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Conceptual Overview

Combinatorial problem e.g. Travelling Salesman Genetic Algorithm
Exhaustive search ->heuristic? heuristic — permutations

S 3 f’,i\ Travelling Salesman ‘
T r . 2

Tour ‘

‘ Single tour NOT EXECUTABLE!!!

Genetic Programming
code fragments in for-loops.

Give a man a fish and he

Travell S-I st ‘ will eat for a day.
ravellin alesman Instances .
g ‘ Teach a man to fish and he
- will eat for a lifetime.
‘ TSP algorithm ‘
Scalable? General?
EXECUTABLE on MANY INSTANCES!!! .
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Instructors

John R. Woodward is a Lecturer at the University of Stirling, within

the CHORDS group and is employed on the DAASE project, and for the
previous four years was a lecturer with the University of Nottingham. He
holds a BSc in Theoretical Physics, an MSc in Cognitive Science and a PhD in
Computer Science, all from the University of Birmingham. His research
interests include Automated Software Engineering, particularly Search
Based Software Engineering, Artificial Intelligence/Machine Learning and in
particular Genetic Programming. He has worked in industrial, military,
educational and academic settings, and been employed by EDS, CERN and
RAF and three UK Universities.

Daniel R. Tauritz is an Associate Professor in the Department of Computer
Science at the Missouri University of Science and Technology (S&T), on
sabbatical at Sandia National Laboratories for the 2014-2015 academic
year, a former Guest Scientist at Los Alamos National Laboratory (LANL),
the founding director of S&T's Natural Computation Laboratory, and
founding academic director of the LANL/S&T Cyber Security Sciences
Institute. He received his Ph.D. in 2002 from Leiden University. His research
interests include the design of hyper-heuristics and self-configuring
evolutionary algorithms and the application of computational intelligence
techniques in cyber security, critical infrastructure protection, and search-
based software engineering.
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Program Spectrum

Genetic Programming . . .
. First year university course
-7

{AND, OR, NOT} Or? Java, as part of a computer
Science degree

LARGE
Automatically Software
designed heuristics Engineering
(this tutorial) Projects

—

Increasing “complexity”
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Plan: From Evolution to Automatic Design

1. Evolution, Genetic Algorithms and Genetic Programming
2. Motivations (conceptual and theoretical)
3. Examples of Automatic Generation:
*  Evolutionary Algorithms (selection, mutation, crossover)
¢ Black Box Search Algorithms
¢ Bin packing
*  Evolutionary Programming
Visualization
Step-by-step guide
Wrap up (comparison, history, conclusions, summary, etc.)

N o un s

Questions (during AND after...), please! ©
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Theoretical Motivation 1

Search

Metaheuristic a Objective

Function f

e
T : ~
e PROBLEM 9
<€ >

1. Asearch space contains the set of all possible solutions.

2. An objective function determines the guality of solution.

3. A (Mathematical idealized) metaheuristic determines the
sampling order (i.e. enumerates i.e. without replacement). It is
a (approximate) permutation. What are we learning?

4. Performance measure P (g, f) depend only onyl,y2,y3

5. Aim find a solution with a near-optimal objective value using a
Metaheuristic .
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Feedback loop

Evolution GA/GP

Humans
* Generate and test: cars, code, Computers
models, proofs, medicine, Generate
hypothesis. Yy U

* Evolution (select, vary, inherit). Test

* Fit for purpose
Inheritance
Off-spring
have similar
& Genotype
(phenotype)
PERFECT
CODE [3]

John R. Woodward, Daniel R. Tauritz

Theoretical Motivation 2

Metaheuristic a Search  permutation Objective
space o Function f

ek

P(a,fil=P(ac,6"1f) P(A F)=P(Ac,6”1F) (i.e. permute bins)
P is a performance measure, (based only on output values).

o,6 larea permutation and inverse permutation.

A and F are probability distributions over algorithms and functions).
F is a problem class. IMPLICATIONS

1. Metaheuristic a applied to function 0'0'_1f (thatis f)

2. Metaheuristic ac applied to function 0‘_1f precisely identical.
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Theoretical Motivation 3 [1,14]

The base-level learns about the function.

The meta-level learn about the distribution of
functions

The sets do not need to be finite (with infinite sets,
a uniform distribution is not possible)

The functions do not need to be computable.

We can make claims about the Kolmogorov
Complexity of the functions and search algorithms.

p(f) (the probability of sampling a function )is all we
can learn in a black-box approach.

Real-World Challenges

* Researchers strive to make algorithms
increasingly general-purpose

* But practitioners have very specific
needs

* Designing custom algorithms tuned to
particular problem instance distributions
and/or computational architectures can
be very time consuming
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One Man - One/Many Algorithm

Researchers design heuristics
by hand and test them on
problem instances or arbitrary
benchmarks off internet.
Presenting results at
conferences and publishing in
journals. In this talk/paper we

1. Challenge is defining an algorithmic
framework (set) that includes useful
algorithms. Black art

2. Let Genetic Programming select the
best algorithm for the problem class at
hand. Context!!! Let the data speak for
itself without imposing our assumptions.

In this talk/paper we propose a 10,000

1 algorithms...
propose a new algorithm...
——)
pesin |
? ——)
Heuristic10,000
O

f o e
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Automated Design of Algorithms

* Addresses the need for custom algorithms

* But due to high computational complexity,
only feasible for repeated problem solving

* Hyper-heuristics accomplish automated

design of algorithms by searching program
space




Hyper-heuristics

* Hyper-heuristics are a special type of meta-heuristic

— Step 1: Extract algorithmic primitives from existing
algorithms

— Step 2: Search the space of programs defined by the
extracted primitives
* While Genetic Programming (GP) is particularly well
suited for executing Step 2, other meta-heuristics can
be, and have been, employed

* The type of GP employed matters [24]
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Framework for Selection Heuristics

Selection heuristics operate Space of
in the following Progams.  + rank selection is
framework /" the program.

for all individuals
P in population

» fitness

select p in proportional

proportion to
value( p );

* To perform rank selection
replace value with index i.

* To perform fitness
proportional selection
replace value with fitness

n R. Woodward, Daniel R. Tauritz

* These are just
two programs in

our search space.
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Case Study 1: The Automated Design
of Selection Heuristics [16]

* Rank selection
P(i) a i
Probability of selection is
proportional tO the index in 155 9100010 27.50101010 389 9001010 4,/3,9 0111010
sorted population
* Fitness Proportional
P(i) o fitness(i)
Probability of selection is
proportional to the fitness

Fitter individuals are more
likely to be selected in both
cases.

Current population (index, fitness, bit-string)

N
/ -
« P oo
0001010 0111010 0001010 0100010

Next generation

Selection Heuristic Evaluation

Selection heuristics
are generated by
random search in
the top layer.
heuristics are used
as for selectionin a
GA on a bit-string - - Framework for
problem class. Genetic Algorithm selection heuristics.

A value is passed to Selection function plugs

the upper |ayer into a Genetic Algorithm
bit-string problem

Generate a selection ~ Generate and test
heuristic

X2

Program space
of selection heuristics

informing it of how
well the function
performed as a
selection heuristic.

Problem class:
A probability distribution
Over bit-string problems
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Experiments for Selection

* Train on 50 problem instances (i.e. we run a
single selection heuristic for 50 runs of a genetic
algorithm on a problem instance from our
problem class).

* The training times are ignored
— we are not comparing our generation method.

— we are comparing our selection heuristic with rank
and fitness proportional selection.

* Selection heuristics are tested on a second set of
50 problem instances drawn from the same
problem class.

20 May, 2015 John R. Woodward, Daniel R. Tauritz

Results for Selection Heuristics

mean 0.831528 0.907809 0.916088
std dev 0.003095 0.002517 0.006958
min 0.824375 0.902813 0.9025
max 0.838438 0.914688 0.929063

Performing t-test comparisons of fitness-
proportional selection and rank selection against
generated heuristics resulted in a p-value of better
than 107-15 in both cases. In both of these cases
the generated heuristics outperform the standard
selection operators (rank and fit-proportional).

20 May, 2015 John R. Woodward, Daniel R. Tauritz 19
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Problem Classes

1. A problem class is a probability distribution of
problem instances.

2. Generate values N(0,1) in interval [-1,1] (if we fall
outside this range we regenerate)

3. Interpolate values in range [0, 2*{num-bits}-1]

4. Target bit string given by Gray coding of interpolated
value.

The above 3 steps generate a distribution of target bit
strings which are used for hamming distance
problem instances. “shifted ones-max”

20 May, 2015 John R. Woodward, Daniel R. Tauritz 8

Take Home Points

* automatically designing selection heuristics.

* We should design heuristics for problem classes
i.e. with a context/niche/setting.

* This approach is human-competitive (and human
cooperative).

* Meta-bias is necessary if we are to tackle multiple
problem instances.

* Think frameworks not individual algorithms — we
don’t want to solve problem instances we want
to solve classes (i.e. many instances from the
class)!

20 May, 2015 John R. Woodward, Daniel R. Tauritz




Meta and Base Learning [15]

. At the base level we are |
learning about a | Meta level

specific function. —
. At the meta level we Function y operatar

are learning about the ! designer
probability distribution. *---

. We are just doing
“generate and test” on

Function to

“generate and test” |
. What is being passed |
with each blue arrow? | base level
. Training/Testing and Conventional GA

Validation

20 N\

Case Study 2: The Automated Design
of Crossover Operators [20]

¢ Performance Sensitive to Crossover Selection

* |dentifying & Configuring Best Traditional
Crossover is Time Consuming

* Existing Operators May Be Suboptimal

* Optimal Operator May Change During Evolution
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Compare Signatures (Input-Output)

Genetic Algorithm Genetic Algorithm FACTORY
* (B"™>R)—> B" * |[[(B">R)] >

Input is an objective (B">R) > B")
function mapping bit- |Input s a list of functions

strings of length nto a mapping bit-strings of length n to
real-value. a real-value (i.e. sample problem

. instances from the problem class).
Output is a (near i .
timal) bit-string Output is a (near optimal)
op mutation operator for a GA
i.e. the solution to the

: i.e. the solution method
problem instance (algorithm) to the problem class

[«3]

We are raising the level of generality at which we operate.

20 May, 2015 ohn R. Woodward, Daniel R. Tauritz

Some Possible Solutions

* Meta-EA

— Exceptionally time consuming

* Self-Adaptive Algorithm Selection
— Limited by algorithms it can choose from




Self-Configuring Crossover (SCX)

* Each Individual Encodes a
Crossover Operator

* Crossovers Encoded as a List of Swap(3, 5, 2)
Primitives
— Swap
— Merge Merge(1, r, 0.7)

* Each Primitive has three
parameters

— Number, Random, or Inline

Swap(r, i, r)

20 May, 2015 John R. Woodward, Daniel R. Tauritz 25

The Swap Primitive
* Each Primitive has a type

— Swap represents crossovers that move
genetic material m

* First Two Parameters
— Start Position
— End Position

* Third Parameter Primitive Dependent
— Swaps use “Width”

20 May, 2015 John R. Woodward, Daniel R. Tauritz 27
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Applying an SCX

Concatenate Genes

Parent 1 Genes Parent 2 Genes

10 20 3.0 40

5.0 60 70 80

20 May, 2015 John R. Woodward, Daniel R. Tauritz 26

Applying an SCX

Concatenate Genes

Offspring Crossover

Swap(3, 5, 2)

Merge(1, r, 0.7)

Swap(r, i, r)

20 May, 2015 John R. Woodward, Daniel R. Tauritz 28




The Merge Primitive

* Third Parameter Primitive Dependent
— Merges use “Weight”
Merge(1, r, 0.7)

* Random Construct

— All past primitive parameters used the
Number construct

— “r” marks a primitive using the Random
Construct

— Allows primitives to act stochastically

20 May, 2015 John R. Woodward, Daniel R. Tauritz 29

The Inline Construct

=

* Only Usable by First Two
Parameters

wn
|

* Denoted as

* Forces Primitive to Act on the Same
Loci in Both Parents

20 May, 2015 John R. Woodward, Daniel R. Tauritz 31
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Applying an SCX

Concatenate Genes

. 4

Offspring Crossover

Swap(3, 5, 2)

g(i) = o*g(i) + (1-a)*g(j)

Merge(1, r, 0.7)

g(2) = 6.0%(0.7) + 1.0%( 4.5

Swap(r, i, r)

20 May, 2015 John R. Woodward, Daniel R. Tauritz

Applying an SCX

Concatenate Genes

3 3

Offspring Crossover

Swap(3, 5, 2)

Merge(1, r, 0.7)

Swap(r, i, r)

20 May, 2015 John R. Woodward, Daniel R. Tauritz




Applying an SCX

25 4.0 5.0

Offspring Genes

20 May, 2015 John R. Woodward, Daniel R. Tauritz 33

Empirical Quality Assessment

* Compared Against
— Arithmetic Crossover
— N-Point Crossover

- Unlform Crossover Problem Comparison SCX
Rosenbrock -86.94 (54.54) -26.47 (23.33)
Rastrigin -59.2 (6.998)| -0.0088 (0.021)
L]
on PrObIems Offset Rastrigin | -0.1175 (0.116) -0.03 (0.028),
— Rosenbrock NK 0.771(0.011)] 0.8016 (0.013)

0.9782 (0.005) 0.9925 (0.021),

— Rastrigin DTrap

— Offset Rastrigin
— NK-Landscapes
— DTrap

20 May, 2015 John R. Woodward, Daniel R. Tauritz 35
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Evolving Cross
Parent 2 Crossover

»

Offspring Crossover Swap(

Swap(4, 2, r)
Merge(r, r, r)
Swap(r, i, r)

20 May, 2015 John R. Woodward, Daniel R. Tauritz 34

Parent 1 Crossover

Merge(i, 8, r)

Swap(3, 5, 2)

Merge(1, r, 0.7)

Adaptations: Rastrigin

Average Usage Percentage

i Swap m—
Merge semmgeet

o 1 2 34 5 6 7 8 9 10

Evaluations (In Thousands)

20 May, 2015 John R. Woodward, Daniel R. Tauritz 36




Adaptations: DTrap

05

04 -

$
03 -

Number s—
Random
Inling sssmrsens

Average Usage Percentage

0 5 10 15 2 25 30 35 40 45 S50
Evaluations (In Thousands)

2015 ohn R. Woodward, Daniel R. Tauri

Conclusions

Remove Need to Select Crossover Algorithm
Better Fitness Without Significant Overhead
Benefits From Dynamically Changing Operator

Promising Approach for Evolving Crossover
Operators for Additional Representations (e.g.,
Permutations)
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SCX Overhead

* Requires No Additional Evaluation

* Adds No Significant Increase in Run Time
— All linear operations

* Adds Initial Crossover Length Parameter

— Testing showed results fairly insensitive to this
parameter

— Even worst settings tested achieved better results
than comparison operators

Additions to Genetic Programming

1. final program is part human constrained part (for-
loop) machine generated (body of for-loop).

2. In GP the initial population is typically randomly
created. Here we (can) initialize the population with
already known good solutions (which also confirms
that we can express the solutions). (improving rather
than evolving from scratch) — standing on shoulders of
giants.

3. Evolving on problem classes (samples of problem
instances drawn from a problem class) not instances.

20 May, 2015 ohn R. Woodward, Daniel R. Tauri




Problem Classes Do Occur

=

Problem classes are probability distributions
over problem instances.

2. Travelling Salesman
1. Distribution of cities over different counties
2. E.g. USAis square, Japan is long and narrow.
3. Bin Packing & Knapsack Problem

1. The items are drawn from some probability
distribution.

4. Problem classes do occur in the real-world

5. Next slides demonstrate problem classes
and scalability with on-line bin packing.

20 May, 2015 John R. Woodward, Daniel R. Tauritz 41

Off-the-Shelf metaheuristic
to Tailor-Make mutation operators for
Problem Class

novel
mutation
search -
Genetic Programming space heurlstlcs
Iterative Hill Climbing Ve
(mutation operators) x A
.
Fitness Mutation \
value operator One Uniform
. . Point mutation
Genetic Algorithm mutation
Two search spaces

Commonly used
“Mutation operators

20 May, 2015 John R. Woodward, Daniel R. Tauri
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Case Study 3: The Automated Design of
Mutation Operators

BEFORE

o 11 1 Jo Jo Jo |
AFTER ‘

* One point mutation flips
ONE single bit in the
genome (bit-string).

(1 point to n point mutation)

¢ Uniform mutation flips ALL
bits with a small probability
p. No matter how we vary BEFORE

b, it will never be one point ENFSIEDRNN

mutation.
—_— § A 3
* ® NO, lets build a general R
What probability distribution of
methOd (for prObIem class) problem instances are these intended

20 May, 2015 John R. Woodward, Daniel R. Tauritz 42

Building a Space of Mutation Operators

mm Program counter
Dec 1 pc

If INPUT-OUTPUT REGISTERS

4,5,
o EXIE N T P

Aprinc -1 alist of instructions and arguments.

AreDec -2 et of addressable memory (RO,..,R4).
Negative register addresses means indirection.

A program can only affect 10 registers indirectly.

positive (TRUE) negative (FALSE) on output register.

Insert bit-string on 10 register, and extract from 10 register|

20 May, 2015 John R. Woodward, Daniel R. Tauritz a4




Arithmetic Instructions

These instructions perform arithmetic
operations on the registers.

« Add Ri < Rj + Rk

* IncRi< Ri+1

* DecRi<Ri-1

* IvtRi < -1 xRi

* CIrRi¢0

* Rnd Ri ¢ Random([-1, +1]) //mutation rate
* Set Ri < value

* Nop //no operation or identity

John R. Woodward, Daniel R. Tau

Expressing Mutation Operators

* Line UNIFORM ONE POINT MUTATION
"0 Rpt, 33,18 Rrt. 33,18 o Uniform mutation
Flips all bits with a
. ne. 3 ne. 3 fixed probability.
4 instructions
* One point mutation
. 8 IfRand, 3, 6 iiRand, 3,6 TIPS a single bit.
6 instructions
Why insert NOP?
c 1 Ivt,-3 Ivt,-3 We let GP start with these

Stp programs and mutate

them.

210

Control-Flow Instructions

These instructions control flow (NOT ARITHMETIC).
They include branching and iterative imperatives.

Note that this set is not Turing Complete!

* If if(Ri > Rj) pc = pc + |Rk| why modulus?

* IfRand if(Ri < 100 * random[0,+1]) pc = pc +
Rj//allows us to build mutation probabilities WHY?

* Rpt Repeat |Ri| times next |Rj]| instruction
* Stp terminate

7 Problem Instances

* Problem instances are drawn from a problem class.

¢ 7 real-valued functions, we will convert to discrete
binary optimisations problems for a GA.

number function

X

sin2(x/4 - 16)

(x=4) = (x-12)

(x * x — 10 * cos(x))
sin(pi*x/64-4) * cos(pi*x/64-12)
sin(pi*cos(pi*x/64 - 12)/4)

1/(1 + x /64)

NoupbhWwNR




Function Optimization Problem Classes

1. To test the method we use binary function classes

2. We generate a Normally-distributed value t =-0.7 +
0.5N (0, 1) in the range [-1, +1].

3. We linearly interpolate the value t from the range [-
1, +1] into an integer in the range [0, 2*num-bits
-1], and convert this into a bit-string t'.

4. To calculate the fitness of an arbitrary bit-string x,
the hamming distance between x and the target bit-
string t' is calculated (giving a value in the range
[0,numbits]). This value is then fed into one of the 7
functions.

20 May, 2015 John R. Woodward, Daniel R. Tauritz

Results — 64 bit problems

Problem classes Uniform One-point generated-
Means and stand dev Mutation mutation mutation

pl mean 55.31 56.08 56.47
pl std-dev 0.33 0.29 0.33
p2 mean 3064 3141 3168
p2 std-dev 33 35 33
p3 mean 2229 2294 2314
p3 std-dev 31 28 27
p4 mean 3065 3130 3193
p4 std-dev 36 24 28
p5 mean 0.839 0.846 0.861
p5 std-dev 0.012 0.01 0.012
p6 mean 0.643 0.643 0.663
p6 std-dev 0.004 0.004 0.003
p7 mean 0.752 0.7529 0.7684
p7 std-dev 0028 0.004 0.0031
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Results — 32 bit problems

Problem classes Uniform  One-point  generated-
Means and standard deviations ~Mutation mutation mutation

pl mean 30.82 30.96 31.11
pl std-dev 0.17 0.14 0.16
p2 mean 951 959.7 984.9
p2 std-dev 9.3 10.7 10.8
p3 mean 506.7 512.2 528.9
p3 std-dev 7.5 6.2 6.4
p4 mean 945.8 954.9 978
p4 std-dev 8.1 8.1 7.2
p5 mean 0.262 0.26 0.298
p5 std-dev 0.009 0.013 0.012
p6 mean 0.432 0.434 0.462
p6 std-dev 0.006 0.006 0.004
p7 mean 0.889 0.89 0.901
p7'stddev John . Woodward, by {092 0.003 0.002

p-values T Test for 32 and 64-bit
functions on the7 problem classes

32 bit 32 bit 64 bit 64 bit

class Uniform One-point Uniform One-point

pl 1.98E-08 0.0005683 1.64E-19 1.02E-05
p2 1.21E-18 1.08E-12 1.63E-17 0.00353
p3 1.57E-17 1.65E-14 3.49E-16 0.00722
p4 4.74€-23 1.22E-16 2.35E-21 9.01E-13
p5 9.62E-17 1.67E-15 4.80E-09 4.23E-06
p6 2.54E-27 4.14E-24 3.31E-24 3.64E-28
P70 e 1.34E-24 3.00E-18 1.45E-28 5.14E-23

John R. Woodward, Dat Tauri




Rebuttal to Reviews

1. Did we test the new mutation operators against
standard operators (one-point and uniform
mutation) on different problem classes?

* NO - the mutation operator is designed (evolved)
specifically for that class of problem.
2. Are we taking the training stage into account?

* NO, we are just comparing mutation operators in
the testing phase — Anyway how could we
meaningfully compare “brain power” (manual
design) against “processor power” (evolution).

3. Train for all functions — NO, we are specializing.
20 May, 2015 Joh itz 53
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Case Study 4: The Automated Design of
Black Box Search Algorithms [21, 23, 25]

* Hyper-Heuristic employing Genetic
Programing

* Post-ordered parse tree

¢ Evolve the iterated function

Our
Solution

Initialization

A 4

Check for
Termination

l

Terminate

Iterated
Function

Our Solution =
* Hyper-Heuristic employing Genetic ;L_
Programing '"‘;‘“
* Post-ordered parse tree m{ :m
* Evolve the iterated function *?1:;' ‘@'
* High-level primitives . A'm'm:M

wnt §




Parse Tree e

* |terated function il
]
A
* Sets of solutions e
abaiar o
nama A i 1§
3 1
¢ Function returns e (e
1} (5 0]
a set of solutions
L\ 1
accessible to the it i
next iteration o
M i
it §

Variation Primitives

\
* Bit-flip Mutation

Mutats
fate 0044048327611

—rate
|
¢ Uniform Recombination o
— count l

* Diagonal Recombination g
—-n
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Primitive Types
Variation Primitives
Selection Primitives
Set Primitives
Evaluation Primitive

Terminal Primitives

Selection Primitives

|
'

* Truncation Selection e

count; 1

|

K-Tournament Selection }

— count

—k Koum
e
— count il
' |
Random Sub-set Selection L
randSubsat
— count a4




Set-Operation Primitives

e ¢ Make Set
:";:. — name

=]

(]

1
Vi

e 1
"

* Persistent

e Sets

frrt — hame

4t * Union
[ =

Terminal Primitives

Random Individuals f

randind

—count count: 4

“Last’ Set last

Persistent Sets

—na

> -

me
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Evaluation Primitive

* Evaluates the nodes passed in

* Allows multiple operations and accurate
selections within an iteration

— Allows for deception

Meta-Genetic Program

Create Valid
Population

\

Select Check Generate
Survivors | 3| Terminatio [~ Children

\ n
Evaluate /

Children




BBSA Evaluation

B

-

Proof of Concept Testing

* Deceptive Trap Problem

ojoj1]1f{ol1]Of1]|{1]1]1]1]
0 0 0
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Termination Conditions

Evaluations

Iterations

Operations

* Convergence

Proof of Concept Testing (cont.)

* Evolved Problem Configuration
— Bit-length = 100
— Trap Size =5

* Verification Problem Configurations
— Bit-length = 100, Trap Size =5
— Bit-length = 200, Trap Size =5
— Bit-length = 105, Trap Size =7
— Bit-length = 210, Trap Size =7




Results

BBSA | EA | Hill-Climber
1 ; |
T } 7
] } i 60% Success
] Rate
i
[
7 ;
5
]
10
11
1]
13
I
13
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Results:
Bit-Length = 200
Trap Size=5
-
09 ~ 2
P,
0s
04 4L
0 10000 20000 30000 40000 50000
Evaluations
«EA -Hill —BBSAL - -BBSA2 - -BBSA3
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Results:
Bit-Length = 100
Trap Size =5

09 —
Zos
2
07
06 1
i
/
03 [
1
|
04+
0 0000 W00 3000 000 000
Evaluations
“<EA —Hill —BBSAI - ‘BBSA2 - BBSA3
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Results:
Bit-Length = 105
Trap Size=7
1
09
i -
08
07 4
&
06§+
It
o r]
05 1]
04
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Results:
Bit-Length = 210
Trap Size =7
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0 10000 20000 30000 40000 50000
Evaluations
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Insights

* Diagonal Recombination
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tinion
/ trunc
avaluate e
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Insights

* Diagonal Recombination

¢ Generalization
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Insights

Diagonal Recombination

Generalization

Over-Specialization

Robustness
* Measures of Robustness
— Applicability
— Fallibility

* Applicability
— What area of the problem configuration space do |
perform well on?

* Fallibility
— If a given BBSA doesn’t perform well, how much
worse will | perform?

20 May, 2015 John R. Woodward, Daniel R. Tauri
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Over-Specialization
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Trained Problem Alternate
Configuration Problem
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) May ohn R. Woodward, Daniel R. Tauritz
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Problem Configurations
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Multi-Sampling

* Train on multiple problem configurations
* Results in more robust BBSAs

* Provides the benefit of selecting the region of
interest on the problem configuration
landscape

Multi-Sample Testing (cont.)

* Multi-Sampling Evolution
— Levels 1-5

* Training Problem Configurations
1. Bit-length = 100, Trap Size =5
Bit-length = 200, Trap Size =5
Bit-length = 105, Trap Size =7
Bit-length = 210, Trap Size =7
Bit-length = 300, Trap Size =5

vk wnN
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Multi-Sample Testing

* Deceptive Trap Problem

ojofj1f1f{ofl1]Of1]|1[1]1]1]
0 0 0

Initial Test Problem Configurations

Bit-length = 100, Trap Size =5
Bit-length = 200, Trap Size =5
Bit-length = 105, Trap Size =7
Bit-length = 210, Trap Size =7
Bit-length = 300, Trap Size =5
Bit-length =99, Trap Size =9
Bit-length = 198, Trap Size =9
Bit-length = 150, Trap Size =5
Bit-length = 250, Trap Size =5
Bit-length = 147, Trap Size =7
. Bit-length = 252, Trap Size =7

X N o kW N Re

o
= o
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Results: Multi-Sampling Level 1

- o Lo
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Problem Configuration Landscape
Analysis

* Run evolved BBSAs on wider set of problem
configurations

* Bit-length: ~75-~500

* Trap Size: 4-20

20 May, 2015 John R. Woodward, Daniel R. Tauritz 90
. .
Results: Multi-Sampling Level 2
-
L]
Tises
" "
. o HiLengh
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Results: Multi-Sampling Level 3
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Results: Multi-Sampling Level 5

20 May, 2015 John R. Woodward, Daniel R. Tauritz

222

Results: Multi-Sampling Level 4
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Results: EA Comparison
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Discussion
* Robustness
— Fallibility

Robustness: Fallibility

Multi-Sample Level 1

Standard EA

20 May, 2015 John R. Woodward, Daniel R. Tauritz
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Robustness: Fallibility

Multi-Sample Level 5
Standard EA

AP ’|

20 May, 2015 John R. Woodward, Daniel R. Tauritz 98

Discussion

* Robustness

* Fallibility

* Applicability
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Robustness: Applicability

Multi-Sample Level 1
Multi-Sample Level 5

20 May, 2015 John R. Woodward, Daniel R. Tauritz

Drawbacks

* Increased computational time
— More runs per evaluation (increased wall time)

— More problem configurations to optimize for
(increased evaluations)

224

Robustness: Applicability

Level | Run | Train Fit. | Test Fit. | Fallibility
5 1 0.973 0.977 0.050
5 2 0.893 0.879 0.035
5 3 0.850 0.850 0.045
5 4 0.955 0.986 0.029

Summary of Multi-Sample
Improvements

* Improved Hyper-Heuristic to evolve more
robust BBSAs

* Evolved custom BBSA which outperformed
standard EA and were robust to changes in
problem configuration




Case Study 5: The Automated Design of Mutation
Operators for Evolutionary Programming [18]

1. Evolutionary programing optimizes Genotype is
functions by evolving a population of real-  (1.3,,,.4.5,...,8.7)
valued vectors (genotype). e

2. Variation has been provided (manually) by Before mutation
probability distributions (Gaussian, ‘— - T
Cauchy, Levy).

3.  We are automatically generating
probability distributions (using genetic
programming).

4. Not from scratch, but from already well
known distributions (Gaussian, Cauchy,
Levy). We are “genetically improving
probability distributions”.

5. We are evolving mutation operators for a

problem class (a probability distributions
over functions). (1.2,...,4.4,..,8.6)

6. NO CROSSOVER After mutation

20 May, 2015 John R. Woodward, Daniel R. Tauritz 105

Genotype is

Optimization & Benchmark Functions

A set of 23 benchmark functions is typically used in
the literature. Minimization Ve e S flamm) < fla)

We use them as problem classes.

e B test Bk tions e inour expedental stadies shere o e dimension of e Tanction. Sy,
ol the functicn, wwd 52 R

5 Toven
filer = oo ot ) [T
: Bl |=LiL "
Lo o
(TR
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(Fast) Evolutionary Programming

Heart of algorithm is mutation
SO LETS AUTOMATICALLY DESIGN

.r.'r’_,w‘ = x;(5) + a,l,r'_;J.E)J

EP mutates with a Gaussian i
FEP mutates with a Cauchy ). T
A generalization is mutate
with a distribution D

(generated with genetic
programming)

20 May, 2015 John R. Woodward, Daniel R. Tauritz * = * Ao b0 106

Function Class 1

Machine learning needs to generalize.
We generalize to function classes.

y =x2 (a function)

y = ax?(parameterised function)

y = ax?, a ~[1,2] (function class)

We do this for all benchmark functions.

N o v A WwDN e

The mutation operators is evolved to fit the
probability distribution of functions.
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Function Classes 2

Function Classes S b fmin
file)=adX " a? [-100,100]" N/A 0
fg(a:) =ad oy |ai |6, | @ [—10, 100 be[0,107°] 0
falz) =31 (a Z] 1zi)? [-100,100]* N/A 0
falz) = ma\l{a z; [, 1 <i<n} [-100,100]" N/A 0
fo(z) =S [a(zit —:cz)z (z:—1)7 [-30,30"  N/A 0
felz) =31, (\_az +0.5])? [~100,100]* N/A 0
frlz)=aX i iz + random[0, 1) [—1.28,1.28]" N/A 0
falz) =31 —(@isin(y/|zi]) + a) [—-500,500" N/A [-12629.5,
-12599.5)
fo(z) =37 [aa? + b(1 — cos(2ma;))] [-5.12,5.12" be [5,10] 0

fio(@) = —aexp(-02y/3 Y1, 27)  [-82,82]"  N/A 0
- BXP(% S cos2mzi) +ate

Compare Signatures (Input-Output)

Evolutionary Evolutionary Programming

Programming Designer
(R*>R) > R" [(R*™>R)] 2> ((R">R)>R")

Input is a function
mapping real-valued
vectors of lengthnto a
real-value.

Output is a (near optimal)
real-valued vector

(i.e. the solution to the
problem instance)

Input is a list of functions mapping
real-valued vectors of length nto a
real-value (i.e. sample problem
instances from the problem class).
Output is a (near optimal)

(mutation operator for) Evolutionary
Programming

(i.e. the solution method to the
problem class)

We are raising the level of generality at which we operate.

20 May, 2015 John R. Woodward, Daniel R. Tauritz 11
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Meta and Base Learning

At the base level we are

learning about a specific
function.
Probability

At the meta level we are Function Distribution

learning about the class Generator

problem class.

Meta level

We are just doing

“generate and test” at a

higher level Function to
What is being passed with | | p—
each blue arrow?

base level

Conventional EP

Genetic Programming to Generate
Probability Distributions

. SPACE OF
1. GP Function Set {+, -, *, %} PROBABILITY

. DISTRIBUTIONS
2. GP Terminal Set {N(0, random)}
GAUSSIAN CAUCHY
N(0,1) is a normal distribution. \ 1 /

For example a Cauchy distribution is
generated by N(0,1)%N(0,1).

Hence the search space of
probability distributions contains
the two existing probability NOVEL‘
distributions used in EP but also PROBABILITY
novel probability distributions. DISTRIBUTIONS

20 May, 2015 ohn R. Woodward, Daniel R. Tauritz




Means and Standard Deviations

These results are good for two reasons.
1. starting with a manually designed distributions (Gaussian).
2. evolving distributions for each function class.

Function FEP CEP GP-distribution

Class Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

fi 1.24%107% 2.60x10~* 1.45x10* 9.95%107° 6.37x10~%5.56x10~°
f 1.53x10~1 2.72x10-2 4.30%10-2 0.08x10-% 8.14x10-48.50x10*
fa 2.74%1072 2.43%1072 5.15x1072 0521072 6.14x 1073 8.78x10°
fa 1.79 1.84 1.76x10  6.10 2.16x10716.54%10!
fs 2.52%107° 4.96x107* 26610~ 4.65x107° 8.39x 107 1.43%10° 7
fs 3.86x10-2 3.12x10-2 4.40%10  1.42x102 0.20%10-31.34%10-2
fr 6.49%1072 1.04%1072 6.64x1072 1.21x102 5.25x 10~ 28,4610~
fs 118420 3.26x10% 78046 6.14x102 -12611.6  2.30x10

fo 6.24x107% 1.30x1072 1.09x10% 3.58x10 1.74x107%4.25x10*
fio 1.67 4.26x10°1 1.45 2.77x10~! 1.38 2.45x10~!
20 May, 2015 John R. Woodward, Daniel R. Tauritz 113

Performance on Other Problem Classes

Table & This table compares the fitness values (averaged over 20 runs ) of each of the 23 ADRs on cach of the 23 function classes.
Starddand e in parenthess.

b e Wen i an el Tau
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T-tests

Table 5 2-tailed t-tests comparing EP with GP-distributions, FEP and CEP on
fl'fl -

Function Number of GP-distribution vs FEP GP-distribution vs CEP

Class Generations  #-test t-test

A 1500 2.78x10~%7 4.07x102
Fa 2000 55351062 1.50310-54
fa 5000 8.03x10~% 1.14%10°%
i 5000 1.28%10°7 3.73%10-%6
15 20000 2801078 0.20%10%7
fe 1500 1.85x10~% 3.11x102
f- 3000 3.27x10~° 2.00%10-?
fa 9000 7.00:10-8 5821077
fo 5000 6.37x107%° 654310737
fio 1500 0.23x1073 1.03%10-!

20 May, 2015 John R. Woodward, Daniel R. Tauritz 114

Step by Step Guide to Automatic
Design of Algorithms [8, 12]

1. Study the literature for existing heuristics for your
chosen domain (manually designed heuristics).

2. Build an algorithmic framework or template which
expresses the known heuristics.

3. Let metaheuristics (e.g. Genetic Programming)
search for variations on the theme.

4. Train and test on problem instances drawn from
the same probability distribution (like machine
learning). Constructing an optimizer is machine
learning (this approach prevents “cheating”).

20 May, 2015 John R. Woodward, Daniel R. Tauritz 116




A Brief History (Example Applications) [5]

N AEWNR

9.
10.
11.

20 Ma

Image Recognition — Roberts Mark

Travelling Salesman Problem — Keller Robert

Boolean Satisfiability — Holger Hoos, Fukunaga, Bader-El-Den
Data Mining — Gisele L. Pappa, Alex A. Freitas

Decision Tree - Gisele L. Pappa et al

Crossover Operators — Oltean et al, Daniel Tauritz et al
Selection Heuristics — Woodward & Swan, Daniel Tauritz et al

Bin Packing 1,2,3 dimension (on and off line) Edmund Burke
et. al. & Riccardo Poli et al

Bug Location — Shin Yoo
Job Shop Scheduling — Mengjie Zhang
Black Box Search Algorithms — Daniel Tauritz et al

2015 John R. Woodward, Daniel R. Tauritz
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A Paradigm Shift?

One person One person proposes a

proposes one family of algorithms
algorithm and tests them

and tests it in the context of

in isolation. a problem class.

machine cost MOORE'S LAW
new approach

Human cost (INFLATION)
conventional approach

Previously one person proposes one algorithm
Now one person proposes a set of algorithms

Analogous to “industrial revolution” from hand
made to machine made. Automatic Design.

2015 John R. Woodward, Daniel R. Tauri 19
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Comparison of Search Spaces

If we tackle a problem instance directly, e.g. Travelling
Salesman Problem, we get a combinatorial explosion. The
search space consists of solutions, and therefore explodes as
we tackle larger problems.

If we tackle a generalization of the problem, we do not get
an explosion as the distribution of functions expressed in the
search space tends to a limiting distribution. The search
space consists of algorithms to produces solutions to a
problem instance of any size.

The algorithm to tackle TSP of size 100-cities, is the same
size as The algorithm to tackle TSP of size 10,000-cities

Woodward, Daniel R. Tauritz 118

2.

Conclusions

Heuristic are trained to fit a problem class, so
are designed in context (like evolution). Let’s
close the feedback loop! Problem instances live
in classes.

We can design algorithms on small problem
instances and scale them apply them to large
problem instances (TSP, child multiplication).

Woodward, Daniel R. Tauri




Overview of Applications

SELECTION MUTATION BIN MUTATION | CROSSOVER | BBSA
GA PACKING EP

Scalable Not yettested Not yettested Yes - why No - why Not yet tested  Yes

performance

Generation Rank, fitness No — needed Best fit Gaussian and No No

zero human proportional to seed Cauchy

comp.

Problem Shifted Parameterized Item size Parameterized Rosenbrock, DTrap, NK-

classes tested  function function function NK-Landscapes, landscapes

Rastrigin, etc.

Results Yes Yes Yes Yes Yes Yes

Human

Competitive

Algorithm Population Bit-string Bins Vector Pair of parents  Population

iterate over

Search Random Iterative Hill-  Genetic Genetic Linear Genetic  Tree-based

Method Search Climber Programming  Programming  Programming GP

Type RA2->R BAn->BAn RA3->R ()->R RAn ->R"m Population ->

Signatures Population

Reference [16] [15] [6,9,10,11] [18] [20] [21,23,25]
20 May, 2015 John R. Woodward, Daniel R. Tauritz 121

SUMMARY

1.  We can automatically design algorithms that consistently outperform
human designed algorithms (on various domains).

2. Humans should not provide variations— genetic programing can do that.

3. We are altering the heuristic to suit the set of problem instances
presented to it, in the hope that it will generalize to new problem
instances (same distribution - central assumption in machine learning).

4. The “best” heuristics depends on the set of problem instances.
(feedback)

Resulting algorithm is part man-made part machine-made (synergy)
not evolving from scratch like Genetic Programming,

7. improve existing algorithms and adapt them to the new problem
instances.

8. Humans are working at a higher level of abstraction and more creative.
Creating search spaces for GP to sample.

9. Algorithms are reusable, “solutions” aren’t. (e.g. tsp algorithm vs route)
10. Opens up new problem domains. E.g. bin-packing.

o w
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Related hyper-heuristics events

* Evolutionary Computation for the Automated
Design of Algorithms (ECADA) workshop
@GECCO 2015

* Combinatorial Black Box Optimization
Competition (CBBOC) @GECCO 2015

20 May, 2015 John R. Woodward, Daniel R. Tauritz 123

End of File ©

* Thank you for listening !!!

* We are glad to take any
— comments (+,-)
— suggestions/criticisms
Please email us any missing references!
John Woodward (http://www.cs.stir.ac.uk/~jrw/)
Daniel Tauritz (http://web.mst.edu/~tauritzd/)
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