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Historical roots: 

•  Evolution Strategies (ESs): 

–  developed by Rechenberg, Schwefel, etc. in 1960s. 

–  focus:  real-valued parameter optimization 

–  individual:  vector of real-valued parameters 

–  reproduction: Gaussian “mutation” of parameters 

– M parents, K>>M offspring 
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Historical roots: 

•  Evolutionary Programming (EP): 

– Developed by Fogel in 1960s 

– Goal: evolve intelligent behavior 

–  Individuals:  finite state machines 

– Offspring via mutation of FSMs 

– M parents, M offspring 
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Historical roots: 

•  Genetic Algorithms (GAs): 

–  developed by Holland in 1960s 

–  goal: robust, adaptive systems 

–  used an internal “genetic” encoding of points 

–  reproduction via mutation and recombination of 
the genetic code. 

– M parents, M offspring 
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Present Status: 
•  wide variety of evolutionary algorithms (EAs) 

•  wide variety of applications 
–  optimization 

–  search 

–  learning, adaptation 

•  well-developed analysis 
–  theoretical 

–  experimental 
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Interesting dilemma: 

•  A bewildering variety of algorithms and 
approaches: 
– GAs, ESs, EP, GP, Genitor, CHC, messy 

GAs, … 

•  Hard to see relationships, assess strengths 
& weaknesses, make choices, ... 
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A Personal Interest: 

•  Develop a general framework that: 

– Helps one compare and contrast approaches. 

– Encourages crossbreeding. 

– Facilitates intelligent design choices. 
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Viewpoint: 

? 

GA ES EP GP . . . 
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Starting point: 

•  Common features 

•  Basic definitions and terminology  
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Common Features: 

•  Use of Darwinian-like evolutionary 
processes to solve difficult computational 
problems. 

•  Hence, the name: 

  Evolutionary Computation  
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Key Element:   
 An Evolutionary Algorithm 

•  Based on a Darwinian notion of an 
evolutionary system. 

•  Basic elements: 
–  a population of “individuals” 
–  a notion of “fitness” 
–  a birth/death cycle biased by fitness 
–  a notion of “inheritance” 
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An EA template: 

1. Randomly generate an initial population. 
 
2. Do until some stopping criteria is met: 
 

 Select individuals to be parents (biased by fitness). 
 Produce offspring. 
 Select individuals to die (biased by fitness). 

 
 End Do. 

 
3. Return a result. 
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Instantiate by specifying: 

•  Population dynamics: 
– Population size 
– Parent selection 
– Reproduction and inheritance 
– Survival competition 

•  Representation: 
–  Internal to external mapping 

•  Fitness 
14 

EA Population Dynamics: 

M parents K 
offspring 

Non-overlapping 

Overlapping 
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Population sizing: 

•  Parent population size M: 
–  degree of parallelism 

•  Offspring population size K: 
–  amount of activity w/o feedback 
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Population sizing: 

•  Examples: 
– M=1, K small:   early ESs 
– M small, K large:   typical ESs 
– M moderate, K=M: traditional GAs and EP 
– M large, K small:  steady state GAs 
– M = K large:   traditional GP 
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Selection pressure: 
•  Overlapping generations: 

– more pressure than non-overlapping 

•  Selection strategies (decreasing pressure): 
–  truncation 
–  tournament and ranking 
–  fitness proportional 
–  uniform 

•  Stochastic vs. deterministic 
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Reproduction: 

•  Preserve useful features 
•  Introduce variety and novelty 

•  Strategies: 
–  single parent:  cloning + mutation 
– multi-parent: recombination + mutation 
–  ... 

•  Price’s theorem: 
–  fitness covariance 

19 

Exploitation/Exploration Balance: 

•  Selection pressure: exploitation 
–  reduce scope of search 

•  Reproduction: exploration 
–  expand scope of search 

•  Key issue: appropriate balance 
–  e.g., strong selection + high mutation rates 
–  e.g, weak selection + low mutation rates 
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Representation: 

•  How to represent the space to be searched? 

– Genotypic representations: 

•  universal encodings 

•  portability 

•  minimal domain knowledge 
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Representation: 

•  How to represent the space to be searched? 

– Phenotypic representations: 

•  problem-specific encodings 

•  leverage domain knowledge 

•  lack of portability 
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Fitness landscapes: 

•  Continuous/discrete 

•  Number of local/global peaks 

•  Ruggedness 

•  Constraints 

•  Static/dynamic 
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The Art of EC: 

•  Choosing problems that make sense. 

•  Choosing an appropriate EA: 
–  reuse an existing one 

–  hand-craft a new one 
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EC: Using EAs to Solve Problems 

•  What kinds of problems? 

•  What kinds of EAs? 
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Intuitive view: 
•  parallel, adaptive search procedure. 

•  useful global search heuristic. 

•  a paradigm that can be instantiated in a variety of 
ways. 

•  can be very general or problem specific. 

•  strong sense of fitness “optimization”. 
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Evolutionary Optimization: 

•  fitness:   function to be optimized 

•  individuals:  points in the space 

•  reproduction:  generating new sample  
   points from existing ones. 
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Useful Optimization Properties: 

•  applicable to continuous, discrete, mixed 
optimization problems. 

•  no a priori assumptions about convexity, 
continuity, differentiability, etc. 

•  relatively insensitive to noise 

•  easy to parallelize 
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Real-valued Param. Optimization: 

•  high dimensional problems 

•  highly multi-modal problems 

•  problems with non-linear constraints 
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Discrete Optimization: 

•  TSP problems 

•  Boolean satisfiability problems 

•  Frequency assignment problems 

•  Job shop scheduling problems 
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Multi-objective Optimization: 

•  Pareto optimality problems 

•  a variety of industrial problems  
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Properties of standard EAs: 

•  GAs: 
–  universality encourages new applications 

– well-balanced for global search 

–  requires mapping to internal representation 
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Properties of standard EAs: 

•  ESs: 
– well-suited for real-valued optimization. 

–  built-in self-adaptation. 

–  requires significant redesign for other 
application areas. 
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Properties of standard EAs: 

•  EP: 
– well-suited for phenotypic representations. 

–  encourages domain-specific representation and 
operators. 

–  requires significant design for each application 
area. 
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Other EAs: 
•  GP: (Koza)  

–  standard GA population dynamics 
–  individuals:  parse trees of Lisp code 
–  large population sizes 
–  specialized crossover 
– minimal mutation 
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Other EAs: 

•  CMA-ESs (Hansen et al) 

– Covariance Matrix Adaptation 
– ES variation to deal with parameter interactions 
– Maintains/updates matrix used to help generate 

useful offspring. 
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Other EAs: 

•  (m,k)EAs: (Wegener et al) 

– Combines ES dynamics with GA representation 
and operators: 

•  Binary representations 
•  Bit-flip mutation 

– Applied to discrete optimization problems 
– Simplicity yields strong convergence proofs 
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Other EAs: 

•  Differential Evolution: (Storn & Price) 

–  Specifically for continuous function optimization 
•  K=1 offspring 
•  overlapping generations 

–  parent selection:  deterministic 
–  1 offspring via crossover with a 3-parent combo 
–  survival selection: parent vs. offspring 
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Other EAs: 

•  Messy GAs (Goldberg) 
•  Genitor (Whitley) 
•  Genocop (Michalewicz) 
•  CHC (Eschelman et al) 
•  Geometric Semantic GP: (Moraglio et al) 
•  Gene Expression Programming (Ferreira) 
•  Neuroevolution (Stanley) 
•  … 
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Designing an EA: 

•  Choose an appropriate representation 
–  effective building blocks 
–  semantically meaningful subassemblies 

•  Choose effective reproductive operators 
–  fitness covariance 
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Designing an EA: 

•  Choose appropriate selection pressure 
–  local vs. global search 

•  Choosing a useful fitness function 
–  exploitable information 
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Industrial Example: Evolving 
NLP Tagging Rules 

•  Existing tagging engine 
•  Existing rule syntax 
•  Existing rule semantics 
•  Goal:  improve 

–  development time for new domains 
–  tagging accuracy 
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Evolving NLP Tagging Rules 

•  Representation: (first thoughts) 
–  variable length list of GP-like trees 

. . . 

•  Difficulty: effective operators 
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Evolving NLP Tagging Rules 

•  Representation: (second thoughts) 
–  variable length list of pointers to rules 

. . . 

•  Operators: 
– mutation:    permute, delete rules 
–  recombination:   exchange rule subsets 
– Lamarckian:   add a new rule 
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Evolving NLP Tagging Rules 

•  Population dynamics: 
– multi-modal:  M > small 

•  typical: 30-50 

–  high operator variance:  K/M > 1 

•  typical:  3-5 : 1 

–  parent selection: uniform 
–  survival selection:  binary tournament 
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Evolving NLP Tagging Rules 

•  So, what is this thing? 
– A GA, ES, EP, … 

•  My answer: 
–  a thoughtfully designed EA 
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Analysis tools: 

•  Schema analysis 

•  Convergence analysis 

•  Markov models 

•  Statistical Mechanics 

•  Visualization 
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New developments and directions: 

•  Exploiting parallelism: 

–  coarsely grained network models 

•  isolated islands with occasional migrations 
 

–  finely grained diffusion models 

•  continuous interaction in local neighborhoods 
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New developments and directions: 

•  Co-evolutionary models: 

–  competitive co-evolution 

•  improve performance via “arms race” 
 

–  cooperative co-evolution 

•  evolve subcomponents in parallel 
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New developments and directions: 

•  Exploiting Morphogenesis: 

–  sophisticated genotype --> phenotype mappings 
 
–  evolve plans for building complex objects 

rather than the objects themselves. 
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New developments and directions: 

•  Self-adaptive EAs: 

–  dynamically adapt to problem characteristics: 
•  varying population size 
•  varying selection pressure 
•  varying representation 
•  varying reproductive operators 
 

–  goal:  robust “black box” optimizer 
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New developments and directions: 

•  Hybrid Systems: 

–  combine EAs with other techniques: 

•  EAs and gradient methods 

•  EAs and TABU search 

•  EAs and ANNs 

•  EAs and symbolic machine learning 
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New developments and directions: 

•  Time-varying environments: 

–  fitness landscape changes during evolution 

–  goal:   adaptation, tracking 

–  standard optimization-oriented EAs not well-
suited for this. 
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New developments and directions: 

•  Agent-oriented problems: 

–  individuals more autonomous, active 

–  fitness a function of other agents and 
environment-altering actions 

–  standard optimization-oriented EAs not well-
suited for this. 
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EA Generalizations: 

•  Meta-heuristics: 

– Heuristic for designing heuristics 

•  E.g., hill climbing, greedy, … 

– Adopt no-free lunch view 

–  Instantiate EA template in a problem-specific 
manner 

55 

EA Generalizations: 

•  Nature-inspired Computation: 

– Early example:  simulated annealing 

– Today:  evolutionary algorithms 

– Others:  particle swarm, ant colony, … 
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Conclusions: 

•  Powerful tool for your toolbox. 

•  Complements other techniques. 

•  Best viewed as a paradigm to be instantiated, 
guided by theory and practice. 

•  Success a function of particular instantiation. 
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More information: 
•  Journals: 

–  Evolutionary Computation (MIT Press) 
–  Trans. on Evolutionary Computation (IEEE) 
–  Genetic Programming & Evolvable Hardware 

•  Conferences: 
–  GECCO, CEC, PPSN, FOGA, … 

•  Internet: 
–  www.cs.gmu.edu/~eclab 

•  My book: 
–  Evolutionary Computation: A Unified Approach 

•  MIT Press, 2006 
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