
GECCO 2015 Tutorial: 

Cartesian Genetic Programming

Julian F. Miller, Andrew  J. Turner
Dept of Electronics

University of York, UK
julian.miller@york.ac.uk

andrew.turner@york.ac.uk

Evolved pictureEvolved picture

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage, and 
that copies bear this notice and the full citation on the first page. 
Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). Copyright is held by 
the author/owner(s).
GECCO'15 Companion, July 11–15, 2015, Madrid, Spain.
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2756571

Abstract

� Cartesian Genetic Programming (CGP) is a well-known form of Genetic Programming developed by Julian 

Miller in 1999-2000. In its classic form, it uses a very simple integer address-based genetic representation of 

a program in the form of a directed graph. Graphs are very useful program representations and can be applied 

to many domains (e.g. electronic circuits, neural networks). It can handle cyclic or acyclic graphs.

� In a number of studies, CGP has been shown to be comparatively efficient to other GP techniques. It is also 

very simple to program. The classical form of CGP has undergone a number of developments which have 

made it more useful, efficient and flexible in various ways. These include self-modifying CGP (SMCGP), 

cyclic connections (recurrent-CGP), encoding artificial neural networks and automatically defined functions 

(modular CGP).

� SMCGP uses functions that cause the evolved programs to change themselves as a function of time. This 

makes it possible to find general solutions to classes of problems and mathematical algorithms (e.g. arbitrary 

parity, n-bit binary addition, sequences that provably compute pi and e to arbitrary precision, and so on).

� Recurrent-CGP allows evolution to create programs which contain cyclic, as well as acyclic, connections. 

This enables application to tasks which require internal states or memory. It also allows CGP to create 

recursive equations.

� CGP encoded artificial neural networks represent a powerful training method for neural networks. This is 

because CGP is able to simultaneously evolve the networks connections weights, topology and neuron 

transfer functions. It is also compatible with Recurrent-CGP enabling the evolution of recurrent neural 

networks.

� The tutorial will cover the basic technique, advanced developments and applications to a variety of problem 

domains. It will present a live demo of how the open source cgplibrary can be used.
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Genetic Programming

�The automatic evolution of computer 
programs
• Tree-based, Koza 1992

• Stack-based, Perkis 1994, Spector 1996 
onwards (push-pop GP)

• Linear GP, Nordin and Banzhaf 1996

• Cartesian GP, Miller 1999

• Parallel Distributed GP, Poli 1996 (related to 
CGP)

• Grammatical Evolution, Ryan 1998

• Lots of others…
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Origins

�Grew out of work in the evolution of digital 
circuits, Miller and Thomson 1997. 
• First actual mention of the term Cartesian Genetic 

Programming appeared at GECCO in 1999.

�Originally, represents programs or circuits as a 
two dimensional grid of program primitives.
• Hence Cartesian GP

�This is loosely inspired by the architecture of 
digital circuits called FPGAs (field 
programmable gate arrays)

Why use CGP?

� Its performance is highly competitive with other forms of GP

� It is naturally suited to multiple input multiple-output (MIMO) 

tasks

� It is simple and only requires a simple evolutionary algorithm

� It encodes cyclic or acyclic graphs which are highly flexible for 

many applications

• It allows internally calculated values to be reused multiple times

• It can naturally encode artificial neural networks

� It benefits from explicit neutral genetic drift 

� It does not suffer from program bloat. In fact, it naturally 

compresses solutions.
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So what does the graph represent?

genotype

phenotype

The CGP genotype-phenotype map

�When you decode a CGP genotype many nodes and 

their genes can be ignored because they are not 

referenced in the path from inputs to outputs

�These genes can be altered and make no difference to 

the phenotype, they are non-coding

�Clearly there is a many-to-one genotype to phenotype 

map

�How redundant is the mapping?
• Massively redundant. 

• For example, a nine node genotype has 118,124 possible 3 node 

phenotypes (assuming one program input and all nodes have arity equal 

to one).

// L  = MaxGraph.Length

// I   = Number of program inputs

// N = Number of program outputs

bool ToEvaluate[L]

double NodeOutput[L+I]

int  NodesUsed[M]

1

// identify initial nodes that need to be evaluated (once)
p = 0

do

ToEvaluate[OutputGene[p]] = true

p = p + 1

while (p < N)

// determine nodes needed

p = L-1

q=0

do

if (ToEvaluate[p])

x = Node[p].Connection1

y = Node[p].Connection2

ToEvaluate[x] = true  

ToEvaluate[y] = true

q=q+1

NodesUsed[q]=p

endif

p = p - 1

while ( p >= 0)

2

// load input data values

p = 0

do

NodeOutput[p] = InputData[p]

p = p + 1

while (p < I)

3

//Execute graph
for  p = I to p < q+I

x = Node[NodesUsed[p]].Connection1 

y = Node[NodesUsed[p]].Connection2

z = Node[NodesUsed[p]].Function

NodeOutput[p] = ComputeNode(NodeOutput[x], NodeOutput[y],z)

endfor

4

Decoding CGP chromosomes is easy and fast Why decoding the CGP genotype map 

is extremely fast

� Some people wrongly think that CGP is slow 
compared to other forms of GP because it has a 
genotype-phenotype mapping stage.

� First one determines which nodes are used. 
This is one pass and is only done once. 

• Time is insignificant compared with fitness evaluation

� To determine the output from CGP only 
requires looking up a few entries in an array

� Phenotypes in CGP are usually a fraction of the 
genotype size
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Point mutation

� Most CGP implementations only use mutation. 

� Carrying out mutation is very simple. It 
consists of the following steps. The genes must 
be chosen to be valid alleles

• Of course, it can be also be done probabilistically

//Decide how many genes to change:num_mutations

while (mutation_counter < num_mutations)

{

get random gene to change

if (gene is a function gene)

change gene to randomly chosen new valid function

else if (gene is a connection gene)

change gene to a randomly chosen new valid connection

else

change gene to a new valid output connection

}

Advice on CGP parameters and experiments

�Only allow a small number of mutations

�Choose a fairly large number of nodes (100 to 1000)

�Use a 1+ 4 evolutionary strategy

�Only calculate fitness of genotypes that have different 
phenotypes
• Check whether an offspring has exactly the same active nodes as the 

parent, if so do not calculate its fitness and do not increment the 
evaluation counter (Skip method – see next slide)

�Only evaluate active nodes

�When making comparisons with other GP methods 
either give them the same budget in processed nodes 
or the same number of fitness evaluations.

Single, a new mutation method?

�Single: Keep mutating until an active gene is 
mutated (Goldman and Punch 2013)

�Exactly one active gene is mutated for all 
offspring.

�It looks like no mutation rate is required, 
however its effective mutation rate is determined 
by the length of the genotype
• Remains to be investigated

Single active gene mutation strategy: results

(Goldman and Punch 2013)

� Normal = standard CGP

� Skip: set offspring’s fitness to parent if identical

� Single: mutate until one active gene is changed
• 29% less computation than Normal!

�3bit parallel multiplier
• Multiples two three-bit 

numbers in parallel

• Hard problem

� On other problems the best 
performance of single is 
slightly worse than other 
mutation schemes
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Evolutionary Strategy

�CGP often uses a variant of a simple 
algorithm called (1 + 4) Evolutionary 
Strategy
• However, an offspring is always chosen if it is 

equally as fit or has better fitness than the parent

18

CGP Library

�Andrew Turner – developer/maintainer
�cgplibrary.co.uk
�Cross Platform – Linux, Windows, Mac
�Open Source – GNU LGPL
�Fully Documented API
�Many Tutorials – beginner and advance
�Very Simple
�Written in C – fast, no dependencies
�Language Bindings – via SWIG

19

CGP Library – Overview 

�Cartesian Genetic Programing (CGP) 

�Recurrent CGP

�CGP Artificial Neural Networks

�Recurrent CGP Artificial Neural Networks

�What more could you want ;)

�Designed for:

– Teaching

– Research

– Applications

20

Live Demo

�Tutorials: cgplibrary.co.uk

�andrew.turner@york.ac.uk

�Please as questions!

�Or talk to me later :)
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Additional Features

�Save, store and load chromosomes 

�Embed CGP in other applications

�Highly Customisable

– Fitness functions

– Node Functions

– Selection Scheme

– Mutation Scheme

– Reproduction Scheme

�Additional Language bindings

22

Final Words

�Much more info @ cgplibrary.co.uk

�Hosted with GitHub:

Github.com/AndrewJamesTurner/CGP-
Library

�Citable using:
A. J. Turner, J. F. Miller, Introducing a cross 

platform open source Cartesian Genetic 

Programming library, GPEM, 2014, 83-91

Crossover or not?

� Recombination doesn’t seem to add anything 
(Miller 1999, “An empirical study…”)

� However if there are multiple chromosomes with 
independent fitness assessment then it helps a LOT  
(Walker, Miller, Cavill 2006, Walker, Völk, Smith, 
Miller, 2009)

� Some work using a floating point representation of 
CGP shows that crossover is useful for symbolic 
regression (Clegg, Walker, Miller 2007, Meier, 
Gonter, Kruse 2013)

� Cone-based crossover (Kaufmann and Platzner
2007, 2008)

CGP samples the solution space in a 

very interesting way

One gene mutation can create a wide variety of 

offspring, since it can activate or deactivate large 

number of nodes
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Neutral search is fundamental to success 

of CGP

�A number of studies have been carried 

out to indicate the importance to 

neutral search 

• Miller and Thomson 2000, Vassilev and 

Miller 2000, Yu and Miller 2001, Miller 

and Smith 2006)

Neutral search and the three bit multiplier problem 

(Vassilev and Miller 2000)

Graph shows final fitness 

obtained in each of 100 runs 

of 10 million generations 

with neutral mutations 

enabled compared with 

disabled neutral mutations.

Importance of neutral search can be demonstrated by looking at 

the success rate in evolving a correct three-bit digital parallel 

multiplier circuit

How big should the genotype be?

� Miller and Smith investigated the efficiency of CGP search as a 

function of the number of available nodes and mutation rate on 

a couple of small problems (Miller and Smith 2006). It was 

found that 

• Least number of evaluations required for success when 95% 

of the genes were inactive!

• Efficiency of the search appeared to continuously improve 

as the number of nodes increased...

� Turner and Miller have recently investigated neutral drift in a 

recent paper (Turner and Miller in press). Using 3% 

probabilistic mutation and up to 100,000 nodes, the following 

results were obtained:

Efficiency of search v. max number of nodes

185



Modular/Embedded CGP (Walker, Miller 2004, 2008, 

Kaufmann and Platzner 2007, 2008 )

� So far have described a form of CGP (classic) that does not 

have an equivalent of Automatically Defined Functions (ADFs)

� Modular CGP allows the use of modules (ADFs)

• Modules are dynamically created and destroyed

• Modules can be evolved

• Modules can be re-used

Creating, Destroying, Replicating and 

Evolving Modules

�Created by the compress operator
• Randomly acquires sections of the genotype into a module

– Sections cannot contain modules

�Destroyed by the expand operator
• Converts the original module back into a section of the 

genotype

�Replicated by mutation operator
• Mutation can change a primitive function node to a module, 

or change a module to a primitive function node

�Evolution of Module
• All instances of a module in the genotype can be changed by 

a mutation to a module

Module Survival

�Twice the probability of a module being 

destroyed than created

�Modules have to replicate to improve their 

chance of survival

• This reduces the probability of their extinction

�Modules must also be associated with a 

high fitness genotype in order to survive

• Offspring inherit the modules of the 

fittest parent

Evolving Modules

�Structural mutation

• Add input

• Remove input

• Add output

• Remove output

�Module point-

mutation operator

• Restricted version 

of genotype point-

mutation operator

– Uses only primitive 

functions
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Self-modifying Cartesian Genetic programming 

(Harding, Miller, Banzhaf 2007 onwards)

�A developmental form of CGP

• Includes self modification functions in addition to 

computational functions

• ‘General purpose’ GP system 

• Phenotype can vary over time (with iteration)

• Can switch off its own self-modification

�Some representational changes from classic 

CGP…

Changes to CGP: relative 

addressing

�Replaced direct node addressing with 

relative addressing

• Always use 1 row (not rectangular)

• Connection genes say how many nodes back

0

1

2

3

1

5

2

4

3

6

0

Changes to CGP: Inputs

�Replace input calls with a function.

• We call these functions INP, INPP, SKIPINP

�Pointer keeps track of ‘current input’.

• Call to INP returns the current input, and moves 

the pointer to the next input.

�Connections beyond graph are assigned 

value 0.

�Removed output nodes. 

�Genotype specifies which nodes are 

outputs.

�If no OUTPUT function then last active 

node is used
• Other defaults are used in situations where the number 

of outputs does not match the number required

Changes to CGP: Outputs
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�Nodes also contain a number of 

‘arguments’.

• 3 floating point numbers

• Used in various self-modification 

instructions

• Cast to integers when required

Changes to CGP: Arguments SMCGP Nodes: summary

�Each node contains:

• Function type

• Connections as relative addresses

• 3 floating point numbers

SMCGP: Functions

�Two types of functions:

• Computational

– Usual GP computational functions

• Self-modifying

– Passive computational role (see later)

Some Self-Modification Functions

Operator Parameters: 

use node address and the 

three node arguments

Function

MOVE Start, End, Insert Moves each of the nodes between 

Start and End into the position 

specified by Insert

DUP Start, End, Insert Inserts copies of the nodes 

between Start and End into the 

position specified by Insert 

DELETE Start, End Deletes the nodes between Start 

and End indexes

CHF Node, New Function Changes the function of a 

specified node to the specified 

function

CHC Node, Connection1, 

Connection2

Changes the connections in the 

specified node
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SMCGP Execution

�Important first step:

• Genotype is duplicated to phenotype.

• Phenotypes are executed:

� Self modifications are only made to the 

phenotype.

Self Modification Process: The To Do list

�Programs are iterated.

�If triggered, self modification instruction is 

added to a To Do list.

�At the end of each iteration, the instructions on 

this list are processed.

�The maximum size of the To Do list can be 

predetermined

Computation of a SM node

�Functions can be appended to the To Do list 

under a variety of conditions (triggered)

• If active

• If  value(first input) > value(the second input)

– Data dependent self-modification

�And:

• The To Do list isn’t too big.

Example: Evolving Even-Parity

�Each iteration of program should produce the 

next parity circuit.

• On the first iteration the program has to solve 2 bit 

parity. On the next iteration, 3 bit ... up to 22 parity

• Fitness is the cumulative sum of incorrect bits

�Aim to find general solution

• Solutions can be proved to general

– See GPEM 2010 paper

�CGP or GP cannot solve this problem as they 

have a finite set of inputs (terminals)
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Scaling behaviour of SMCGP on even-parity Evolving pi 

�Iterate a maximum of 10 times

�If program output does not get closer to pi at the 

next iteration, the program is stopped and large 

fitness penalty applied

�Fitness at iteration, i,  is absolute difference of 

output at iteration i and pi

�One input:  the numeric constant 1.

Evolving pi: an evolved solution

�An evolved solution

�f(10) is correct to the first 2048 digits of pi

�It can be proved that f(i) rapidly converges to 

pi in the limit as i tends to infinity

Further results

�Other mathematically provable results found 
so far:
• Evolved a program that can carry out the bitwise 

addition of an arbitrary number of inputs

• Evolved a sequence that converges to e

�Other results
• Evolved a sequence function that generates the 

first 10 Fibonacci numbers (probably general)

• Evolved a power function x n

• Bioinformatics classification problem (finite 
inputs)

– SMCGP performed no worse than CGP
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Application 1: 

Digital circuit synthesis with CGP

�Digital Circuits with hundreds of variables can be 

optimized using CGP (Vassicek and Sekanina 2011)

• Won the $3000 silver award in human competitive 

workshop at GECCO 2011

�The method employs a SAT solver to identify whether 

two circuits are logically equivalent 

• In many cases this can be done in polynomial time

Circuit equivalence checking and SAT

�If C1 (reference) and C2 (evolved) are not functionally 
equivalent then there is at least one assignment of the 
inputs for which the output of G is 1.

CGP for optimizing conventionally 

synthesized circuits

The seed for CGP is provided by using the logic synthesis package, 
ABC (http://www.eecs.berkeley.edu/~alanmi/abc/ )

The fitness function is as follows:
� Use a SAT solver to decide whether candidate circuit Ci and reference circuit 

C1 are functionally equivalent.
• If so, then fitness(Ci) = the number of nodes – number of gates in Ci;

• Otherwise: fitness(Ci) = 0.

� The method is now much faster by using a circuit simulator prior to SAT 

solver to disprove the equivalence between a candidate solution and its parent 

(Vassicek 2015)

Conventional synthesis

ABC, SIS
CGP

Circuit C1 Optimized 

circuit Ci

A seed for 

initial CGP 

population

Application 2: Evolving Image Filters with CGP 

(Harding, Leitner, Schmidhüber 2013)

�Detecting/locating objects with the 

iCub cameras

�Done by evolving image filters that 

take a camera image, and return 

only the objects of interest

Input Target

Evolved

filter
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Grey

Red

Green

Blue

Hue

Saturation

Luminosity

Image from camera

Split colour image is used as inputs

Evolved

filter

Input data 

1 23 OUTINP INP INP

3
-1
-2

4.3

Function

Connection 1

Connection 2

A real number

Genotype representation (like 

SMCGP but no SM functions)

NOP LOG TRIANGLES

INP MAX LINES

INPP MIN SHIFTDOWN

SKIP EQ SHIFTUP

ADD GAMMA SHIFTLEFT

SUB GAUSS SHIFTRIGHT

CONST SOBELX SIFTa

MUL SOBELY GABOR

ADDC AVG NORMALIZE

SUBC UNSHARPEN RESCALE

MULC THRESHOLD GRABCUT

ABSDIFF THRESHOLDBW MINVALUE

CANNY SMOOTHMEDIAN MAXVALUE

DILATE GOODFEATURESTOTRACK AVGVALUE

ERODE SQUARES RESCALE

LAPLACE CIRCLES RESIZETHENGABOR

Large Function Set

•Fitness = sum of mean square error of pixel values 

between  each input/target

Fitness
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Evolved 

Filter code Output

Inputs

Evolved Filter 

Dataflow

Tea-box filter: demonstration Application 3: CGP encoded Artificial 

Neural Networks (CGPANN)

� CGP has been used to encode both feed-forward ANNs 
and recursive ANNs. The nodes genes consist of:
• Connection genes (as usual)

• Function genes

– Sigmoid, hyperbolic tangent. Gaussian

• Weights

– Each connection gene carries a real-numbered weight

� Pole balancing, Arm Throwing, Classification
• Very competitive results with other TWEANN methods (Khan, 

Khan and Miller 2010, Turner and Miller 2013)

� Breast cancer detection (Ahmad et al 2012, Turner and 
Miller 2013)
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Cyclic CGP

�When outputs are allowed to connect to 

inputs through a clocked delay (flip-flop) it is 

possible to allow CGP to include feedback.

�By feeding back outputs generated by CGP to 

an input, it is possible to get CGP to generate 

sequences

• In this way iteration is possible

�There are a couple of publications using 

iteration in CGP (Khan, Khan and Miller 

2010, Walker, Liu, Tempesti,Tyrrell 2010, 

Minarik, Sekanina 2011)

Recurrent CGP

�By allowing nodes to receive inputs from the right 

CGP can be easily extended to encode recursive 

computational structures

�Recurrent CGP Artificial Neural Networks can be 

explored in this framework

�Only just begun to be explored (Turner and Miller 

2014)

Recurrent CGP: Details

� Probability of recursive links controlled by a user-
defined parameter recurrent connection probability 
(rcp)

� Decoding

1. set all active nodes to output zero

2. apply the next set of program inputs

3. update all active nodes once from program inputs to 
program outputs

4. read the program outputs

5. repeat from 2 until all program input sets have been 
applied

2 1 2      0 0 5      1 3 4     5

CGP encoded algorithms (Ryser-Welch, 

Miller, Asta 2015)

� Algorithms can be 
encoded in CGP

� Here is one way

1. Assume all nodes 
have an arity of one

2. Assume a single 
input

3. Assume no data 
passed through 
graph

4. CGP defines a 
variable length 
ordered set of 
instructions
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CGP acceleration (Vassicek and Slany 2012)

� CGP decoding step is replaced with native machine 
code that directly calculates response for a single 
training vector. 

� Requires little knowledge of assembly language or 
target machine code.

� Integration of the machine code compiler requires 
modifying only a few lines of code

� Achieves 5 times speedup over standard 
implementation

Some Applications of CGP (incomplete)
� Circuit Design

• ALU, parallel multipliers, digital filters, analogue circuits, circuit synthesis and 
optimization

� Machine Learning
• Classification

� Mathematical functions
• Prime generating polynomials

� Control systems
• Maintaining control with faulty sensors, helicopter control, general control, simulated 

robot controller

� Image processing
• Image filters, Mammary Tumour classification, object recognition

� Robotics
• gait

� Bio-informatics
• Molecular Post-docking filters

� Artificial Neural Networks

� Developmental Neural Architectures
• Wumpus world, checkers, maze solving

� Evolutionary Art
� Artificial Life

• Regenerating ‘organisms’

� Optimization problems
• Applying CGP to solve GA problems

CGP Resources I: 
http://www.cartesiangp.co.uk

� Julian Miller: C implementations of CGP and SMCGP 
available at
http://www.cartesiangp.co.uk

� Andrew Turner: Easy to use, highly extendable, C 
implementation that includes CGPANNs
http://www.cgplibrary.co.uk/

� Eduardo Pedroni: Java implementation with GUI
https://bitbucket.org/epedroni/jcgp/downloads

� Zdenek Vassicek: Highly optimised C/Machine Code 
implementation
http://www.fit.vutbr.cz/~vasicek/cgp/

� Cartesian Genetic Programming book
• Published in 2011 by Springer

CGP Resources II: 

� David Oranchak has implemented CGP in Java. 
Documentation is available at
http://oranchak.com/cgp/doc/

� Brian Goldman has implemented CGP in Python
https://github.com/brianwgoldman/ReducingWastedEvaluationsCGP

� Jordan Pollack has implemented symbolic regression in 
CGP with Matlab
• See CGP web site

� Lawrence Ashmore has implemented a Java evolutionary 
art package using CGP
• See CGP web site
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Conclusions

�Cartesian Genetic Programming is a graph based GP 

method capable of representing many computational 

structures

• programs, circuits, neural networks, systems of equations, 

algorithms…

�Genetic encoding is compact, fast, simple and easy to 

implement and can handle multiple outputs easily.

�The unique form of genetic redundancy in CGP 

makes mutational search highly effective

�The effectiveness of CGP has been compared with 

many other GP methods and it is highly competitive
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