

Historical roots:

- Evolution Strategies (ESs):
 - developed by Rechenberg, Schwefel, etc. in 1960s.
 - focus: real-valued parameter optimization
 - individual: vector of real-valued parameters
 - reproduction: Gaussian "mutation" of parameters

2

4

– M parents, K>>M offspring

Historical roots:

- Evolutionary Programming (EP):
 - Developed by Fogel in 1960s
 - Goal: evolve intelligent behavior
 - Individuals: finite state machines
 - Offspring via mutation of FSMs
 - M parents, M offspring

Historical roots:

- Genetic Algorithms (GAs):
 - developed by Holland in 1960s
 - goal: robust, adaptive systems
 - used an internal "genetic" encoding of points
 - reproduction via mutation and recombination of the genetic code.
 - M parents, M offspring

21

Present Status:

- wide variety of evolutionary algorithms (EAs)
- wide variety of applications
 - optimization
 - search
 - learning, adaptation
- well-developed analysis
 - theoretical
 - experimental

5

7

Interesting dilemma:

- A bewildering variety of algorithms and approaches:
 - GAs, ESs, EP, GP, Genitor, CHC, messy GAs, ...
- Hard to see relationships, assess strengths & weaknesses, make choices, ...

6

A Personal Interest:

- Develop a general framework that:
 - Helps one compare and contrast approaches.
 - Encourages crossbreeding.
 - Facilitates intelligent design choices.

- Common features
- Basic definitions and terminology

Common Features:

- Use of Darwinian-like <u>evolutionary</u> processes to solve difficult <u>computational</u> problems.
- Hence, the name:

Evolutionary Computation

10

Key Element: An Evolutionary Algorithm

- Based on a Darwinian notion of an evolutionary system.
- Basic elements:
 - a population of "individuals"
 - a notion of "fitness"
 - a birth/death cycle biased by fitness
 - a notion of "inheritance"

11

9

<section-header> An EA template: 1. Randomly generate an initial population. 2. Do until some stopping criteria is met: Select individuals to be parents (biased by fitness). Produce offspring. Select individuals to die (biased by fitness). End Do. 3. Return a result.

- Overlapping generations: – more pressure than non-overlapping
- Selection strategies (decreasing pressure):
 - truncation
 - tournament and ranking
 - fitness proportional
 - uniform
- Stochastic vs. deterministic

Reproduction:

- Preserve useful features
- Introduce variety and novelty
- Strategies:
 - single parent: cloning + mutation
 - multi-parent: recombination + mutation
 - ...
- Price's theorem:
 - fitness covariance

Exploitation/Exploration Balance:

- Selection pressure: exploitation - reduce scope of search
- Reproduction: exploration
 - expand scope of search
- Key issue: appropriate balance
 - e.g., strong selection + high mutation rates
 - e.g, weak selection + low mutation rates

19

Representation:

- How to represent the space to be searched?
 - Genotypic representations:
 - universal encodings
 - portability
 - minimal domain knowledge

20

Fitness landscapes:

- Continuous/discrete
- Number of local/global peaks
- Ruggedness
- Constraints
- Static/dynamic

The Art of EC:

- Choosing problems that make sense.
- Choosing an appropriate EA:
 - reuse an existing one
 - hand-craft a new one

22

26

Intuitive view:

- parallel, adaptive search procedure.
- useful global search heuristic.
- a paradigm that can be instantiated in a variety of ways.
- can be very general or problem specific.
- strong sense of fitness "optimization".

25

Evolutionary Optimization:

- fitness: function to be optimized
- individuals: points in the space
- reproduction: generating new sample points from existing ones.

26

28

Useful Optimization Properties:

- applicable to continuous, discrete, mixed optimization problems.
- no *a priori* assumptions about convexity, continuity, differentiability, etc.
- relatively insensitive to noise
- easy to parallelize

27

Real-valued Param. Optimization:

- high dimensional problems
- highly multi-modal problems
- problems with non-linear constraints

- TSP problems
- Boolean satisfiability problems
- Frequency assignment problems
- Job shop scheduling problems

Multi-objective Optimization: Pareto optimality problems a variety of industrial problems

30

32

Properties of standard EAs:

- GAs:
 - universality encourages new applications
 - well-balanced for global search
 - requires mapping to internal representation

Properties of standard EAs:

- ESs:
 - well-suited for real-valued optimization.
 - built-in self-adaptation.
 - requires significant redesign for other application areas.

Properties of standard EAs:

• **EP**:

- well-suited for phenotypic representations.
- encourages domain-specific representation and operators.
- requires significant design for each application area.

33

• GP: (Koza)

Other EAs:

- standard GA population dynamics
- individuals: parse trees of Lisp code
- large population sizes
- specialized crossover
- minimal mutation

34

36

Other EAs:

- CMA-ESs (Hansen et al)
 - Covariance Matrix Adaptation
 - ES variation to deal with parameter interactions
 - Maintains/updates matrix used to help generate useful offspring.

Other EAs:

- (m,k)EAs: (Wegener et al)
 - Combines ES dynamics with GA representation and operators:
 - Binary representations
 - Bit-flip mutation
 - Applied to discrete optimization problems
 - Simplicity yields strong convergence proofs

Other EAs:

- Differential Evolution: (Storn & Price)
 - Specifically for continuous function optimization
 - K=1 offspring
 - overlapping generations
 - parent selection: deterministic
 - 1 offspring via crossover with a 3-parent combo
 - survival selection: parent vs. offspring

37

Other EAs:

- Messy GAs (Goldberg)
- Genitor (Whitley)
- Genocop (Michalewicz)
- CHC (Eschelman et al)
- Geometric Semantic GP: (Moraglio et al)
- Gene Expression Programming (Ferreira)
- Neuroevolution (Stanley)
- ...

38

Designing an EA: Choose an appropriate representation effective building blocks semantically meaningful subassemblies Choose effective reproductive operators fitness covariance

Industrial Example: Evolving NLP Tagging Rules

- Existing tagging engine
- Existing rule syntax
- Existing rule semantics
- Goal: improve
 - development time for new domains
 - tagging accuracy

New developments and directions:

- Exploiting parallelism:
 - coarsely grained network models
 - isolated islands with occasional migrations
 - finely grained diffusion models
 - continuous interaction in local neighborhoods

New developments and directions:

• Self-adaptive EAs:

- dynamically adapt to problem characteristics:
 - varying population size
 - varying selection pressure
 - varying representation
 - · varying reproductive operators

- goal: robust "black box" optimizer

50

52

New developments and directions: Hybrid Systems: combine EAs with other techniques: EAs and gradient methods EAs and TABU search EAs and ANNs EAs and symbolic machine learning

New developments and directions:

- Time-varying environments:
 - fitness landscape changes during evolution
 - goal: adaptation, tracking
 - standard optimization-oriented EAs not wellsuited for this.

EA Generalizations:

• Meta-heuristics:

- Heuristic for designing heuristics
 - E.g., hill climbing, greedy, ...
- Adopt no-free lunch view
- Instantiate EA template in a problem-specific manner

54

56

EA Generalizations:

- Nature-inspired Computation:
 - Early example: simulated annealing
 - Today: evolutionary algorithms
 - Others: particle swarm, ant colony, ...

Conclusions:

- Powerful tool for your toolbox.
- Complements other techniques.
- Best viewed as a paradigm to be instantiated, guided by theory and practice.
- Success a function of particular instantiation.

