
Tutorial on Evolutionary Robotics

N. Bredeche1,2, S. Doncieux1,2, J.-B. Mouret1�5

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France
2 CNRS, UMR 7222, ISIR, F-75005, Paris, France
3 Inria, Villers-lès-Nancy, F-54600, France
4 CNRS, Loria, UMR no 7503, Vandœuvre-lès-Nancy, F-54500, France
5 Université de Lorraine, Loria, UMR no 7503, Vandœuvre-lès-Nancy, F-54500, France

bredeche@isir.upmc.fr, doncieux@isir.upmc.fr, jean-baptiste.mouret@inria.fr

http://wwww.sigevo.org/gecco-2015/
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the owner/author(s). Copyright is held by the author/owner(s).
GECCO’15 Companion, July 11–15, 2015, Madrid, Spain.
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2756583

Instructors
Nicolas Bredeche

Professor at Pierre & Marie Curie University (UPMC),
Paris, France
Member of the AMAC team of the Institute of Intelligent
Systems and Robotics (ISIR)
Previously assistant professor at Univ. Paris XI, INRIA
TAO team, member of the Symbion EU project

Stéphane Doncieux
Professor at Pierre & Marie Curie University (UPMC),
Paris, France
Leader of the AMAC team of the Institute of Intelligent
Systems and Robotics (ISIR)
Coordinator of the EU project ’DREAM’

Jean-Baptiste Mouret
Research Scientist at Inria - Nancy Grand-Est, France
Previously assistant professor at UPMC
PI of the ERC project ’ResiBots’

Definition

“ ER aims to apply evolutionary computation
techniques to evolve the overall design or con-
trollers, or both, for real and simulated au-
tonomous robots”

Vargas et al. 2014

Principle

Evaluation
Genotype

Phenotype

Fitness

Selection

Variation

Random generation Robot
controller
and/or
morphology

Motivation for roboticists
Building robots with embodied intelligence [Pfeifer 2007]

Embodied Intelligence

Pfeifer, R. and Bongard, J. (2007)
How the body shapes the way we think: a new view of intelligence,
MIT Press, Cambridge, MA.
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Motivation for roboticists
Building robots with embodied intelligence [Pfeifer 2007]

Embodied Intelligence

Pfeifer, R. and Bongard, J. (2007)
How the body shapes the way we think: a new view of intelligence,
MIT Press, Cambridge, MA.

Motivation for biologists

“ So far, we have been able to study only one
evolving system and we cannot wait for interstellar
flight to provide us with a second. If we want to
discover generalizations about evolving systems,
we have to look at artificial ones.”

John Maynard Smith, 1992

! computational modeling approach based on agent based
simulations including variation and selection mechanisms.

Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven or environment-driven

Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line
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Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven or environment-driven

Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line

Focus of the tutorial
Evolutionary design of robot controller.

Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven or environment-driven

Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line

Outline of the tutorial
Part I. Selective pressures, S. Doncieux
What you should know about evaluation and selection
to make an ER experiment successful.

Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven or environment-driven

Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line

Outline of the tutorial
Part II. Evolution for physical robots: the reality gap, J.-B. Mouret
How to make it work on real robots?

Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven or environment-driven

Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line

Outline of the tutorial
Part III. Embodied evolution and collective robotics systems, N.
Bredeche
Evolution without a fitness for the design of distributed robotics
systems and for modeling evolution of group dynamics.
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Selective pressures in Evolutionary Robotics

ISIR, UPMC-CNRS
stephane.doncieux@isir.upmc.fr

GECCO 2015 Tutorial

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 1 / 25

Evaluation
Genotype

Phenotype

Fitness

Selection

Variation

Random generation

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 2 / 25

Outline of this part of the tutorial

Introductory example
How to make a robot avoid obstacles ? Find the way out in a maze ?

Definitions
Evaluation, different flavors of selective pressures

How to modify selective pressures ?
Overview of the main approaches to modify the selective pressures

Challenge : premature convergence
Process helpers to avoid premature convergence.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 3 / 25

Introductory example

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 4 / 25
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Example 1 : obstacle avoidance

Setup
NSGA-II, pop size=100, nb
gen=1000
Controller : feed-forward
neural network
Fitness : 1

nbcoll+1

Source code on http://www.isir.fr/evorob_db
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Example 1 : obstacle avoidance

Setup
NSGA-II, pop size=100, nb
gen=1000
Controller : feed-forward
neural network
Fitness : 1

nbcoll+1 ⇤ avgspeed

Source code on http://www.isir.fr/evorob_db

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 5 / 25

Example 2 : maze navigation

Setup
NSGA-II, pop size=400, nb
gen=8000
Controller : neural network
with an evolved topology
Fitness : 1 if reached exit, 0
otherwise

Source code on http://www.isir.fr/evorob_db

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 6 / 25

Example 2 : maze navigation

Setup
NSGA-II, pop size=400, nb
gen=8000
Controller : neural network
with an evolved topology
Fitness : 1 if reached exit, 0
otherwise + another
objective...

Source code on http://www.isir.fr/evorob_db

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 6 / 25
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Definitions

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 7 / 25

Selective pressures

The two facets of fitness functions
1 defines the goal
2 guides the search

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 8 / 25

Why modifying selective pressures ?

Goal refiner Process helper

Goal refiners

A goal refiner aims at changing the
optimum(s) of the fitness function by adding
new requirements.

Process helpers

A process helper intends to increase the
efficiency of the search process without
changing the optimum(s) of the fitness
function.

Task specific

Task specific goal refiners/process helpers incorporate knowledge on how to solve the task.

Task agnostic

Task agnostic goal refiners/process helpers do not exploit knowledge about how to solve the task.

Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.
Evol. Intel. DOI : 10.1007/s12065-014-0110-x, Springer Berlin Heidelberg, publisher.
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Evaluation
Robot interaction with the environment

Genotype g

Fitness

Environment
e(t)

Phenotype
Robot

s(t)

Initial conditions s0

Behavior

u(t)

s(t + 1) = G(s(t), u(t), e(t))

where :
G(.) models the robot and its environment
s(.) is the state of the robot
u(.) are the control variables (motor
commands)
e(.) external factors

Fitness objectives

fi (g) = Fi (s
(i)
0 , s(i)(1), ..., s(i)(T (i)), x (i))

where :
x (i) represents other factors that the fitness objective may depend on

s(i)0 is the initial state of the robot

T (i) is the evaluation length

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 10 / 25

Selective pressures

Each evaluation depends on...
the genotype g
the fitness function f (.)

... but also on
G(.) : robot and environment features and interaction

s(i)
0 : the initial state of the evaluation

T (i) : the evaluation length
e(i) : the external conditions
s(i)

0 , s(i)(1), ..., s(i)(T (i)) : the behavior of the robot

Definition
Any aspect that influences the survival or reproduction of an individual

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 11 / 25

How to modify
selective pressures ?

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 12 / 25
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How ? Typical task-specific approaches
Fitness shaping

“ [Shaping is] a mean to translate suggestions
coming from an external trainer into an effective
control strategy ”

[Dorigo and Colombetti, 1994]

One EA
One fitness that includes multiple terms [Nolfi 1997]

Staged evolution
Multiple different EA
Examples :

I fitness change : incremental evolution [Harvey et al. 1994, Parker 2001, ...]
I evolution of components : modular decomposition [Urzelai et al. 1998],

hierarchical evolution [Duarte et al. 2012]

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 13 / 25

How ? Multi-objective EA

Pareto domination

a
Solutions
dominating a

Solutions
neither dominated 
nor dominating a

Solutions
dominated by a

Solutions neither 
dominated nor 
dominating a

Search space
Dominated
solutions

Non-dominated
solutions

Pareto front

Multi-objective optimization as a convenient tool to modify selective pressures

Find gX(.) maximizing

f(gX(.)) =

8
>>><

>>>:

f1(X)
f2(X)

...
fn(X)

9
>>>=

>>>;

At the end of the run :

fi (X)=Goal refiner

! taken into account

fi (X)=Process helper

! ignored

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 14 / 25

How ? Multi-objective EA

Goal refiners
Task-specific

Evolution of internal representations
[Ollion et al. 2012]

Task-agnostic
Reality gap [Koos et al. 2013, Koos
et al. 2013b]
Generalization [Pinville et al. 2011,
Lehman et al. 2013]
Modularity [Clunes et al. 2013a]
Diversity of solutions [Lehman and
Stanley 2011]

Process helpers
Main challenge :

Premature convergence

Task-specific
Incremental MOEA [Barlow et al.
2004]
Staged MOEA [Mouret et al. 2006]
...

Task-agnostic
Behavioral diversity [Mouret and
Doncieux, 2009, 2012, ...]
Novelty search as an helper
objective [Mouret 2011, Lehman et
al. 2013, ...]

Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.
Evol. Intel. DOI : 10.1007/s12065-014-0110-x, Springer Berlin Heidelberg, publisher.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 15 / 25

The challenge of
premature

convergence
task-agnostic process helpers

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 16 / 25
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The challenge of premature convergence

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 17 / 25

Exploration vs exploitation

Intensification vs diversification in evolutionary algorithms
Exploration : stochastic search operators & population ;
exploitation : fitness function.

Hypothesis
Premature convergence may be due to an exploration problem.

Intensification vs diversification in EA
How to keep a diverse population ?
! by penalizing similar individuals on the basis of their genotype or phenotype :

fitness sharing [Goldberg and Richardson 1987]
objective on diversity in a multi-objective scheme [Abbas and Deb 2003, de Jong et al.
2001]
niches [Sareni and Krähenbühl 1998]

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 18 / 25

Exploration vs exploitation

Behavior

Motor 1

Motor 2

Bias

Sensor 1

Sensor 2
...

Sensor n

1

1

Neural network 1

Motor 1

Motor 2

Bias

Sensor 1

Sensor 2
...

Sensor n

1

1

Neural network 2

Motor 1

Motor 2

Bias

Sensor 1

Sensor 2
...

Sensor n

1

1

Neural network n

1

1
11

1

-1

...

n neural networks ! 1 behavior
Why not promoting diversity in the space of behaviors ?

[Lehman and Stanley 2008] [Trujillo et al. 2008] [Mouret and Doncieux 2009] [Gomez 2009]
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Exploration vs exploitation
How to describe and compare behaviors ?

adhoc descriptions :
I final position [Lehman and Stanley 2008]
I environment state [Mouret and Doncieux 2009]

generic descriptions :
I robot trajectory [Trujillo et al 2008]
I hamming distance [Doncieux and Mouret 2010]
I entropy [Delarboulas et al. 2011]

Behavioral diversity

Find gX(.) maximizing

(
f (gX(.))
1
N
Pj=N

j=0 d(gX(.), gY(.))

with d(X,Y) behavioral distance between X and Y
Starting Positions

Ball

Basket

Switch

Door

Mouret, J.-B. and Doncieux,S. (2012)
Encouraging Behavioral Diversity in Evolutionary Robotics : an Empirical Study
Evolutionary Computation. Vol 20 No 1 Pages 91-133.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 20 / 25
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Exploration vs exploitation

Back to the roots
The fitness function :

1 defines the goal
2 guides the search

What if a goal-oriented fitness
function misguides the search ?

Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.
Evol. Intel. DOI : 10.1007/s12065-014-0110-x, Springer Berlin Heidelberg, publisher.
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Exploration vs exploitation

Novelty search
1 definition of the goal : goal-oriented fitness
2 guide for the search : novelty search

Novelty search :
1 Archive of explored behaviors
2 Fitness = Distance to the k nearest neighbors (pop+archive) :

⇢(x) =
1
k

kX

i=0

dist(x , µi)

3 progressive complexification

Lehman, J., & Stanley, K. O. (2011).
Abandoning objectives : evolution through the search for novelty alone.
Evolutionary Computation, 19(2), 189–223. doi :10.1162/EVCO_a_00025.
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Exploration vs exploitation
Novelty search

1 definition of the goal : goal-oriented fitness
2 guide for the search : novelty search

Lehman, J., & Stanley, K. O. (2011).
Abandoning objectives : evolution through the search for novelty alone.
Evolutionary Computation, 19(2), 189–223. doi :10.1162/EVCO_a_00025.
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Exploration vs exploitation
Solution of the maze navigation task
After 8000 generations :

Success/Failure only : 0/20 runs succeed

+ diversity : 1/20 runs succeed

+ novelty : 19/20 runs succeed

Novelty search : to go further
novelty as a helper objective [Mouret 2011]

novelty and local competition [Lehman and Stanley 2011]

novelty, optimization and interactive evolution [Wooley and Stanley 2014]

...

Mouret, J.-B. (2011).
Novelty-based Multiobjectivization.
In New Horizons in Evolutionary Robotics : Extended contributions of the 2009 EvoDeRob Workshop (pp. 139–154).
Springer.

Lehman, J., & Stanley, K. O. (2011).
Evolving a Diversity of Creatures through Novelty Search and Local Competition.
In Proc. of the International Conference on Genetic and Evolutionary Computation (GECCO’11) (pp. 211–218).

Woolley, B. G., & Stanley, K. O. (2014).
A Novel Human-Computer Collaboration : Combining Novelty Search with Interactive Evolution.
In Proceedings of GECCO’2014.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 23 / 25
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Summary

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 24 / 25

How to change sel. pressures ?
Evaluation :

evaluation conditions
staged evolution
fitness shaping
interactive evolution
multi-objectivization

Selection algorithm :
coevolution
adhoc EA

Evaluation
Genotype

Phenotype

Behavior

Initial conditions

Environment

Fitness

Random generation

Selection

Variation

Different flavors of selective pressures
goal refiner
process helper

! each can be either task specific or task agnostic

Multi-objective optimization as a framework to study and define selective pressures

Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.
Evol. Intel. DOI : 10.1007/s12065-014-0110-x, Springer Berlin Heidelberg, publisher.
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Inria Nancy-Grand Est
Jean-Baptiste Mouret

Evolution for 
physical robots

Image: A. Cully / UPMC

No simulator

2

Floreano, Dario, and Francesco Mondada. "Evolution of homing navigation in a real mobile robot." Systems, Man, and 
Cybernetics, Part B: Cybernetics, IEEE Transactions on 26.3 (1996): 396-407.!

Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing machines . 
MIT press.
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locomotion
No simulator

3

Hornby, G. S., Takamura, S., Yamamoto, 
T., & Fujita, M. (2005). Autonomous 
evolution of dynamic gaits with two 
quadruped robots. Robotics, IEEE 
Transactions on, 21(3), 402-410.

Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., & 
Lipson, H. (2011). Evolving robot gaits in hardware: 
the HyperNEAT generative encoding vs. parameter 
optimization. In Proc. of ECAL, pp. 890-897.

No simulator

4

Starting! Time (1 run)! Robot DOFs Param.

Chernova and Veloso (2004) random 5 h quadruped 12 54

Zykov et al. (2004) random 2 h hexapod 12 72

Berenson et al. (2005) random 2 h quadruped 8 36

Hornby et al. (2005) non-falling 25 h quadruped 19 21

Mahdavi and Bentley (2006) random 10 h snake 12 1152

Barfoot et al. (2006) random 10 h hexapod 12 135

Yosinski et al. (2011) random 2 h quadruped 9 5

Pros!
- (almost) no reality gap!
- can exploit unknown physics!
!

Cons!
- slow (too slow?)!
- will not be faster next year!
- never 100% real!

!

evolving walking !
controllers

useful tools?

Using simulators

5

Evolution is a slow process 
millions of years!!
!
… but computers are faster every year!
!
Can we ‘accelerate time’?!
!
We now have many "good" simulators:!

- ODE (library): www.ode.org!
- Bullets (library): bulletphysics.org!
- Gazebo (GUI): gazebosim.org!
- V-Rep (GUI): www.coppeliarobotics.com!
- … 

Tools for dynamics simulation of robots: a survey based on user feedback.  S Ivaldi, V Padois, F Nori. !
Proc. of Humanoids 2014.

Automatic design

6

!
1. Evolve in simulation!
!
2. Transfer the result to the reality!
➠ build the robot!
➠ upload the controller to the robot!

!
3. Enjoy your optimal design / controller

the ideal process

➠➠

➠
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Koos, Mouret & Doncieux. !
IEEE Transactions on Evolutionary Computation. 
2012 

… or what always happens in evolutionary robotics
The reality gap

7

Controller: 2 parameters

Jakobi, Nick. "Running across the reality gap: Octopod locomotion evolved in a minimal simulation." 
Evolutionary Robotics. Springer Berlin Heidelberg, 1998.

Reality vs simulation

8

Mouret, J. B., Koos, S., & Doncieux, S. (2013). Crossing the reality gap: a short 
introduction to the transferability approach. arXiv preprint arXiv:1307.1870.

But they can agree 
(sometimes)

9

The reality gap

10

- Any simulation has a validity domain!
- Human experts know this validity domain!
- … but evolution does not have this common sense!

Results found in simulation are not likely to work similarly 
in reality 

➠ One of the main challenge of ER 

What can we do? 
no simulator!
better simulator!
avoid non-transferable solutions!
robust controllers
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Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature, 
406, 974–978.

evolve in simulation, then do a few generations with the robot
Finish evolution in reality

11
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Pro: can help fine-tuning the 
solution obtained in 
simulation!
!
Con: “local search” in the 
vicinity of the solutions 
found in simulation!
➠ cannot find something 

completely different!
!

General idea: minimize the difference between simulation 
and reality (supervised learning)!
➠  Miglino et al.: measure the exact response of the infrared 

sensors (Khepera)!
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Miglino et al. "Evolving mobile robots in simulated and real environments." Artificial life 2.4 (1995): 417-434.!

Moeckel et al. "Gait optimization for roombots modular robots—Matching simulation and reality." Intelligent 
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on (IROS), 2013.

Fig. 1: Hybrid optimization is a cyclic process combining (1) offline
optimization,(2) exploration of control parameters found in simulation on
hardware, and (3) meta-optimization to improve matching of software
models and hardware.

other words, hybrid optimization improves both control and
model parameters. In the first step (1) during an optimization
cycle, control parameters leading to optimized robot gaits
are extracted in simulation using existing simulation models.
In a second step (2), a selection of optimized gaits found
during the first step is verified on robotic hardware by testing
optimized control parameters on the actual robot while the
robot’s behavior is recorded. The third step of the hybrid
optimization cycle (3) is the meta-optimization, where the
behavior of the simulation model and robotic hardware for
each selected gait is compared and model parameters are
updated to achieve better behavioral matching. Afterwards,
a new optimization cycle using the updated models can be
started in simulation.

Modular robots that allow the rapid assembly of a variety
of morphologies with many degrees of freedom present a
valuable and challenging platform for the exploration of
locomotion control and learning strategies. This is why we
chose to test our hybrid optimization methods on our modular
robot system Roombots.

In this paper we present only one hybrid optimization
cycle since our study concentrates on reducing the gap be-
tween software simulation and reality. So instead of running
a second offline optimization, we verified the parameters
found during the first meta-optimization by simulating again
the gaits that have been found during the initial offline
optimization and selected for verification on robotic hard-
ware but this time using the updated simulation models.
The behavior of the robot model simulated with the meta-
optimized model parameters and the actual robotic hardware
already matched very well after the first optimization cycle
such that differences in the behavior are difficult to identify
by pure human observation. Several fast and robust robot
gaits could be identified.

In Section II we present the Roombots hardware. The
sections III and IV describe the central pattern generator
controller and optimization method, respectively. Section
V gives details on the offline optimization process while
Section VI presents our setup for robotic experiments and
Section VII explains the meta-optimization process. Section
VIII discusses experimental results and Section IX concludes
and describes future work.

Fig. 2: (a) Picture of the Roombots (RB) meta-module hardware. (b)
Snapshot of the simulation model implemented in Webots. (c) Transparent
CAD drawing. A RB meta-module is composed of two individual RB
modules that form a rigid connection. Thus a RB meta-module contains
4 cubes and six degrees of freedom (DOF). Four intra-cube motors actuate
the four DOFs within the cubes. Two inter-cube motors actuate the inner
DOFs of the two individual RB modules forming the meta-module. (d) Each
DOF is controlled by an oscillator. The six oscillators are bidirectionally
phase coupled to form a central pattern generator.

II. ROOMBOTS HARDWARE
We conduct our simulation and hardware experiments

using a Roombots (RB) meta-module - a structure composed
of two individual Roombots modules. Fig. 2 shows a picture
of a RB meta-module (Fig. 2a), of its simulation model
(Fig. 2b) as well as a transparent CAD (Computer Aided
Design) drawing depicting the meta-module’s six degrees of
freedom (DOF) (Fig. 2c). Specifications for the meta-module
are given in Table I. Further details about the Roombots
hardware can be found in [17] and [18].

A RB meta-module is composed of four cubes. Due to
space constraints, different motors have been selected for
the DOFs within a cube (intra-cube DOFs, see Fig. 2c) and
DOFs between cubes (inter-cube DOFs, see Fig. 2c) resulting
in the different torque and speed constraints given in Table
I. The connection between the two RB modules forming the
meta-module is rigid through an active connection mecha-
nism (ACM) based on mechanical grippers. These ACMs
give the robot its ability for self-reconfiguration and allow
for a rapid assembly of complex structures.

RB meta-modules are operated on two Lithium Polymer
battery packs giving the robot autonomy for about 1 hour.
The brushed motors are position and speed controlled in
real-time through a PID loop implemented on custom motor
driver electronics. The motors’ relative encoders are used
for feedback. Real-time control through central pattern gen-
erators (CPG) is implemented on custom electronics that
communicate with the motor driver electronics via a RS485
communication bus protocol at a baudrate of 1MBAUD. CPG
values get updated at a frequency of 20Hz. We control the
RB meta-module and configure the CPG controller from a
PC using a wireless Bluetooth communication module. At
each time step a real-time collision checker simulates the
next moves of the RB meta-module before they are executed.
Only if no internal collisions are detected the set-points of

3266

➠ Moeckel et al.: optimize the 
parameters of an ODE 
simulator (22 parameters) ; PSO!

Zagal, Juan Cristóbal, and Javier Ruiz-Del-Solar. "Combining simulation and reality in evolutionary 
robotics." Journal of Intelligent and Robotic Systems 50.1 (2007): 19-39.

the "back to reality” algorithm
Improving simulators
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the algorithm (L3). In this way the simulation parameters are continuously tuned narrowing
the reality-gap during the behavior adaptation process.

Note the simplicity of this approach, since measuring Δfitness corresponds to just
measuring behavior fitness rather than performing any explicit measurement of simulation
related variables. In this respect our approach does not require us to clarify any simulation
opacity, but to merely measure individual performances, in the same way as implicit
biological adaptation. It is neither required to measure an extensive set of sensor data
recordings, as proposed by Bongard [2], nor to monitor a set of external explicit variables
by means of an external monitoring device, as proposed by Grefenstette [8]. Figure 1b
shows a flow diagram of the algorithm steps, a detailed description of each step of the
algorithm is as follows:

Step 0 – Representation and encoding The vector domains where the search will be
conducted should be defined in view of the parameters considered relevant by the
experimenter (such as mass, force, gravity, limb lengths for a simulator or any controller
parameter for the robot). This involves making a clear distinction between what is assumed
to be known about a system and what is left to be determined by this algorithm. The valid
range in which the search shall be performed should be defined for each parameter. Then a
simulation/robot is represented by a vector s/r in the space S/R of possible simulators/
robots. Another relevant setting is the encoding scheme to be used, since genetic search will
be performed in the discrete space of points that can be represented by the given encoding,
it is important that the experimenter defines a proper number of bits for each parameter.
Once this information is provided it is possible to generate a bit genome representing the s/r
vectors.

Step 1 – Robot search under simulation Genetic search is used in this step for widely
exploring the search space R of possible robots. In the case of the first iteration, a
population of M robot individuals is generated at random or as biased by an initial known
robot solution r0. For the reminder iterations the best existing robot solution ri−1 obtained
from step 4 is used in order to bias the population. The amount of generations during which
genetic search is conducted depends upon two major factors: (1) the drift tendency of the

Simulated Environment

Robot-controller

L1

Robot-controller

Real Environment

L2

SIMULATION

REALITY

L3,∆ fitness

0. Representation and encoding

1. Robot search under simulation

5. Finalization?

2. Selection transfer and test

3. Simulator search

4. Smooth individual adaptation

YES

FINALIZATION

NO

a b

Fig. 1 a: Three learning processes of the back to reality algorithm. b Flow diagram of the algorithm

24 J Intell Robot Syst (2007) 50:19–39

L1, L2 and L3: evolutionary algorithms!
200 evals on the robot, 10 500 simulation!
compare fitness values

Bongard, Zykov and Lipson. Science. 2006!
!
Koos, S., Mouret,  JB and Doncieux, S.. "Automatic system identification based on coevolution of 
models and tests." Evolutionary Computation, 2009. CEC'09. IEEE Congress on. IEEE, 2009.

The EEA algorithm: active learning of a model
Improving simulators

14

244



Related work: optimization with surrogate fitness 
functions (learn a “simulator”  from scratch)

Improving simulators
Pros!
!
mix simulation and reality: 
the best of both worlds?!
!
faster than learning without 
a simulator!
!
morphological / env. 
changes!

15

Cons!
!
the simulator will never be 
perfect!
!
if the correction cannot be 
applied? (e.g. aerodynamics)!
!
learning a simulator is hard!

Jin, Yaochu. "A comprehensive survey of fitness approximation in evolutionary 
computation." Soft computing 9.1 (2005): 3-12.

Jakobi, N. "Evolutionary robotics and the radical envelope-of-noise hypothesis." Adaptive Behavior 
6.2 (1997): 325-368.

the envelope of noise & minimal simulations
Avoiding bad simulations
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Simulate only the useful effects!
Hide in an “envelope of noise” things that are too hard to 
simulate accurately!
➠ keep evolution from exploiting simulation artefacts!
➠ goal refiner!

Examples: 

➠ Khepera robot: add noise to 
the sensors and the 
actuators!

➠ Octopod robot: minimal 
simulation

Chapter 7. A minimal simulation for a complex motor behaviour 86
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Figure 7.2: This figure shows diagrammaticallyhow the speeds of the left-hand and right-hand sides of the
robot were calculated from the vertical and horizontal positions of the eight legs. For explanatory purposes
the length of each leg in the diagram is inversely proportional to its height above the ground so that the
long legs are 0.8 as low as they can go and the short legs are 0.2 as low as they can go. Adding up the
contributions that each leg makes to the speed of its side we see that the speeds of both the left and the right
hand side of the robot work out at 0 1 0 8 0 1 0 2 0 1 0 8 0 1 0 2 0 12 forwards

the robot. However, because of the arguments put forwards in section 3.3.2, it was not necessary
to accurately model the way in which every motor signal could affect the movement of the robot
as a whole, but only those motor signals involved in satisfactory walking forwards, backwards
and turning on the spot. The dynamics of the model, therefore, matched those of reality only for
those controllers that prevented the body from touching the ground, moved all the legs supporting
the robot on each side in the same direction (either all forwards or all backwards depending on
whether the robot was supposed to be walking forwards, backwards or turning on the spot), and
kept those legs that were not touching the ground as high in the air as possible.

The motor signals to the servo-motors controlling the legs of the octopod robot specify abso-
lute angular positions (relative to the body) that the servo-motors are required to move the legs to.
Thus when a new signal is sent to the servo-motor controlling the horizontal or vertical angle of
a particular leg, it will move as fast as possible to the new location. In the absence of any new
signal, the leg will remain rigid. This process was modelled in the simulation by calculating, on
every iteration, horizontal and vertical angular displacements for each leg based on the differences
between the angular positions specified by the motor signals and the actual angular positions of
the simulated legs. The maximum possible angular speed of each leg was measured very roughly
and set in the simulation to be 2π radians per second. Using the horizontal and vertical angles of
each leg, a simple look up table provided the approximate position, relative to the robot, that each
leg projected onto the ground, and the 4 legs in the lowest positions were assigned as the sup-
porting legs. A simple calculation was then made to see whether the robot’s centre of gravity was
contained within the polygon subtended by the floor-contact positions of these 4 legs, in which
case the robot was deemed to be stable. If it was not, then the robot was deemed to be unstable.
Also the average height of these 4 legs relative to the robot body was calculated. If they were low

envelope of noise & minimal simulations
Avoiding bad simulations

Pros!
!
Lightweight simulations!
!
Noise increases 
robustness and 
generalization!
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Cons!
!
Hard to set-up!
!
What noise? what is 
important?!
!
No surprising dynamic 
effect!
!
Noise makes evolution 
harder!

the transferability approach
Avoiding bad simulations
➠ learn the limits of the simulation (supervised learning)!
➠ focus the search on well-simulated behaviors!
➠ the transferability is a task-agnostic goal refiner

18

Mouret, Koos & Doncieux. ALIFE workshop. 2012!
Koos, Mouret & Doncieux. IEEE TEC. 2012!
Koos, Cully & Mouret. IJRR. 2013
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Koos, S., Mouret, J.-B., & Doncieux, S. (2011). The Transferability Approach : Crossing the Reality 
Gap in Evolutionary Robotics. IEEE Transaction on Evolutionary Computation, 1, 1–25.

the transferability approach
Avoiding bad simulations

19

Maximize fitness Maximize fitness
transferability{

15 transfers!
(motion capture)

Cully, Clune, Tarapore & Mouret. Nature. 2015

Intelligent Trial & Error
Mapping, then searching

20

Jean-Baptiste Mouret Part B1 ResiBots

Figure 2: Concept of the “backbone algorithm” of the proposal, based on a division between offline exploration with an
evolutionary algorithm and fast, online learning with a Bayesian optimization algorithm.

• Challenge 2 (months 24 to 48): damage recovery in a multiple task (e.g. walking in every direction), in a
high-dimensional search space, with episodic learning, and simple reward.

• Challenge 3 (months 36 to 60): damage recovery in a multiple task (e.g. walking in every direction), in
a high-dimensional search space, with semi-episodic learning (the robot is never put back in the initial
state), and simple reward.

• Challenge 4 (months 36 to 60): damage recovery in a multiple task (e.g. walking in every direction),
in a high-dimensional space, with semi-episodic learning, and with multiple sources of knowledge
(preliminary diagnosis, demonstrations) in addition to the reward.

The first challenge is the most critical but we already obtained preliminary results that show that simulations of
the undamaged robot can guide a learning process for a damaged robot12. We also have preliminary results in
“toy problems” with Bayesian optimization.

Experimental setups. To ensure the generality of our results, we will perform each experiment with three
different setups (figure 1). The various setups will allow us to evaluate how our methods scales up and ensure
that they are not tied to a particular type of robot or task. One of the main technical challenges of this project is
to implement our algorithm on these three very different robots and tasks, with different constraints.

• Wheeled robot + arm (7 degrees of freedom). Main task: a mobile robot with a robotic arm has to grasp
balls and put them in a basket on top of the robot. This task corresponds to a vacuum cleaning robot (e.g.
a Roomba) that needs to clear the objects from the room before vacuum cleaning. Grasping will be made
easy by using the “jamming gripper” (by Empire Robotics). Controller: dynamic motion primitives10;
damages: block a motor of the arm, break one gear of a motor (i.e., make the degree of uncontrolled);
reward: number of balls in the basket, measured by the robot (weight of the balls).

• Wheel-legged hybrid robot (30 degrees of freedom). Main task: locomotion in every direction; Controller:
non-linear oscillators9; damages: remove one leg, remove two legs, disconnect a motor, make one leg
shorter, make one leg longer; reward: walking speed, measured onboard with a RGBD visual odometry
algorithm; This high-mobility robot is the kind of robot used for search and rescue missions.

• Crawling iCub (up to 53 degrees of freedom). Main task: crawling in every direction; Controller: Non-
linear oscillators5; damages: loosen several cables, block one motor, disconnect one of the control board;
reward: external (measured with a motion capture system). The iCub robot is not a low-cost robot, but it
will allow us to demonstrate that our approach scales to advanced robots like humanoids.

Challenge 1: resilience by fast learning in high-dimensional spaces
(1) Elite-based dimension reduction (Fig. 2, from A to B). In our recent work about the evolutionary origins
of modularity4, we proposed a variant of an evolutionary algorithm to visualize a high-dimensional search
space in a low-dimensional feature space. This algorithm searches for the best solution for each point of a
n-dimensional grid, where each dimension reflects a salient feature of the solution. As a result, this algorithm
finds a large set of unique, high-performing solutions, each of them being the best of their family. The key
feature of this algorithm is that it provides a low-dimensional picture of the whole search space, and not
only a few good solutions. In this project, we will adapt this algorithm to our experimental setup and improve
its efficiency with new heuristics (e.g., by starting with a crude approximation and refine it).

(2) Simulation-based priors (Fig. 2, from B to C and D). Current experiments with Bayesian optimization start
with a model with a constant mean and a constant standard deviation14,16, that is without any task-specific prior
knowledge. As a result, many trials are used solely to obtain the overall shape of the search space. Here we will

Page 4 of 12

Mapping (offline)!
- MAP-Elites algorithm 
- search for the best behavior 

of each family

Adaptation (online)!
- Bayesian optimization 
- levels of confidence

Cully, Clune, Tarapore & Mouret. Nature. 2015

Intelligent Trial & Error
Mapping, then searching
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the transferability approach
Avoiding bad simulations

22

Pros!
!
Easier to learn the limit 
than to correct/learn the 
simulator!
!
Only a few test on the 
robot: no need for a 
special set-up!
!
!

Cons!
!
The EA cannot exploit 
phenomena that not 
simulated at all!
!
(e.g. highly-dynamic gaits, 
unknown aerodynamic 
effects, etc.)
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Floreano, D., & Urzelai, J. (n.d.). Evolutionary robots with on-line self-organization and behavioral 
fitness. Neural Networks, 13(4-5), 431–43.!

Urzelai, J., & Floreano, D. "Evolutionary robots with fast adaptive behavior in new environments." 
Evolvable Systems: From Biology to Hardware. Springer Berlin Heidelberg, 2000. 241-251.

evolve controllers with online learning abilities !
Improving robustness
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env.eps
66 × 36 mm

Figure 3: A mobile robot Khepera equipped with a vision module gains fitness by staying on the
gray area only when the light is on. The light is normally off, but it can be switched on if the
robot passes over the black area positioned on the other side of the arena. The robot can detect
ambient light and the color of the wall, but not the color of the floor.
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Figure 4: The Khepera robot used in the experiments. Infrared sensors (a) measure object prox-
imity and light intensity. The linear vision module (b) is composed of 64 photoreceptors covering
a visual field of 36◦ (center). The output of the controller generates the motor commands (c) for
the robot. Right figure shows the sensory disposition of the Khepera robot.

for 500 sensory motor cycles, each cycle lasting 100 ms. At the beginning of an individual’s

life, the robot is positioned at a random position and orientation and the light is off.

The fitness function is given by the number of sensory motor cycles spent by the robot

on the gray area beneath the light bulb when the light is on divided by the total number of

cycles available (500). In order to maximize this fitness function, the robot should find the

light-switch area, go there in order to switch the light on, and then move towards the light

as soon as possible, and stand on the gray area. Since this sequence of actions takes time

(several sensory motor cycles), the fitness of a robot will never be 1.0. Also, a robot that

cannot manage to complete the entire sequence will be scored with 0.0 fitness. A light sensor

placed under the robot is used to detect the color of the floor—white, gray, or black— and

passed to a host computer in order to switch on the light bulb and compute fitness values. The

11

envkoala.eps
81 × 37 mm

Figure 8: A mobile robot Koala equipped with a vision module gains fitness by staying near the
lamp (right side) only when the light is on. The light is normally off, but it can be switched on if
the robot passes near the black stripe (left side) positioned on the other side of the arena. Position
of the robot is controlled by an external positioning system and passed to the computer in order
to control the light and to compute the fitness.

to produce harmful actions. One may train (or evolve) control systems for a desktop sturdy

robot like the miniature Khepera and then download them to larger and consequently more

fragile robots5. In this case, it would be desirable that the control system self-adapts to the

new sensory-motor characteristics and morphology.

In previous work we have shown that this can be achieved by using incremental evolution

of genetically-determined networks (Floreano & Mondada, 1998). However, even for a simple

reactive navigation behavior it took additional 20 generations to re-adapt to the new robot.

Here we test the adaptive properties of the evolutionary adaptive strategy by transferring onto

a physical Koala robot (figure 8) the best individuals of the last generation evolved on the

miniature Khepera robot. A mobile robot Koala equipped with a vision module is positioned

in the rectangular environment shown in figure 8. As in the previous experiment with the

Khepera robot, the Koala robot must find the light-switching area, go there in order to switch

the light on, and then move towards the light as soon as possible and stay there in order to

score fitness points.

The Koala robot has six wheels driven by two motors (one on each side) and 16 infrared

sensors (figure 9) with a different and stronger detection range than those used on the Khepera

robot. An external positioning system emitting laser beams at predefined angles and frequen-

cies is positioned on the top of the environment and the Koala robot is equipped with an

5Obviously, the two robots must share some characteristics, such as type of sensors and actuators used, that
allow a suitable interfacing of the control system.

15

!
Example:  neural networks with “adaptives synapses” 

behaviors.eps
91 × 31 mm

Adaptive synapses Fixed synapses

f = 0.422, <f> = 0.499
10 10

f = 0.260, <f> = 0.302

Figure 7: Behaviors of two best individuals (from last generation) with adaptive synapses and
Node Encoding (left) and with genetically-determined synapses and Synapse Encoding (right).
When the light is turned on, the trajectory line becomes thick. The corresponding fitness value
is printed on the top of each box along with the average fitness of the same individual tested ten
times from different positions and orientations.

In both cases individuals aim at the area with the light switch4 and, once the light is turned on,

they move towards the light and remain there. The better fitness of the adaptive controllers

(given on the top of each box, see figure caption) is given by straight and faster trajectories

showing a clear behavioral change between the first phase where they go towards the switching

area and the second phase where they become attracted by the light. Instead, genetically-

determined individuals display always the same looping trajectories around the environment

with some attraction towards the stripe and the light. This minimalist behavior, which depends

on invariant geometrical relations of the environment, gives them a chance to accomplish the

task but with a lower performance.

Additional behavioral tests and network analyses clearly indicated that evolved adaptive

individuals achieve higher fitness because they rapidly modify their weights in ways that reflect

the subtask at hand and functionally related to the survival criterion (Floreano & Urzelai, 1999;

Urzelai & Floreano, 2000a).

2.3 Cross-platform Adaptation

Cross-platform transfer is a very useful feature, but we are not aware of any control system

that can be transferred across different robots without changes. Cross-platform becomes useful

in adaptive and evolutionary systems where initial training experiences can cause the robot

4Their performance is badly affected if the vision input is disabled, indicating that they do not use random search
to locate the switch (data not shown).

14

Lehman, Joel, et al. "Encouraging reactivity to create robust machines." Adaptive Behavior (2013): 
1059712313487390.

encouraging reactivity
Improving robustness

- quantification of reactivity 
derived from the mutual 
information between sensors 
and actuators!

- multi-objective optimization!

- even better if combined with 
noise!

- task-agnostic goal refiner

24

the reality gap
Conclusion

➠ No simulator: possible but slow!
➠ Finish evolution on the physical root: similar optima!
➠ Improving simulators: cannot learn everything!

‣   EEA, back to reality, …!
➠ Avoiding badly simulated solutions (goal refiners)!

‣  add noise to sensors and actuators: hard to tune!

‣  minimal simulations: requires expert knowledge!

‣  learn the transferability function!
➠ Improving robustness (goal refiners): no guarantee!

‣ add online learning abilities!

‣ encourage reactivity!
25
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Evolutionary robotics and collective adaptive systems

Tutorial « Evolutionary Robotics », part 3/3

July 2015

Nicolas Bredeche 
Université Pierre et Marie Curie 
Institut des Systèmes Intelligents et de Robotique 
ISIR, UMR 7222 
Paris, France 
nicolas.bredeche@upmc.fr

GECCO 2015, Madrid

Note on citation policy: for a given topic, I cite either 
or both the seminal reference and a recent one. E.g.: 
[Nolfi and Floreano. 2000][Doncieux et al. 2015] for 
referring to general resources on evolutionary 
robotics. Non-first authors may be omitted for clarity.
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2Definitions

Collective robotics: multiple robots, acting together, to achieve a common goal. 

Swarm robotics: collective robotics with large population of “simple” robots (i.e. 
limited computation and communication capabilities). It is a distributed system.

Kiva/Amazon SSR/Harvard LIS/EPFL

nicolas.bredeche@upmc.fr

3Definitions

Collective robotics

Swarm robotics
limited computation and communication capabilities

Kiva/Amazon SSR/Harvard LIS/EPFL

In this talk: 

 we focus on distributed robotic systems,  
with small or large groups 

nicolas.bredeche@upmc.fr

4

Attraction Orientation Repulsion

Reynolds (1987) Flocks, herds and schools: a distributed behavioral model

Positive and negative feedbacks 
	 positive feedback: attraction and orientation rules 
	 negative feedback: repulsion rule

Positive and negative feedbacks

nicolas.bredeche@upmc.fr

5

Physical structure homogeneous
Control distributed

Control design optimised
Control at run-time fixed
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6

Image: wikipedia

Stigmergy : indirect communication through the environment

Dorigo et al. (1996) Ant system: optimization by a colony of cooperating agents

Stigmergy: indirect coordination between agents through a 
(chemical or physical) element left in a shared environment. 
e.g.: pheromones, obstacles

nicolas.bredeche@upmc.fr

7

Physical structure homogeneous
Control distributed

Control design optimised
Control at run-time fixed

nicolas.bredeche@upmc.fr

8

• Defining the problem [Nettleton et al., 2003], adapted from [Capitan et al. 2013] 
‣ no central control 
‣ no common communication facility 
‣ no local knowledge of the team global topology 

• Obvious advantages 
‣ Robustness through redundancy  
‣ Parallelising actions wrt a task 
‣ Parallelising learning/optimisation (if any) 

• Critical problems 
‣ Solving distributed decision problems is NEXP-complete (if exact sol.) 
‣ Even approximated methods provides limited results (few robots in practical) 

‣ Predicting the outcome of simples rules is challenging (complex dynamics)

nicolas.bredeche@upmc.fr

9

• Approaches 
• hand-coded 
‣ (Trial&error) top-down approach [Mataric, 1992+][McLurkin, 2004+][…] 
‣ (Bio-inspired) bottom-up approach [Bonabeau et al., 1999 for an introduction][Reynolds, 1984][…] 

• learning and optimisation 
‣ Brute force optimisation [Werfel et al., 2014][…] 
‣ Exact and approximate method in RL [Bernstein,2002][Amato, 2014][…] 
‣ Evolutionary algorithm (meta-heuristic for policy search) 

- continuous states and actions 
- non-standard representations 
- not just optimisation (cf. earlier presentations) 
- versatile wrt. collective setups (clones, non-clones, structured populations, etc.
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10

Dual motivations
Evolving collective robotics :

nicolas.bredeche@upmc.fr

11

contributions  
to robotics and/or ALIFE

contributions  
to biology

To make

To understand

nicolas.bredeche@upmc.fr

12

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop

Evolutionary robotics and collective robotic systems

end.

Swarm-bots, 2001-2005 Symbrion and Replicator, 2008-2013Swarmanoid, 2006-2010

nicolas.bredeche@upmc.fr

13

contributions  
to robotics and/or ALIFE

contributions  
to biology

To make

To understand
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14

Decoding Evaluation

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

ER as a tool for individual-based modeling and simulation

Evolution of Altruism

nicolas.bredeche@upmc.fr

15

Decoding Evaluation

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

ER as a tool for individual-based modeling and simulation

Signaling

nicolas.bredeche@upmc.fr

16

Dual methods
Evolving collective robotics :

nicolas.bredeche@upmc.fr

Dual methods 17

Evaluation

Initial Population
(random solutions)

Selection Variations Replacement

continue stop end.

(Off-line) classic evolutionary robotics

(On-line) embodied evolution

Mating Mating
Selection

Variations

Repl.

Evaluation

Reservoir 
of 

genomes

[Watson et al. 2002][Eiben et al. 2010]

[Nolfi, Floreano 2000][Doncieux et al. 2015]

not close enough
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Definitions

• What? 
‣ Off-line design method 
‣ Optimize in centralized fashion, then used in a distributed fashion 

• Expected result 
‣ A set of policies (possibly similar) that can be used within a 

population of robots to solve a task

18

Focus control    and/or morphology
Space centralized or distributed
Time off-line or on-line

Selection pressure fitness function and/or environment-driven

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

Decoding

Evaluation

19

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Evolutionary Computation and Individual-Based Models in Biology

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

Decoding

Evaluation

20

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Evolutionary Computation and Individual-Based Models in Biology

1

2

3

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

Decoding

Evaluation

21

Initial Population
(random solutions)

Evaluation Selection Variations Replacement

de
sc

ri
pt

io
n fitness

continue stop end.

Evolutionary Computation and Individual-Based Models in Biology

1 2 3
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• Lessons learned 
‣ Cooperation 

‣ between related individuals (inclusive fitnesses) [Waibel 2009,2011] 
‣ between unrelated individuals (mutualism) [Bernard 2015] 

‣ Communication and signalling 
‣ efficiency vs. robustness [Wischmann 2012] 

‣ directional communication [Pugh 2014] 

• Open issues (in addition to other classical issues with ER) 
‣ Improving on scalability and complexity 
‣ Division of labour 
‣ Behaviour heterogeneity in homogeneous populations 

[D’Ambrosio 2013] 
‣ Cooperative behaviours in heterogeneous population (e.g. 

mutual adaptation [Ducatelle 2010])

22

nicolas.bredeche@upmc.fr

Dual methods 23

Evaluation

Initial Population
(random solutions)

Selection Variations Replacement

continue stop end.

(Off-line) classic evolutionary robotics

(On-line) embodied evolution

Mating Mating
Selection

Variations

Repl.

Evaluation

Reservoir 
of 

genomes

[Watson et al. 2002][Eiben et al. 2010]

[Nolfi, Floreano 2000][Doncieux et al. 2015]

not close enough

nicolas.bredeche@upmc.fr

Focus control    and/or morphology
Space centralized or distributed
Time off-line or on-line

Selection pressure fitness function or environment-driven

Definitions 24

• What? 
‣ On-line adaptation 
‣ Optimised and used in a distributed fashion 

• Expected result 
‣ A population of robots improving over time wrt. a task to achieve 
‣ Continuous adaptation to open, possibly changing, environments

nicolas.bredeche@upmc.frnicolas.bredeche@isir.upmc.fr

25

[Floreano, 2002] 
[Bongard, 2006] 

[Haroun, 2006] 
[Walker,  2006] 

[Bongard, 2006] 
[Bredeche, 2009] 

[Christensen, 2010] 
[Karafotias, 2011]

[Nordin, 1997] 
(and others)

[Ficici, 1999][Watson, 2002] 
[Smith, 2000] 

[Simoes, 2001] 
[Wischmann, 2007] 

[Nehmzow, 2002] 
[Vogt, 2010] 
[Silva, 2013] 

[Fernandez Perez, 2014] 
[Haasdijk, 2014]

[Usui, 2003] 
[Elfwing, 2005] 

[Perez,2008] 
[Weel, 2012]

[Eiben, Haasdijk, Bredeche, 2010]
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Fitness function
selection depends from a user-defined metric

Environment-driven
selection results from interactions in the environment

directed selection 
task-explicit: patrolling, reach a goal, etc. 

task-implicit: energy-driven, predator-prey, etc. 
task-free: diversity, novelty

natural selection 
no fitness function 

the resulting behaviour is shaped by the environment and the 
competition between genomes

26

directed evolution... ...natural evolution

[Watson et al., 2002]  
[Eiben et al., 2010] 
[Trueba et al. 2012] 

etc.

[Bredeche and Montanier. 2010] 
[Bianco et al., 2004] 

etc.

Extended from: 
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27

Embodied Evolution: Distributing an evolutionary algorithm in a 
population of robots 
Richard A. Watson, Sevan G. Ficici, Jordan B. Pollack
Robotics and Autonomous Systems 39 (2002) 1-18

nicolas.bredeche@upmc.fr

< 
a = +0.31 
b = +0.11 
c = -1.42 
d = +1.6
e = -0.14
f = 0.55
g = -1.17
h = +0.97 
>

{genome,fitness value}^n

e.g.: weighted combination of inputs,    
      artificial neural networks, etc.

genome of controller
e.g.: �n

A vanilla algorithm

This list is used to store (unique) 
copies of genomes from robots 
passing nearby with their current 
fitness value at the time of 
encounter

28

A robot is «dead» if... 
- internal cause: no genome available when a new generation starts 
- external causes: failures, crashes, lack of energy, etc.

motor1 = a*IR1 + b*IR2 + c*IR3  + d*IR4 + e 
motor2 = f*IR1 + g*IR2 + h*IR3 + i*IR4 + j

IR = Infrared sensors

radio range

Embodied evolution

: energy item
Fitness function

Reservoir of genomes

E.g.: #energy items foraged

Controller

Genome

nicolas.bredeche@upmc.fr

“Vanilla” embodied evolution algorithm 29

At this point, each robot... 

1 - forgets its own genome 

2 - perform selection among 
received genomes wrt fitness 
values 

3 - apply variation (crossover 
and/or mutation) on the selected 
genome (e.g. gaussian mutation) 

4 - use new genome to set up 
new control architecture

example with a foraging task

Selection pressure is applied 
at the individual level
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30“Vanilla” embodied evolution algorithm

example with a foraging task

nicolas.bredeche@upmc.fr

31

2012

landmark

~19 robots
motor 1

motor 2

inputs:
- 8 IR sensors
- 8 bumpets
- orientation wrt. landmark
- distance to landmark

outputs:
- left and right motor speed

nicolas.bredeche@upmc.fr

A vanilla algorithm
32

IR = Infrared sensors

radio range

Embodied evolution

{genome}^n

This list is used to store (unique) 
copies of genomes from robots 
passing nearby.

Reservoir of genomes

NO Fitness function
no fitness value is computed, 
therefore none is stored

e.g.: weighted combination of inputs,    
      artificial neural networks, etc.

motor1 = a*IR1 + b*IR2 + c*IR3  + d*IR4 + e 
motor2 = f*IR1 + g*IR2 + h*IR3 + i*IR4 + j

Controller

< 
a = +0.31 
b = +0.11 
c = -1.42 
d = +1.6
e = -0.14
f = 0.55
g = -1.17
h = +0.97 
>

genome of controller
e.g.: �n

Genome

nicolas.bredeche@upmc.fr Bredeche, Montanier (PPSN 2010)

The mEDEA algorithm 33

At this point, each robot... 

1 - forgets its own genome 

2 - perform random selection 
among received genomes 

3 - apply a slight variation on the 
selected genome (e.g. gaussian 
mutation) 

4 - use new genome to set up 
new control architecture

Selection pressure is applied 
at the population level
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The mEDEA algorithm 34

nicolas.bredeche@upmc.fr

35

4000 robots in simulation

Bredeche (ALIFE 2014

nicolas.bredeche@upmc.fr

• Lessons learned 
‣ No reality gap (by definition) 
‣ Scalable algorithms (by definition) 
‣ Population density and communication range are critical 
‣ Natural evolution can be simulated — relevance to evol. biology 

• Open issues 
‣ Specialisation is challenging [Trueba et al., 2013] 

‣ Evolving complex social behaviours (cooperation, division of labour, …) 

‣ Evaluation/maturation time [Wischmann et al., 2007][Bredeche et al., 2009] 

‣ Trade-off between addressing a task and surviving [Haasdijk et al., 2014] 

‣ Necessary conditions for truly open-ended evolution [Bedau et al. 2000]

36

Wrapping up
Conclusions and open issues
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Dual motivations 38

contributions  
to robotics and/or ALIFE

contributions  
to biology

To make

To understand

nicolas.bredeche@upmc.fr

Dual methods 39

Evaluation

Initial Population
(random solutions)

Selection Variations Replacement

continue stop end.

(Off-line) classic evolutionary robotics

(On-line) embodied evolution

Mating Mating
Selection

Variations

Repl.

Evaluation

Reservoir 
of 

genomes

[Watson et al. 2002][Eiben et al. 2010]

[Nolfi, Floreano 2000][Doncieux et al. 2015]

not close enough

nicolas.bredeche@upmc.fr

Thank you for your attention
40

http://pages.isir.upmc.fr/~bredeche

Mailing list: https://www.listes.upmc.fr/wws/review/roborobo

Open issues
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Applying ER to real world problems

ER is a successful building block

Projet SMAVNET, LIS, EPFL.

ER leads to impressive
results in simulation

Geijtenbeek, T. and van de Panne, M. and van der
Stappen, A. F. (2013)
Flexible Muscle-Based Locomotion for Bipedal

Creatures.

ACM Transactions on Graphics (Proc. SIGGRAPH
ASIA 2013).

... but the holistic approach of ER on real robots remains a challenge :
How to deal with large number of evaluations ?
How to take the best of simulation and reality ?

Nature-like evolvability

Natural evolution

author : https://en.wikipedia.
org/wiki/User:Justin

Artificial evolution

[Auerbach and Bongard 2014]

[Cheney et al. 2013]

What genotype for complex systems ?
How to define viable mutations ?

Combining evolution and learning

Evolution and learning occur in many species, what about robots ?

Complementary in theory...
Learning can smooth a search
landscape [Baldwin 1896].

Baldwin effect
[Hinton and Nowlan 1987]

... but hard to use in practice
A few hints :

learning to learn is deceptive
[Risi et al. 2009, 2010]

regularity in network structure
makes a difference [Tonelli
and Mouret 2013]

needs formalization [Mouret
and Tonelli 2014]

Combining evolution and learning

Evolution and learning occur in many species, what about robots ?

Complementary in theory...
Learning can smooth a search
landscape [Baldwin 1896].

Baldwin effect
[Hinton and Nowlan 1987]

... but hard to use in practice
A few hints :

learning to learn is deceptive
[Risi et al. 2009, 2010]

regularity in network structure
makes a difference [Tonelli
and Mouret 2013]

needs formalization [Mouret
and Tonelli 2014]
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Evolutionary robotics and reinforcement learning

Convergence of the two approaches ...
... for policy optimization in continuous spaces :

ER similar to policy search algorithms [Kober et al. 2013]
ER competitive with recent RL algorithms [Stulp and Sigaud 2012]

... but not for all ER applications :
morphology design is out of the scope of RL
RL is not a model of biological evolution

What inspiration to draw from RL ?
What new algorithms to build for RL based on ER principles ?

Online learning : single and multiple robots
Most ER works deal with off-line learning

evaluation in the same initial conditions
... for the same period
... and in a constant environment

Open issues with on-line learning
How to deal with :

changing initial conditions
changing environments

From single to multiple robots
Finding exact solutions to a multiple robots setup (DEC-POMDP) is NEXP-Complete

[Papadimitriou 1994].

ER allows from several dozens of real robots [Watson et al. 2002, Bredeche et al. 2012] or

thousands of simulated ones [Bredeche 2014].

Environment-driven evolutionary robotics

The limits of goal-driven search
Goal driven objectives are often deceptive [Lehman and Stanley
2011]
What fitness function and evaluation conditions to evolve life-like
capabilities ?

An alternative...
No fitness function : environment-driven evolution [Bianco and Nolfi 2004, Montanier and
Bredeche 2010, Bredeche et al. 2012].

How does tasks and environment driven pressure interact ? [Haasdijk et al. 2014]

Open-ended evolution
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