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Definition

“ ER aims to apply evolutionary computation

techniques to evolve the overall design or con-
trollers, or both, for real and simulated au-
tonomous robots”

Vargas et al. 2014
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Motivation for roboticists
@ Building robots with embodied intelligence [pteiter 2007 J

‘ Pfeifer, R. and Bongard, J. (2007)
How the body shapes the way we think: a new view of intelligence,
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Motivation for roboticists J

@ Building robots with embodied intelligence [Pfeifer 2007]

¥y Fieiter, R and Bongard, J. (2007)
How the body shapes the way we think: a new view of intelligence,
MIT Press, Cambridge, MA

Motivation for biologists

“ So far, we have been able to study only one

evolving system and we cannot wait for interstellar
flight to provide us with a second. If we want to
discover generalizations about evolving systems,
we have to look at artificial ones.”

John Maynard Smith, 1992

— computational modeling approach based on agent based

simulations including variation and selection mechanisms.
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Motivation for roboticists
@ Building robots with embodied intelligence [pfeifer 2007]

\ Pfeifer, R. and Bongard, J. (2007)

How the body shapes the way we think: a new view of intelligence,
MIT Press, Cambridge, MA

Main features of Evolutionary Robotics

Focus control and morphology
Selective pressure objective-driven  or  environment-driven
Implementation simulation or real world
Space centralized or distributed
Time off-line or on-line



Main features of Evolutionary Robotics

Focus control

Focus of the tutorial
Evolutionary design of robot controller.

Main features of Evolutionary Robotics

Implementation simulation or real world

Outline of the tutorial

Part ll. Evolution for physical robots: the reality gap, J.-B. Mouret
How to make it work on real robots?

Main features of Evolutionary Robotics

Selective pressure objective-driven or environment-driven

Outline of the tutorial

Part I. Selective pressures, S. Doncieux
What you should know about evaluation and selection
to make an ER experiment successful.

Main features of Evolutionary Robotics

Selective pressure objective-driven  or  environment-driven

Space centralized or distributed
Time off-line or on-line

Outline of the tutorial
Part lll. Embodied evolution and collective robotics systems, N.
Bredeche

Evolution without a fitness for the design of distributed robotics
systems and for modeling evolution of group dynamics.




Selective pressures in Evolutionary Robotics

ISIR, UPMC-CNRS
stephane.doncieux@isir.upmc.fr

GECCO 2015 Tutorial
U SORBONNE C @
GECCO 2015 Tutorial  1/25

Outline of this part of the tutorial

Introductory example
How to make a robot avoid obstacles ? Find the way out in a maze ?

Definitions
Evaluation, different flavors of selective pressures

How to modify selective pressures ?
Overview of the main approaches to modify the selective pressures

Challenge : premature convergence

Process helpers to avoid premature convergence.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 3/25
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Stéphane Doncieux (ISIR, UPMC-CNRS)
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Introductory example

Stéphane Doncieux (ISIR, UPMC-CNRS)
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Example 1 : obstacle avoidance

Setup
@ NSGA-II, pop size=100, nb
gen=1000

@ Controller : feed-forward
neural network

o Fitness : 7517

Source code on http://www.isir.fr/evorob_db J
GECCO 2015 Tutorial  5/25
Example 2 : maze navigation
Setup
@ NSGA-II, pop size=400, nb
— gen=8000
@ Controller : neural network
with an evolved topology
@ Fitness : 1 if reached exit, 0
I otherwise |
Source code on http://www.isir.fr/evorob_db |

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial

6/25

Example 1 : obstacle avoidance

Setup
@ NSGA-II, pop size=100, nb
gen=1000

@ Controller : feed-forward
neural network

: c_ 1
@ Fitness : 7p—— * aVQspeed

Source code on http://www.isir.fr/evorob_db ]
GECCO 2015 Tutorial  5/25
Example 2 : maze navigation
Setup
@ NSGA-II, pop size=400, nb
gen=8000
@ Controller : neural network
with an evolved topology
@ Fitness : 1 if reached exit, 0
I otherwise + another
I objective...
Source code on http://www.isir.fr/evorob_db )

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial
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Definitions

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial

Why modifying selective pressures ?

Goal refiner s

Goal refiners

A goal refiner aims at changing the
optimum(s) of the fitness function by adding
new requirements.

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial

7125

9/25

Selective pressures

The two facets of fithess functions
@ defines the goal
©Q guides the search

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 8/25

Why modifying selective pressures ?

M Process helper

Coaenes Process helpers

A goal refiner aims at changing the Aﬁ;:i)riozess tﬁlﬁer |nt(ren:srto 'ncrﬁ?ﬁggf

optimum(s) of the fitness function by adding eh cne.:y t% ets.ria; p ofct?]ss Al

new requirements. GG WS G2l (s) of the fitness
function.
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Why modifying selective pressures ? Evaluation
Robot interaction with the environment

Initial conditions sy [ { [ { J { S(f + 1) = G(S(t)? U(t), e(t))
B

Goal refiner P Process helper

where :
genolyped) Phenotype | (o, @ G(.) models the robot and its environment
Goal refiners Process helpers 2‘ st) o @ s(.) is the state of the robot
A goal refiner aims at changing the Aﬁpr_ocess P}etlrﬁ)er |ntenhds to |ncrea§? thte “ @ u(.) are the control variables (motor
optimum(s) of the fitness function by adding ehlmer_]cy 1?1 ets_earc profct(;ssf\_/;n o commands)
new requirements. f ar;gmg e optimum(s) of the fitness @ ¢(.) external factors
unction. 2xBehavior—- Fitness

Task specific A . q
E Fitness objectives

M—

Task specific goal refiners/process helpers incorporate knowledge on how to solve the task.

fi(g) = Fi(s, D (1), ..., sD(TD), x(M)
Task agnostic J .

Task agnostic goal refiners/process helpers do not exploit knowledge about how to solve the task. @ x() represents other factors that the fitness objective may depend on

@ () séi) is the initial state of the robot
Doncieux, S. and Mouret J.-B. (2014).

Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics. @ T() s the evaluation length

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 9/25 Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 10/25

Selective pressures

Each evaluation depends on...
@ the genotype g
@ the fitness function f(.)

.. but also on . . . HOW tO mOdlfy
@ G(.) : robot and environment features and interaction Selectlve pressu reS ’)

° sc(,i) - the initial state of the evaluation

o T() : the evaluation length
o el : the external conditions
o s\ s(0)(1),...,sO(T®) : the behavior of the robot

Definition
Any aspect that influences the survival or reproduction of an individual

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 11/25 Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 12/25

237



How ? Typical task-specific approaches
Fithess shaping

t [Shaping is] a mean to translate suggestions

coming from an external trainer into an effective
control strategy”

[Dorigo and Colombetti, 1994]
@ One EA

@ One fitness that includes multiple terms [Noifi 1997]

Staged evolution
@ Multiple different EA
@ Examples :

fitness change : incremental evolution [Harvey et al. 1994, Parker 2001, ...]
evolution of components : modular decomposition [Urzelai et al. 1998],
hierarchical evolution [Duarte et al. 2012]

y

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 13/25

How ? Multi-objective EA

Process helpers

Main challenge :
Premature convergence

Goal refiners
Task-specific

@ Evolution of internal representations
[Ollion et al. 2012]

Task-agnostic

@ Reality gap [Koos et al. 2013, Koos
et al. 2013b]

@ Generalization [Pinville et al. 2011,
Lehman et al. 2013]

@ Modularity [Clunes et al. 2013a]
@ Diversity of solutions [Lehman and

Task-specific

@ Incremental MOEA [Barlow et al.
2004]

@ Staged MOEA [Mouret et al. 2006]
o ..

Task-agnostic

@ Behavioral diversity [Mouret and
Doncieux, 2009, 2012, ...]

Stanley 2011] @ Novelty search as an helper
’ objective [Mouret 2011, Lehman et
al. 2013, ...]
@ Doncieux, S. and Mouret J.-B. (2014).

Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 15/25

How ? Multi-objective EA

Pareto domination Vo Search space

Dominated
solutions

»
P h
P h

Solutions
neither dominated
nor dominating a

Solutions
dominated by a'

Non-dominated
solutions

Solutions neither
dominated nor
dominating a

Solutions
dominating a

Pareto front

Multi-objective optimization as a convenient tool to modify selective pressures

At the end of the run :
Find gx(.) maximizing

@ f(X)=Goal refiner
1 (X) con i
H(X) — taken into account
fox()) = @ f(X)=Process helper
fn(.X) — ignored

V.

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 14/25

The challenge of

premature
convergence

task-agnostic process helpers

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial ~ 16/25
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The challenge of premature convergence

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 17/25

Exploration vs exploitation

Bias

Sensor 1 @ L@ Motor 1

Sensor2 @ )

)

Sensorn @

Neural network 1

Bias

Sensor 1 : Motor 1

Sensor 2 o)

¢l

Sensorn

Neural network 2

(G

>

Behavior

Bias

Sensor 1 Motor 1

Sensor 2 > o

Sensorn @

Neural network n

n neural networks — 1 behavior
Why not promoting diversity in the space of behaviors ?
[Lehman and Stanley 2008] [Trujillo et al. 2008] [Mouret and Doncieux 2009] [Gomez 2009]

Stéphane Doncieux (ISIR, UPMC-CNRS) GECCO 2015 Tutorial 19/25

Exploration vs exploitation

Intensification vs diversification in evolutionary algorithms

@ Exploration : stochastic search operators & population ;
@ exploitation : fitness function.

Hypothesis
Premature convergence may be due to an exploration problem.

Intensification vs diversification in EA

How to keep a diverse population ?

— by penalizing similar individuals on the basis of their genotype or phenotype :
@ fitness sharing [Goldberg and Richardson 1987]

@ objective on diversity in a multi-objective scheme [Abbas and Deb 2003, de Jong et al.
2001]

@ niches [Sareni and Krahenbiihl 1998]

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 18/25

Exploration vs exploitation

How to describe and compare behaviors ?

@ adhoc descriptions :
final position [Lehman and Stanley 2008]
environment state [Mouret and Doncieux 2009]

@ generic descriptions :
robot trajectory [Trujillo et al 2008]
hamming distance [Doncieux and Mouret 2010]
entropy [Delarboulas et al. 2011]

Behavioral diversity

| ] () e =]
Find gx(.) maximizing { %Eﬁg d(gx(.), 9v(.)) o

with d(X, Y) behavioral distance between X and Y

Mouret, J.-B. and Doncieux,S. (2012)
Encouraging Behavioral Diversity in Evolutionary Robotics : an Empirical Study
Evolutionary Computation. Vol 20 No 1 Pages 91-133.
Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial ~ 20/25
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Exploration vs exploitation

Back to the roots

The fitness function :
@ defines the goal
©Q guides the search

What if a goal-oriented fithess

function misguides the search ?

@ Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 21/25

Exploration vs exploitation

Novelty search

@ definition of the goal : goal-oriented fitness
© guide for the search : novelty search

(a) Medium Map Novelty

7t
XN

(c) Medium Map Fitness (d) Hard Map Fitness

@ Lehman, J., & Stanley, K. O. (2011).
Abandoning objectives : evolution through the search for novelty alone.

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 22/25

Exploration vs exploitation

Novelty search
@ definition of the goal : goal-oriented fitness
@ guide for the search : novelty search

Novelty search :
@ Archive of explored behaviors

© Fitness = Distance to the k nearest neighbors (pop-+archive) :

k
1 ,
px) = 1 D dist(x, 1)
i=0

© progressive complexification

@ Lehman, J., & Stanley, K. O. (2011).
Abandoning objectives : evolution through the search for novelty alone.

Stéphane Doncieux (ISIR, UPMC-CNRS)

Exploration vs exploitation
Solution of the maze navigation task

After 8000 generations :
@ Success/Failure only : 0/20 runs succeed
@ . diversity : 1/20 runs succeed

@ 4+ novelty : 19/20 runs succeed

GECCO 2015 Tutorial

22/25

Novelty search : to go further

(] novelty as a helper objective [Mouret 2011]
o novelty and local competition [Lehman and Stanley 2011]

o novelty, optimization and interactive evolution [Wooley and Stanley 2014]

@ Mouret, J.-B. (2011).
Novelty-based Multiobjectivization.

@ Lehman, J., & Stanley, K. O. (2011).
Evolving a Diversity of Creatures through Novelty Search and Local Competition.

@ Woolley, B. G., & Stanley, K. O. (2014).
A Novel Human-Computer Collaboration : Combining Novelty Search with Interactive Evolution.

Stéphane Doncieux (ISIR, UPMC-CNRS)

240

GECCO 2015 Tutorial

23/25



Summary

Stéphane Doncieux (ISIR, UPMC-CNRS)

GECCO 2015 Tutorial 24/25

Evolution for
physical robots

Inria Nancy-Grand Est

&’zﬂ/a/—

INVENTEURS DU MONDE NUMERIQUE

UNIVERSITE
DE LORRAINE

European Research Council
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How to change sel. pressures ?
Evaluation :

Random generation Initial condition:

@ evaluation conditions

@ staged evolution

@ fitness shaping

@ interactive evolution

@ multi-objectivization
Selection algorithm :

@ coevolution

@ adhoc EA

Environment

2

Behavior

Variation

A

Fitnless

v

y

Different flavors of selective pressures
@ goal refiner
@ process helper
— each can be either task specific or task agnostic

Multi-objective optimization as a framework to study and define selective pressures J

@ Doncieux, S. and Mouret J.-B. (2014).
Beyond Black-Box Optimization : a Review of Selective Pressures for Evolutionary Robotics.

Stéphane Doncieux (ISIR, UPMC-CNRS)
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No simulator

Floreano, Dario, and Francesco Mondada. "Evolution of homing navigation in a real mobile robot." Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 26.3 (1996): 396-407.

Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing machines .
MIT press.



No simulator

locomotion

Hornby, G. S., Takamura, S.,Yamamoto,
T., & Fujita, M. (2005). Autonomous
evolution of dynamic gaits with two
quadruped robots. Robotics, IEEE
Transactions on, 21(3), 402-410.

Yosinski, ., Clune, ]., Hidalgo, D., Nguyen, S., Zagal, ]., &
Lipson, H. (2011). Evolving robot gaits in hardware:
the HyperNEAT generative encoding vs. parameter
optimization. In Proc. of ECAL, pp. 890-897.

Using simulators

useful tools?

Evolution is a slow process
millions of years!

... but computers are faster every year

Can we ‘accelerate time’?

We now have many "good" simulators:

- ODE (library): www.ode.org
Bullets (library): bulletphysics.org
Gazebo (GUI): gazebosim.org

- V-Rep (GUI): www.coppeliarobotics.com

Tools for dynamics simulation of robots: a survey based on user feedback. S Ivaldi,V Padois, F Nori.
Proc. of Humanoids 2014.

No simulator

controllers
Chernova and Veloso (2004) random 5h quadruped 12 54
Zykov et al. (2004) random 2h hexapod 12 72
Berenson et al. (2005) random 2h quadruped 8 36
Hornby et al. (2005) non-falling 25h quadruped 19 21
Mahdavi and Bentley (2006) random 10 h snake 12 1152
Barfoot et al. (2006) random 10h hexapod 12 135
Yosinski et al. (2011) random 2h quadruped 9 5
Pros Cons
- (almost) no reality gap - slow (too slow?)
- can exploit unknown physics - will not be faster next year

- never 100% real .

Automatic design

the ideal process

|. Evolve in simulation
2.Transfer the result to the reality
" build the robot

w# ypload the controller to the robot

3. Enjoy your optimal design / controller

242



The reality gap

Koos, Mouret & Doncieux.
IEEE Transactions on Evolutionary Computation.

2012

Controller: 2 parameters

Jakobi, Nick. "Running across the reality gap: Octopod locomotion evolved in a minimal simulation."

Evolutionary Robotics. Springer Berlin Heidelberg, 1998.

But they can agree

(sometimes)

1500 l o > 1300 (reality)

> 1300 (simu.)

fitness (distance)

080 01 02 03 04 05 06
pl

0'8.0 0.1 02 03 04 05 0.6

1500

1350

1200

1050

900

750

fitness (distance)

Reality vs simulation

2
fitness (distance)

080 01 02 03 04 05 06
pl

%80 01 0.2 03 04 05 0.6
pl

Mouret, ). B., Koos, S., & Doncieux, S. (2013). Crossing the reality gap:a short
introduction to the transferability approach. arXiv preprint arXiv:1307.1870.

The reality gap

- Any simulation has a
- Human experts know this validity domain

Results found in simulation are not likely to work similarly
in reality
m One of the main challenge of ER
What can we do?
no simulator
better simulator

avoid non-transferable solutions
robust controllers
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Finish evolution in reality

J—
Y can help fine-tuning the
solution obtained in
simulation

“local search” in the
ﬁ vicinity of the solutions
found in simulation

m# cannot find something
completely different

Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms. Nature,
406, 974-978.

Improving simulators

| — Simulated Environment

x
L3, Afimess " H
Robot-controller

SIMULATION:

________________________________ FINALIZATION

LI, L2 and L3: evolutionary algorithms
200 evals on the robot, 10 500 simulation
compare fitness values

Zagal, Juan Cristébal, and Javier Ruiz-Del-Solar. "Combining simulation and reality in evolutionary
robotics." Journal of Intelligent and Robotic Systems 50.1 (2007): 19-39.

Improving simulators

General idea: minimize the difference between simulation

and reality (supervised learning)

> Miglino et al.: measure the exact response of the infrared
sensors (Khepera)

m Moeckel et al.: optimize the T - —
Offline Verification on
parameters of an ODE optimization in robotic
simulation hardware

simulator (22 parameters) ; PSO

Meta-
optimization of

simulation
models

Miglino et al. "Evolving mobile robots in simulated and real environments." Artificial life 2.4 (1995): 417-434.

Moeckel et al. "Gait optimization for roombots modular robots—Matching simulation and reality." Intelligent
Robots and Systems (IROS), 2013 IEEE/RS] International Conference on (IROS), 201 3. 12

Improving simulators

Seli-Model synthesis Exploratory Action synthesis

First cycle (of 16)

Target Behavior synthesis’
—-,'ﬁs.

Bongard, Zykov and Lipson. Science. 2006

Koos, S., Mouret, JB and Doncieux, S.. "Automatic system identification based on coevolution of
models and tests." Evolutionary Computation, 2009. CEC'09. IEEE Congress on. IEEE, 2009. 14
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Improving simulators

mix simulation and reality: the simulator will never be
the best of both worlds? perfect

if the correction cannot be
applied? (e.g. aerodynamics)

faster than learning without
a simulator

morphological / env.
changes

learning a simulator is hard!

Related work: optimization with fitness
functions (learn a “simulator” from scratch)

Jin,Yaochu."A comprehensive survey of fitness approximation in evolutionary
computation." Soft computing 9.1 (2005): 3-12.

Avoiding bad simulations

Lightweight simulations Hard to set-up

What noise? what is
important?

Noise increases
robustness and

generalization
No surprising dynamic
effect

Noise makes evolution
harder

245

Avoiding bad simulations

Simulate only the useful effects
Hide in an “envelope of noise” things that are too hard to
simulate accurately

m keep evolution from exploiting simulation artefacts

!

the sensors and the o
actuators o

m Octopod robot: minimal
simulation

Examples: -
m Khepera robot: add noise to

ot

Jakobi, N. "Evolutionary robotics and the radical envelope-of-noise hypothesis." Adaptive Behavior
6.2 (1997):325-368.

Avoiding bad simulations

> [earn the limits of the simulation (supervised learning)
> focus the search on well-simulated behaviors
> the transferability is a

Approximation of
transferability
function

MOEA

Population maximize{

Transferred

individuals

—
Transf(x)
Fitness(x)

Fitness according to the simulation

Mouret, Koos & Doncieux.ALIFE workshop. 2012
Koos, Mouret & Doncieux. IEEETEC. 2012
Koos, Cully & Mouret. [JRR.2013



Avoiding bad simulations

fitness
transferability

Maximize fitness Maximize

Control approach - 1 objective:

1 Transferability approach - 2 objectives
covered distance

covered distance + transferability
= e

_— —

=y [—=]

in simulation: 1200 mm in 10 seconds in simulation: 1031 mm in 10 seconds

I5 transfers
(motion capture)

Koos, S., Mouret, J.-B., & Doncieux, S. (201 I). The Transferability Approach : Crossing the Reality
Gap in Evolutionary Robotics. IEEE Transaction on Evolutionary Computation, I, 1-25.

Mapping, then searching

Damage occurs
(leg loses power)

Cully, Clune, Tarapore & Mouret. Nature. 2015

21

Mapping, then searching

Offline: Evolution-based Elite reduction

Conﬁdence
level
% Performance

simulation ~ Breohz\cll?c:rawl
(undamaged) prel
High-dimensional
search space

Online: prior-based Bayesian optimization

Mapping (offline)
MAP-Elites algorithm
search for the best behavior
of each family

Adaptation (online)
Bayesian optimization
levels of confidence

Avoiding bad simulations

The EA cannot exploit
phenomena that not
simulated at all

Easier to learn the limit
than to correct/learn the
simulator

(e.g. highly-dynamic gaits,
unknown aerodynamic
effects, etc.)

Only a few test on the
robot: no need for a
special set-up

2
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Improving robustness Improving robustness

Example: neural networks with “adaptives synapses” - quantification of reactivity
derived from the
between sensors
and actuators

94

Most often transfers from \\loisé ¥
training fail at the first turn
¢ Video is,at 3xispeed)

£=0422, <5 = 0499

- multi-objective optimization

- even better if combined with

Adaptive synapses noise
Floreano, D., & Urzelai, ). (n.d.). Evolutionary robots with on-line self-organization and behavioral
fitness. Neural Networks, 13(4-5), 431-43.
Urzelai, ., & Floreano, D. "Evolutionary robots with fast adaptive behavior in new environments." Lehman, Joel, et al. "Encouraging reactivity to create robust machines.” Adaptive Behavior (2013):
Evolvable Systems: From Biology to Hardware. Springer Berlin Heidelberg, 2000.241-251. 10597123 13487390.

23 24

GECCO 2015, Madrid

Conclusion

Evolutionary robotics and collective adaptive systems

I " No simulator: possible but slow
L. . . L. . Tutorial « Evolutionary Robotics », part 3/3
2w Finish evolution on the physical root: similar optima July 2015
m Improving simulators: cannot learn everythin ]
3 proving ything Nicolas Bredeche
4 EEA, back to reallty, . Université Pierre et Marie Curie
o X A Institut des Systémes Intelligents et de Robotique
 Avoiding badly simulated solutions (goal refiners) ISR, UMR 7222
arils, rrance
» add noise to sensors and actuators: hard to tune nicolas bredeche@upme.fr
4

» minimal simulations: requires expert knowledge
» learn the transferability function

> [mproving robustness (goal refiners): no guarantee

5 » add online Iearnmg abilities L Note on citation policy: for a given topic, | cite either
U P m ‘ |S|R or both the seminal reference and a recent one. Eg:
1881 SORBONNE ==

» encourage reactivity [Nolfi and Floreano. 2000][Doncieux et al. 2015] for
referring to general resources on evolutionary
2 robotics. Non-first authors may be omitted for clarity.
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Definitions 2

£

LIS/EPFL

Kiva/Amazon . SSR/Harvard

Collective robotics: multiple robots, acting together, to achieve a common goal.

Swarm robotics: collective robotics with large population of “simple” robots (i.e.
limited computation and communication capabilities). It is a distributed system.

nicolas.bredeche@upmc.fr

Positive and negative feedbacks 4

Attraction Orientation Repulsion

Positive and negative feedbacks
positive feedback: attraction and orientation rules
negative feedback: repulsion rule

nicolas.bredeche@upmc.fr Reynolds (1987) Flocks, herds and schools: a distributed behavioral model
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Definitions

In this talk:

we focus on distributed robotic systems,
with small or large groups

limited computation and communication capabilities

nicolas.bredeche@upmc.fr

Physical structure homogeneous
Control distributed
Control design optimised
Control at run-time fixed

Auton Robot (2009) 26: 21-32
DOI 10.1007/s10514-008-9104-9

Evolved swarming without positioning information:
an application in aerial communication relay

Sabine Hauert - Jean-Christophe Zufferey -
Dario Floreano

nicolas.bredeche@upmc.fr
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Stigmergy : indirect communication through the environment

Stigmergy: indirect coordination between agents through a
(chemical or physical) element left in a shared environment.
e.g.: pheromones, obstacles

nicolas.bredeche@upmc.fr Dorigo et al. (1996) Ant system: optimization by a colony of cooperating agents

@

® Defining the pProblem e sz s on capian et 201
» no central control
» no common communication facility
» no local knowledge of the team global topology
e Obvious advantages
» Robustness through redundancy
» Parallelising actions wrt a task
» Parallelising learning/optimisation (if any)
e Critical problems
» Solving distributed decision problems is NEXP-complete  exctso)
» Even approximated methods provides limited results vew obots in practica)
» Predicting the outcome of simples rules is challenging complex aynamics)

nicolas.bredeche@upmc.fr
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Physical structure homogeneous
Control distributed
Control design optimised
Control at run-time fixed

r

Designing Collective Behavior in a Termite-Inspired Robot
Construction Team

Justin Werfel et al.

Science 343, 754 (2014);

AYAAAS DOI: 10.1126/science. 1245842

Science

nicolas.bredeche@upmc.fr

® Approaches
e hand-coded

» (Trial&error) top-down approach paarc, 19e2+jieLurin, 2004411 .3
» (Bio-inspired) bottom-up approach omaseauetat. 199 o an ntoductonlimeynolas, 198411
® |earning and optimisation
» Brute force optimisation wereretar. 20141 3
» Exact and approximate method in RL (gemstein 20025amato, 2014113
» Evolutionary algorithm (meta-heuristic for policy search)
- continuous states and actions
- non-standard representations
- not just optimisation (. earlier presentations)

- versatile wrt. collective Setups (clones, non-clones, structured populations, etc.

nicolas.bredeche@upmc.fr



Evolving collective robotics :

Dual motivations

nicolas.bredeche@upmc.fr

Evolutionary robotics and collective robotic systems 12

Initial Population
(random solutions)

Y

continue ﬁ? stop,

Evaluation

Selection

—_—

Variations

Replacement

description

it

L\

nicolas.bredeche@upmc.fr

nicolas.bredeche@upmc.fr

contributions
to biology

nicolas.bredeche@upmc.fr
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To make

To understand

‘ contributions :
o robotics and/or ALIFE!




ER as a tool for individual-based modeling and simulation 14

Evolution of Altruism

Initial Population

(random solutions)
continue sto
end.

y

Selection —>| Variations Replacement

Evaluation

A

description
ssaully

______________________ . S

@). PLoS Biology | www.plosbiology.org 1 May 2011 | Volume 9 | Issue 5 | 1000615

A Quantitative Test of Hamilton’s Rule for the Evolution &
of Altruism i

4?{15@ ﬂ Markus Waibel'*, Dario Floreano', Laurent Keller®*
N

T\/) Ul 1 Laboratory of intelligent Systems, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2 Department of Ecology and Evolution,

Biophore. University of Lausanne, Lausanne, Switzerland D

nicolas.bredeche@upmc.fr

Evolving collective robotics :

Dual methods

nicolas.bredeche@upmc.fr
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ER as a tool for individual-based modeling and simulation 15

Signaling

Initial Population
(random solutions)

Historical contingency affects signaling strategies and
competitive abilities in evolving populations of
simulated robots

G Steffen Wischmann®®, Dario Floreano®, and Laurent Keller*’

‘ Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; and "Laboratory of Intelligent Systems, Ecole Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India,_and approved December 2, 2011 (received for review March 22, 2011)

nicolas.bredeche@upmc.fr

{(Off-line) classic evolutionary robotics mef frno 20001pondessetal 2015

| Initial Population
i | (random solutions)
: continue

y

= E

Replacement

1|

Evaluation Selection —>| Variations

nicolas.bredeche@upmc.fr



Definitions 18
Focus control
Space centralized
Time off-line
Selection pressure fitness function

e \What?
» Off-line design method
» Optimize in centralized fashion, then used in a distributed fashion

® Expected result

» A set of policies (possibly similar) that can be used within a
population of robots to solve a task

nicolas.bredeche@upmc.fr

Evolutionary Computation and Individual-Based Models in Biology 20
Initial Population
(random solutions)
continue i? Stop,
v I
Evaluation Selection —>| Variations Replacement
oA
c H
Q: i
8: g
g: 2
£
Evaluation &

nicolas.bredeche@isir.upmc.fr
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Evolutionary Computation and Individual-Based Models in Biology 19

Initial Population
(random solutions)
continue

-

Y I
Evaluation Selection —>| Variations Replacement
T A
§i !
-2
g i3
@i 4
O .

Evaluation
0 .»;l“.‘ 11“. gli!‘ . _— @
RUNINUAIK
—> G
Decoding
nicolas.bredeche@isir.upmc.fr
Evolutionary Computation and Individual-Based Models in Biology 21
Initial Population
(random solutions)
continue sto
Y 1
> Evaluation Selection —>| Variations Replacement
S
c H
21 i
a: s
G 2
g7
- P
—
Evaluation
L Baluaton | @
2 @ L,
&)
Decoding

nicolas.bredeche@isir.upmc.fr
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® | essons learned
» Cooperation
» between related individuals (inclusive fitnesses) [Waibel 2009,2011]
» between unrelated individuals (mutualism) [Bernard 2015]
» Communication and signalling
» efficiency vs. robustness [Wischmann 2012]

» directional communication [Pugh 2014]

® Open ISSUES (in addition to other classical issues with ER)
» Improving on scalability and complexity

» Division of labour

» Behaviour heterogeneity in homogeneous populations
[D’Ambrosio 2013]

» Cooperative behaviours in heterogeneous population (e.g.
mutual adaptation [Ducatelle 2010])

nicolas.bredeche@upmc.fr

Definitions 24
Focus control
Space distributed
Time on-line
Selection pressure fitness function or  environment-driven

e \What?

» On-line adaptation
» Optimised and used in a distributed fashion

® Expected result
» A population of robots improving over time wrt. a task to achieve

» Continuous adaptation to open, possibly changing, environments

nicolas.bredeche@upmc.fr
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Dual methods 23

Q

=
g O

Evaluation

[\

Selection [| Reservoir
of

Variations | genomes k

Repl.

not close enough

nicolas.bredeche@upmc.fr

on-line,
on-board (intrinsic),
encapsulated (centralised).

nicolas.bredeche@isir.upmc.fr
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[Ficici, 1999][Watson, 2002]
[Smith, 2000]

[Simoes, 2001]
[Wischmann, 2007]
[Nehmzow, 2002]

[Vogt, 2010]

[Silva, 2013]
[Fernandez Perez, 2014]
[Haasdik, 2014]

on-line,
on-board (intrinsic),
distributed.
[Usui, 2003
[Elfwing, 2005)
[Perez,2008]
[Weel, 2012]

[Floreano, 2002

{Bongard, 2006]
[Haroun, 2006]
[Walker, 2006]

[Bongard, 2006] on-line,

[Bredeche, 2009] on-board (intrinsic),

[Christensen, 2010] nobe
[Karafotias, 2011] distributed and encapsulated.

[Eiben, Haasdijk, Bredeche, 2010]



directed evolution...

...natural evolution

Fitness function

selection depends from a user-defined metric

Environment-driven

selection results from interactions in the environment

directed selection
task-explicit: patrolling, reach a goal, etc.
task-implicit: energy-driven, predator-prey, etc.
task-free: diversity, novelty

128

5.

[Watson et al., 2002]

[Eiben et al., 2010]

[Trueba et al. 2012]
etc.

Typical examples (non-exhaustive)

natural selection

no fitness function
the resulting behaviour is shaped by the environment and the
competition between genomes

=

[Bredeche and Montanier. 2010]
[Bianco et al., 2004]
etc.

nicolas.bredeche@upmc.fr

Extended from:

Embodied evolution

A vanilla algorithm

Controller
e.g.: weighted combination of inputs,
artificial neural networks, etc.

motor1 = a*IR1 + b*IR2 + c*IRs + d*IRs + e
motor2 = IRy + g*IR2 + h*IRs + i*IRa + |

motor?

IR = Infrared sensors

P

Genome
Q;

a=+03I

b=+0.11

c=-142

genome of controller
4 eg:R"
e}
O

26

28

e | Reservoir of genomes

- {genome fitness value}*n

° This list is used to store (unique)

copies of genomes from robots
passing nearby with their current

[ ] fitness value at the time of

encounter

Fitness function

® :energy item E.g.: #energy items foraged

A robot is «dead> if...

- internal cause: no genome available when a new generation starts
- external causes: failures, crashes, lack of energy, etc.

nicolas.bredeche@upmc.fr
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Evolutionary
Robotics

Simulated Embodied
Trials Trials

(e.g., Sims, 1994)

Serial Parallel
Trials Trials

(e.9., Floreano and Mondada, 1994)

Centralized| |Distributed

EA EA
(no known examples)  Embodied
Evolution

Fig. 4. The robot pen for the phototaxis experiments. Eight robots,
the power floor, and the light in the center are shown. The unique
ID of a robot is collected when it reaches the light (via infrared
receivers on the overhead beam above the lamp). This data is
time-stamped and stored for monitoring experiment progress.

Fig. 1. Embodied Evolution is an evolutionary robotics method-
ology that embodies a distributed evolutionary algorithm within a
population of real robots.

Embodied Evolution: Distributing an evolutionary algorithm in a
population of robots

Richard A. Watson, Sevan G. Ficici, Jordan B. Pollack
Robotics and Autonomous Systems 39 (2002) 1-18

nicolas.bredeche@upmc.fr

“Vanilla” embodied evolution algorithm 29

example with a foraging task

7 o ° | B s ’
. ¢ 0 o &
. PY Sacaivag PY PY PY
R = N = o B3 o B

Step 4 :end of generation

)

Step | :generation starts Step 2 Step 3
(3 robots, empty lists)

At this point, each robot...
1 - forgets its own genome

2 - perform selection among
received genomes wrt fithness
values

3 - apply variation (crossover
and/or mutation) on the selected

Selection pressure is applied genome (e.g. gaussian mutation)

4 - use new genome to set up

at the indiVid ual |eve' new control architecture

nicolas.bredeche@upmc.fr
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“Vanilla” embodied evolution algorithm 30

example with a foraging task

K H &

Step | :generation starts Step 2 Step 3
(3 robots, empty. lists)
< o
O e}
o &
0 e} 0 |—
. =

Back to Step I :
anew generation starts

nicolas.bredeche@upmc.fr

Embodied evolution

A vanilla algorithm

Controller

e.g.: weighted combination of inputs, motort  sai
artificial neural networks, etc. 2

IR3 IR = Infrared sensors
motor1 = a*IR1 + b*IR2 + ¢c*IRs + d*IRs + e P
motor2 = IRy + g*IRz + h*IRs + iIRa+ ] 5 e
Genome
radio range

2
genome of controller
eg:R"

nicolas.bredeche@upmc.fr

0 ®

e |

Step 4 :end of generation

32

Reservoir of genomes

This list is used to store (unique)
copies of genomes from robots
passing nearby.

NO Fitness function

no fitness value is computed,
therefore none is stored

{genome}'n l

~19 robots

nicolas.bredeche@upmc.fr

31
inputs:
- 8IR sensors
- 8 bumpets
- orientation wrt. landmark
- distance to landmark
outputs:
= left and right motor speed
Mathematical and Comp Modelling of D: I Systems 2012
Environment-driven Distributed Evolutionary Adaptation
in a Population of Autonomous Robotic Agents
Nicolas Bredeche®*, Jean-Marc Montanier®, Wenguo Liu® and Alan F.T. Winfield®
The mEDEA algorithm 33

genomes.
received

b

Step | :generation starts
(3 robots, empty lists)

nicolas.bredeche@upmc.fr
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Step 3 Step 4 :end of generation
suryival prob.: Ps(e) = |, Ps(e)=Ps(e)=1/2
will also generate more offsprings

At this point, each robot...
1 - forgets its own genome

2 - perform random selection
among received genomes

3 - apply a slight variation on the

selected genome (e.g. gaussian
mutation)

Selection pressure is applied
at the population level

Bredeche, Montanier (PPSN 2010)

4 - use new genome to set up
new control architecture




The mEDEA algorithm 34 35
4000 robots in simulation

NPT AN

= R B B

Step | :generation starts Step 2 Step 3 Step 4 :end of generation
(3 robots, empty ists) suryival prob.: Ps(e) = 1, Ps(e)=Ps(e)=1/2
will also generate more offsprings

Back to Step I :

anew generation starts

nicolas.bredeche@upmc.fr Bredeche, Montanier (PPSN 2010) nicolas.bredeche@upmc.fr Bredeche (ALIFE 2014

36

® [ essons learned
» No reality gap oy definition)
» Scalable algorithms vy definition)
» Population density and communication range are critical

» Natural evolution can be simulated — relevance to evol. biology

e Open issues

» Specialisation is challenging [tueba etal., 2013] Wra p p I n g u p

» EVO|Viﬂg Complex social behaviours (cooperation, division of labour, ...)

» Evaluation/maturation time wischmann et al., 2007][Bredeche et al., 2009]

Conclusions and open issues

» Trade-off between addressing a task and surviving [Haasdik et al., 2014]
» Necessary conditions for truly open-ended evolution [gedau et al. 2000]

nicolas.bredeche@upmc.fr
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Dual motivations 38

‘ contributions
ito robotics and/or ALIFE

To make

A

v

To understand

contributions
to biology

nicolas.bredeche@upmc.fr
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Thank you for your attention

DOSSIER
SCIENCE

Studies in Computational Intelligence 341

Adaptive
Collective
Systems

Stéphane Doncieux
Nicolas Bredéche
Jean-Baptiste Mouret (Eds.)

New Horizons
in Evolutionary

Robotics Handbook of

COLLECTIVE
ROBOTI

&) Springer

Mailing list: https://www.listes.upmc.fr/iwws/review/roborobo

http://pages.isirupmc.fr/~bredeche

nicolas.bredeche@upmc.fr
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Dual methods

39

Initial Population
(random solutions)

continue

A

(Off-line) classic evolutionary robotics me foreno 2000 poncieux et a. 2015

=2

1|

> Evaluation

—

Variations

Selection

Replacement

(Oﬂ—“l’]e) embodied eVO|utiO|’] [Watson et al. 2002][Eiben et al.2010]

Q

Mating

not close enough

e

Evaluation

H\

Selection

Variations

Repl.

Reservoir
of

genomes

nicolas.bredeche@upmc.fr

Open issues



Applying ER to real world problems

ER is a successful building block

Projet SMAVNET, LIS, EPFL.

v

ER leads to impressive
results in simulation

AT e

ﬁ Geijtenbeek, T. and van de Panne, M. and van der
Stappen, A. F. (2013)
Flexible Muscle-Based Locomotion for Bipedal
Creatures.
ACM Transactions on Graphics (Proc. SIGGRAPH
ASIA 2013).

V.

... but the holistic approach of ER on real robots remains a challenge :
@ How to deal with large number of evaluations ?
@ How to take the best of simulation and reality ?

|

Combining evolution and learning

Evolution and learning occur in many species, what about robots ?

)

Complementary in theory...

Learning can smooth a search
landscape [Baldwin 1896].

Baldwin effect
[Hinton and Nowlan 1987]

... but hard to use in practice
A few hints :

@ learning to learn is deceptive
[Risi et al. 2009, 2010]

@ regularity in network structure
makes a difference [Tonelli
and Mouret 2013]

@ needs formalization [Mouret

and Tonelli 2014]

258

Nature-like evolvability

Natural evolution

Artificial evolution

author : https://en.wikipedia.
org/wiki/User:Justin

v

[Auerbach and Bongard 2014]

78

[Cheney et al. 2013]

What genotype for complex systems ?

How to define viable mutations ?

Combining evolution and learning

Evolution and learning occur in many species, what about robots ?

Complementary in theory...

Learning can smooth a search
landscape [Baldwin 1896].

Baldwin effect
[Hinton and Nowlan 1987]

... but hard to use in practice
A few hints :

@ learning to learn is deceptive
[Risi et al. 2009, 2010]

@ regularity in network structure
makes a difference [Tonelli
and Mouret 2013]

@ needs formalization [Mouret
and Tonelli 2014]




Evolutionary robotics and reinforcement learning

Convergence of the two approaches ...
.. for policy optimization in continuous spaces :

@ ER similar to policy search algorithms [Kober et al. 2013]

@ ER competitive with recent RL algorithms [Stulp and Sigaud 2012]
.. but not for all ER applications :

@ morphology design is out of the scope of RL

@ RL is not a model of biological evolution

@ What inspiration to draw from RL ?
@ What new algorithms to build for RL based on ER principles ?

Environment-driven evolutionary robotics

The limits of goal-driven search

@ Goal driven objectives are often deceptive [Lehman and Stanley
2011]

@ What fitness function and evaluation conditions to evolve life-like
capabilities ?

An alternative...

No fitness function : environment-driven evolution [Bianco and Nolfi 2004, Montanier and
Bredeche 2010, Bredeche et al. 2012].

How does tasks and environment driven pressure interact ? [Haasdijk et al. 2014]

259

Online learning : single and multiple robots

Most ER works deal with off-line learning
@ evaluation in the same initial conditions
@ ... for the same period
@ ... and in a constant environment

Open issues with on-line learning
How to deal with :

@ changing initial conditions

@ changing environments

From single to multiple robots

Finding exact solutions to a multiple robots setup (DEC-POMDP) is NEXP-Complete
[Papadimitriou 1994].

ER allows from several dozens of real robots [Watson et al. 2002, Bredeche et al. 2012] or
thousands of simulated ones [Bredeche 2014].

Open-ended evolution

Fish

Vertebrates Insect fly

Reptiles
Dinosaurs

irds.

lammals.
P4

—4 Flowers and bees
e

% )
%, %, 2
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