zhan S., Miller J. F., Tyrrell A. M. Obtaining System Robustness by Mimicking Natural Mechanisms .
Proceedings of Congress on Evolutionary Computation. IEEE Press (2009)

Zhan S., Miller J. F., Tyrrell A. M. A Development Gene Regulation Network For Constructing Electronic
Circuits . Evolvable Systems: From Biology to Hardware. LNCS 5216 (2008) 177 – 188

Zhan S., Miller J. F., Tyrrell A. M. An Evolutionary System using Development and Artificial Genetic
Regulatory Networks Proceedings of 9th IEEE World Congress on Computational Intelligence.
Congress on Evolutionary Computation. IEEE Press (2008) 815-822.

198

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 772.92, 618.68 Width 22.90 Height -638.37 points
 Mask co-ordinates: Horizontal, vertical offset -1.91, 621.54 Width 20.04 Height -649.83 points
 Mask co-ordinates: Horizontal, vertical offset 365.47, 25.15 Width 64.89 Height -41.03 points
 Mask co-ordinates: Horizontal, vertical offset 371.19, 629.18 Width 49.62 Height -38.17 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 772.9202 618.6796 22.9014 -638.3749 -1.9084 621.5422 20.0387 -649.8255 365.4672 25.1531 64.8871 -41.0316 371.1926 629.176 49.6196 -38.1689

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 20
 19
 20

 1

 HistoryList_V1
 qi2base

