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We are happy to answer questions at any time.

Problem Statement Black Box Optimization and lts Difficulties

Problem Statement
Continuous Domain Search/Optimization
@ Task: minimize an objective function (fitness function, loss
function) in continuous domain

f: X CR" =R, x = f(x)
@ Black Box scenario (direct search scenario)

X

—

f(x)

» gradients are not available or not useful
» problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

@ Search costs: number of function evaluations



Problem Statement Black Box Optimization and Its Difficulties Problem Statement Black Box Optimization and Its Difficulties

Problem Statement Problem Statement
Continuous Domain Search/Optimization Continuous Domain Search/Optimization
@ Goal @ Goal
» fast convergence to the global optimum » fast convergence to the global optimum
...or to a robust solution x ...or to a robust solution x
» solution x with small function value f(x) with least search cost » solution x with small function value f(x) with least search cost
there are two conflicting objectives there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD) curve fitting, airfoils

» model calibration biological, physical

» parameter calibration controller, plants, images
@ Problems

» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

5 6
Black Box Optimization and Its Difficulties Black Box Optimization and Its Difficulties
Problem Statement Objective Function Properties
Continuous Domain Search/Optimization We assume f : X C R" — R to be non-linear, non-separable and to
e Goal have at least moderate dimensionality, say n <« 10.

» fast convergence to the global optimum

i ) ) . ...or to a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD) curve fitting, airfoils

» model calibration biological, physical

» parameter calibration controller, plants, images
@ Problems

» exhaustive search is infeasible

» naive random search takes too long

» deterministic search is not successful / takes too long
Approach: stochastic search, Evolutionary Algorithms
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Problem Statement Black Box Optimization and Its Difficulties Problem Statement Black Box Optimization and Its Difficulties

Objective Function Properties What Makes a Function Difficult to Solve?
We assume f : X C R" — R to be non-linear, non-separable and to Why stochastic search?

have at least moderate dimensionality, say n <« 10.

Additionally, f can be @ non-linear, non-quadratic, non-convex

on linear and quadratic functions much better

@ non-convex search policies are available

@ multimodal
. , @ ruggedness
there are possibly many local optima non-smooth, discontinuous, multimodal, and/or
@ non-smooth noisy function
_ _ derivatives do not exist @ dimensionality (size of search space) Pl -
@ discontinuous, plateaus (considerably) larger than three 150 B0
i iti - b © ©©© 0
@ ill-conditioned @ non-separability Feansel
@ noisy dependencies between the objective variables Tadc8 8.4 Qo
° ... @ ill-conditioning e
Goal: cope with any of these function properties
they are related to real-world problems
gradient.direction Newtan direstion
9 10
Black Box Optimization and Its Difficulties Black Box Optimization and Its Difficulties
Ruggedness Curse of Dimensionality

non-smooth, discontinuous, multimodal, and/or nois , , , .
Y The term Curse of dimensionality (Richard Bellman) refers to problems

caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Fithess

-4 -3 -2 -1 0 1 2 3 4

cut from a 5-D example, (easily) solvable with evolution strategies
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Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires
209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires
209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg m1n f(xl,...,xn) (argminf(xl,...),...,argminf(...,x,,))
X1 Xn

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively © X ©
decomposable functions To X} @ 5 @ o, G
' @ ©0© @
x17“., fol 0 .....
- © ©© © @

Rastrlgln function

!
o

©©0©©
© ©




Problem Statement Non-Separable Problems Problem Statement ll-Conditioned Problems

Non-Separable Problems lll-Conditioned Problems

Building a non-separable problem from a separable one (*+2) Curvature of level sets

Consider the convex-quadratic function

Fx) = Yoo T H(—x") = L 0 hig (=20 S g (i—x§) ()
@ f:x+— f(x) separable H is Hessian matrix of f and symmetric positive definite
@ f :x — f(Rx) non-separable

Rotating the coordinate system

R rotation matrix . . .
gradient direction —f’(x)"

Newton direction —H~'f’(x)T

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the

! Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:

The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann gradient) is sufficient. Otherwise second order information (estimation
2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A Of H~ 1) iS necessary_
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
17 8
What Makes a Function Difficult to Solve? What Makes a Function Difficult to Solve?
...and what can be done ...and what can be done
The Problem Possible Approaches The Problem Possible Approaches

Dimensionality exploiting the problem structure Dimensionality exploiting the problem structure

separability, locality/neighborhood, encoding separability, locality/neighborhood, encoding

lll-conditioning second order approach
changes the neighborhood metric

19 317 20



Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem

Possible Approaches

Dimensionality

[ll-conditioning

Ruggedness

second order approach

exploiting the problem structure

separability, locality/neighborhood, encoding

changes the neighborhood metric

non-local policy, large sampling width (step-size)

as large as possible while preserving a
reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator

restarts

serves as repair mechanism

21

Problem Statement lll-Conditioned Problems

Metaphors

Evolutionary Computation

Optimization/Nonlinear Programmin

individual, offspring, parent

population
fitness function

generation

candidate solution
decision variables
design variables
object variables
set of candidate solutions
objective function
loss function
cost function
error function
iteration

—

23

Problem Statement lll-Conditioned Problems

Questions?

22

Evolution Strategies (ES)

e Evolution Strategies (ES)
@ A Search Template
@ The Normal Distribution
@ Invariance

318 24



Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

25

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x,.

..,X) ER?
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fg(0,x1,...,x\,f(x1),...,f(x)))
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

..,X) ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|6) — x;,

...,Xx)) €ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fg(0,x1,...,x\,f(x1),...,f(x)))

28



Evolution Strategies (ES) A Search Template

Stochastic Search

Stochastic Search
A black box search template to minimize f : R” — R

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N

Initialize distribution parameters 6, set population size A € N
While not terminate While not terminate
@ Sample distribution P (x]6) — x1,...,x) € R" @ Sample distribution P (x]6) — x1,...,x) € R"
@ Evaluate xi,...,xyonf

@ Evaluate xy,...,xyonf

© Update parameters 0 < Fy(0,x1, © Update parameters 0 < Fy(0,x1,

conXnf(xr), . f(xn)

X f(xr), . f(xN))

29 30

Evolution Strategies (ES) A Search Template

Stochastic Search

Stochastic Search

A black box search template to minimize f : R” — R

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N

Initialize distribution parameters 6, set population size A € N
While not terminate While not terminate
@ Sample distribution P (x]6) — x1,...,x) € R" @ Sample distribution P (x]6) — x1,...,x) € R"
@ Evaluate xy,...,xyonf

@ Evaluate xy,...,xyonf

© Update parameters 0 < Fy(0,x1, © Update parameters 0 < Fy(0,x1,

conXnf(xr), . f(xn)

conXf(xr), . f(xn)

Everything depends on the definition of P and Fy

Everything depends on the definition of P and Fy
deterministic algorithms are covered as well

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined

via operators on a population, in particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms
31 320 32




The CMA-ES

Input: m € R", 0 € Ry, A

Initialize: C=T1,andp. =0, p, =0,

Set: ce ®4/n, co & 4/n, ¢ = 2/n%, ¢\ &~ py/n?, 1+, < 1,dy = 14 \/?,
and w;—;..» such that u,, = ~ 03\

1
2w
While not terminate

xi=m+oy, yi ~ Ni(0,C), fori=1,...,)

m 4 Y Il wixin =m+ oy, wherey, =3 wiyia update mean

pe +— (1 —co)pe + 1I{Hpq‘|<1.5\/ﬁ}\/1 — (1 = ¢ce)®\/wyw cumulation for C

Pa<—(1—Cg)Pa+ 1_(1_C0)2\//'TWC_%yW

C—1—-ci—cyC+ cpep” + Cn Z’H:l Wiyi:)‘y}:)\
o (ol

0-<_a><exp<£ (m-l))

cumulation for o
update C
update of o

Not covered on this slide: termination, restarts, useful output, boundaries and

encoding

33

Evolution Strategies

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,m € R, 0 € R;, C € R"™" |\

@ the mean vector m € R”" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

35

sampling

Stochastic Search

A black box search template to minimize f : R” — R
Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x]6) — x1,...,x) € R"

@ Evaluate xy,...,xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

34

Evolution Strategies

New search points are sampled normally distributed

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,m € R, 0 € R;, C € R™" |\

@ the mean vector m € R”" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.

36



Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means that the sum of normal variates is again
normal:

N(@x,A)+N@y,B) ~N(x+y, A+B)

helpful in design and analysis of algorithms
related to the central limit theorem

© most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, rotational
invariant

© maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape

37

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

39

Evolution Strategies (ES) The Normal Distribution

Normal Distribution

Standard Normal Distribution
0.4

54
W

probability density of the 1-D standard
normal distribution

probability density
o
N

o

-4 -2 0 2 4

2-D Normal Distribution

probability density of

JIv I
/f{'ﬁ:’o"s‘&\\\ a 2-D normal ;
A distribution :

5 _5
38

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

The covariance matrix C
@ determines the shape

@ geometrical interpretation: any covariance matrix can be uniquely identified with
the iso-density ellipsoid {x € R"| (x —m)"C™'(x —m) = 1}

322 40



Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x—m)"C'(x —m) =1}
Lines of Equal Density

’ ’
/
\
N

N (m,0T) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

41

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C'(x —m) =1}
Lines of Equal Density

N (m,0T) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

N (m,D?) ~m+DN(0,I)
n degrees of freedom

components are

independent, scaled

N (m,C) ~m + CIN(0,I)

(n* + n) /2 degrees of freedom

components are
correlated

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

43

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C'(x —m) =1}
Lines of Equal Density

N (m, o) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

N (m,D?) ~m+DN(0,I)
n degrees of freedom

components are

independent, scaled

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

42

Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

08 Norm of normally distributed vector 2D Normal Distribution
1D 04
03 i
2D 02 ‘W&h
o 5D 17D it
, 65D o1 ‘
8 0
5 5 :
" 0
~ -5 -5
- Norm of ormaly dstbuted vecor
E 107,
z
B 107}
f=4 o
v "
o Q/
5
0,

0 2 7 3 s 10 : .
IN(0,T) || — N(W, 1/2) with modal value vn — 1
yet: maximum entropy distribution
also consider a difference between two vectors:

INV(0,1) = N(0,T) || ~ [NV(0,T) + N(0,1) | ~ V2NV (0,T) |

44
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Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

Norm of normally distributed vector

2-D Normal Distribution

10°

17D

_.
S
L

N

densitygn 1,2,5,1Z,65-D

._.
S
L

1079

0 2 4 6 8 10 2 * °
|N(0,T) || — N(M, 1/2) with modal value v/n — 1
yet: maximum entropy distribution
also consider a difference between two vectors:

INV(0,1) = N (0,T) || ~ [NV(0,T) + N(0,1) || ~ v2[INV(0,T) |

45

The (/1 \)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N——

=i
Let x;.) the i-th ranked solution point, such that f(x.,) < -+ < f(xx.)).

The best 1 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
47
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Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C ! (x —m) =1}
Lines of Equal Density

What is the implication for the distribution in this picture (considering large
dimension)?

46

Evolution Strategies (ES) The Normal Distribution

The (u/u, )-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N——

=i
Let x;.) the i-th ranked solution point, such that f(x.,) < -+ < f(xx.)).
The new mean reads

i
m < Zwixw\
i=1

where

= e =

1
wy > 2wy, >0, Zﬁllwizlv S W2

The best 1 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
48



The (/1 \)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N——

=i

Let x;.) the i-th ranked solution point, such that f(x.,) < -+ < f(xx.)).

The new mean reads

© u
m < Zwixi:)\ =m+ Uzwiyi:/\
i=1 i=1
N —
= Yw
where

wp > 2w, >0, Y wi=1, ﬁ:3ﬂw%%

The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
49

Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

@ translation invariance

is true for most optimization algorithms

m

N .
N
. .
o =2
N R
) bl

fx) & flx—a)

Identical behavior on f and f,

[ x=flx), x(=0) = x,
fo: x> fx—a), x0=9 =xy+a

No difference can be observed w.r.t. the argument of f

51

Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions
Rank-based algorithms

Update of all parameters uses only the ranks

Flaa) < fn) < e < flean)

E) ER——

8(f(x1x)) < g(f(x2:n)) < .. < g(f(xan)) Vg
g is strictly monotonically increasing
g preserves ranks

itley . I'ne algorithm ana selection pressure: ly rank-based allocation of reproquctive trials Is best,
ICGA

50

Evolution Strategies (ES) Invariance

Rotational Invariance in Search Space

@ invariance to orthogonal (rigid) transformations R, where RRT = I

e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

fx) < f(Rx)

Identical behavior on f and fx

fioxofl), x(=0=x
fr: x—f(Rx), x(=0 =R"(xq)
45

No difference can be observed w.r.t. the argument of f

4Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from
Nature PPSN VI
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Evolution Strategies (ES)

Invariance

Simplex downbhill [Nelder & Mead 1965]

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
@ Empirical performance results

— Albert Einstein
» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ Invariance is a strong non-empirical statement about
generalization
Evolution Strategies [Rechenberg 1965, Hansen & Ostermeier 2001]

generalizing (identical) performance from a single function to a whole

class of functions
consequently, invariance is important for the evaluation of search
algorithms

54

F = 1PN G4
Evolution Strategies
Recalling
e Step-Size Control

@ Why Step-Size Control
@ Path Length Control (CSA)

xi ~m+ o N;(0,C) fori=1,...,\
as perturbations of m,

where x;,m € R", 0 € R, C € R™" |!
where

@ the mean vector m € R" represents the favorite solution
and m « Y I wix;

New search points are sampled normally distributed

@ the so-called siep-size o € R4 controls the step length
@ the covariance mairix C € R determines the shape of
the distribution ellipsoid
55

DA

The remaining question is how to update o and C.

326
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Why Step-Size Control?

0 I—
107 | random search
step-size too small —
() constaht step-size (1 +1 )_ES
5107 d &
T 10 (red & green)
5 n
'-§ ******** step-size too large— — - - — — ~ 1 f(X) — lez
-6 =1
210 ¢ i
in [—2.2,0.8]"
optimal step-size forn =10
(scale invariant)
1 0_9 | | |
0 05 1 15 2
4
function evaluations x 10
57

Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5W,1O)—S, times 11 runs

— with optimal step-size |1
— with step-size control

. 107
=

~

10’2 " 2

I fx) =)
= i=1

2 10°

é forn = 10 and

10

\ | € [-0.2,0.8]"
A\ \\‘ ‘ e
N
\ W m
N\ SR VRN

; ; h 1\ N A
0 200 400 600 800 1000 1200
function evaluations

with optimal versus adaptive step-size o with too small initial &

10°
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, 11 runs _
100

— with optimal step-size |1

f(x)

I — x| =
,
S

0 200 400 600 800 1000 1200
function evaluations

with optimal step-size o

58

Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/54,10)-ES

10° & — with optimal step-size |3
— with step-size control
— respective step-size
1ot ‘ ‘ ‘
=
~—
~
107
Il
*:
T 10°
£
10 o
10°

0 200 400 600 800 1000 1200

function evaluations

forn = 10 and
xY € [-0.2,0.8]"

forn = 10 and
x¥ € [-0.2,0.8]"

comparing number of f-evals to reach |m| = 1075: HR%0 ~ 1.5
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/54,10)-ES _

10° k — with optimal step-size |}
— with step-size control
— respective step-size
10" ‘ ‘ ‘ ‘
~~
=
~—
~
102 k7 AN AN N A n 5
PN : : : ; : : : i=1
R 107 F
é in [—0.2,0.8]"
= o forn =10
-5 L I L I L L
1075 200 400 600 800 1000 1200 1400 1600

function evaluations

comparing optimal versus default damping parameter d,: 119 ~ 1.5

61

Methods for Step-Size Control

@ 1/5-th success rule?, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

@ o-self-adaptation®, applied with “,"-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

@ path length control? (Cumulative Step-size Adaptation, CSA)®
self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
Cschwefel 1981, Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
92)

€0stermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN 1V
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Why Step-Size Control? ol
n

Oopt = Oopt

- Gonstant o| 0.2
1 00 I random search
8 0.15
[0} =
2107 g
c 5 01
S g
9 T
c g |
210 6| § é 0.05
L\
optimal slepﬂiz& adaptive 0
(scale invariant) § step-size o: ‘ ‘ ‘
1 O‘9 i H 1 0_3 1 0—2 0_1 100
0 500 1000 1500 %

1
function evaltations normalized step sjz€ 0

*

Jopt

evolution window refers to the step-size interval (——) where reasonable performance
is observed
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Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation
Xi =
m <«

m+oy;
m—+ oyy

Measure the length of the evolution path

the pathway of the mean vector m in the generation sequence

% | A

decrease o increase o

loosely speaking steps are
@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)
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Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setce, ~4/n,d, = 1.

65

Step-Size Control Path Length Control (CSA)

(5/5,10)-CSA-ES, default parameters

— with optimal step-size
— with step-size control 4
— respective step-size

100 L

10*

[ — x|

; ; ; ; ; ; N
0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations
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in [—0.2,0.8]"
forn = 30

Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, ~4/n,d, = 1.

m < m+oy, wherey,=>" wy\ update mean

Ps (I—Cg)pn-—l— 1—(1_6-0)2 \/m Voo
—_— ~
accounts for 1—c, accounts for w;

Co lp- || )) ,
o +— ox exp|—|=—r————1 update step-size
P (do (EIIN(O,I) || P P

>1 <= ||p-|| is greater than its expectation
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Covariance Matrix Adaptation (CMA)

e Covariance Matrix Adaptation (CMA)
@ Covariance Matrix Rank-One Update
@ Cumulation—the Evolution Path
@ Covariance Matrix Rank-x Update
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Covariance Matrix Adaptation (CMA) Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Evolution Strategies Covariance Matrix Adaptation
Recalling Rank-One Update

| m <— m+ oy, yw:ZLl WiYiX, leM(07C)
New search points are sampled normally distributed |:

xi~m+oN;(0,C) fori=1,...,\
as perturbations of m,  where x;,m € R", v € R, C € R™" -
where
@ the mean vector m € R” represents the favorite solution

@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R™" determines the shape of initial distribution, C =1
the distribution ellipsoid

The remaining question is how to update C.

69 70

Covariance Matrix Rank-One Update Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation

Rank-One Update Rank-One Update

M o= MmOV, Yw = 9o Widin,  Yi~ N;i(0,C) M o= MmOy, Yw =y Widin,  Yi~ N;i(0,C)
[ ]
[ ] ]
° ® o
initial distribution, C =1 yw, movement of the population mean m (disregarding o)
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update

m < m"‘@)’w; yW:Z?:l WiYi:\, yLNM<0)C) m < m+0yW7 yW: l lwlyl)\a le./V‘,<0,C)
mixture of distribution C and step y,,, new distribution (disregarding o)

C+08xC+0.2xy,y!

73 74
Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update
Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update
m o= m+oye, Y= i wiyin, Yi~Ni(0,C) m o= m+oye, Y=y i wiyin, Yi~Ni(0,C)
A ' A '
° - °

new distribution (disregarding o) movement of the population mean m
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mmoo mA oy, Yw = widin,  Yi~ Ni(0,C)

mixture of distribution C and step y,,,
C+—08xC+0.2 xywy;FV
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

Initialize m € R", and C =1, set o = 1, learning rate c.o, ~ 2/n*
While not terminate

X, = m+(7yi7 Yi ~ M(Oac)a
m
m + m+oy, Wherey, = Zwiym
i=1
1
C <+ (1 = ceov)C + ceovtbw yWyVTV where u,, = u > 1
~—~—~ =1 Wi

rank-one

The rank-one update has been found independently in several domains® 7 & °

6Kjellstrf}m&Tav«'an 1981. Stochastic Optimization in System Design, IEEE TCS

Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
adaptation, ICEC

8Ljung 1999. System Identification: Theory for the User

9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mmoo mA oy, Yw = wiYin,  Yi~ Ni(0,C)

new distribution,

C+08xC+0.2xy,y!

the ruling principle: the adaptation increases the likelihood of
successful steps, y,,, to appear again

another viewpoint: the adaptation follows a natural gradient

approximation of the expected fitness
78

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

332

C <« (1 - Ccov)C + Ccovllw_)’wya
covariance matrix adaptation
@ learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
conducts a principle component analysis (PCA) of steps y,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

learns a new rotated problem representation L \/

components are mdependent only)
in the new represertation. ...

learns a new (Mahalanobis) metric
variable metric method
approximates the inverse Hessian on quadratic functions
transformation into the sphere function
for = 1: conducts a natural gradient ascent on the distribution A/
entirely independent of the given coordinate system
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of

e Covariance Matrix Adaptation (CMA) Steps y. is used

@ Covariance Matrix Rank-One Update

@ Cumulation—the Evolution Path g o
@ Covariance Matrix Rank-z Update peocy ) (T—co)*™ ylY
—0 N—_——
exponentially

fading weights
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation

The Evolution Path “Cumulation” is a widely used technique and also know as
Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

@ exponential smoothing in time series, forecasting

@ exponentially weighted mooving average

An exponentially weighted sum of @ ijterate averaging in stochastic approximation

steps y., is used @ momentum in the back-propagation algorithm for ANNs

8
peocy  (I—c) yY

exponentially
fading weights

“Cumulation” conducts a low-pass filtering, but there is more to it....

The recursive construction of the evolution path (cumulation):

pe — (I=c)pe+ /1= (1—=c)Vw yw
—— ~~

decay factor normalization factor input = m—mop|g
2

< 1. History information is accumulated in the evolution path.
83 333 84

where 1, = ﬁ, Ce



Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

. _ T . _ T
Cumulation €4 (1= CoordC b Cmphuruti Cumulation €4 (1= CoordC b Cmphuuti
Utilizing the Evolution Path T T . . Utilizing the Evolution Path T T . .

We used y..y,, for updating C. Because y,y, = —yw(—y») the sign of y,, is lost. We used y.y,, for updating C. Because y,y, = —yw(—y) the sign of y,, is lost.

(&= :

85 86
. — T 0 . .
Cumulation C = (1= oo ) C - ccovtimyusy Using an evolution path for the rank-one update of the covariance
lizing the Eyolution Path . T e sian of v is | matrix reduces the number of function evaluations to adapt to a
e used y,y, for updating C. Because y,y, = —yw(—yw) the sign of y,, is lost. straight ridge from about O(nz) to O(n).(a)

aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

‘-— Number of f-evaluations divided by dimension on the cigar function f(x) = x3 + 108 >="_, x2

v 10°
_ ¢ = 1 (no cumulation)
The sign information (signifying correlation between steps) is (re-)introduced by using 10° /

the evolution path. o jee=1 /\/n
— — ]
pooe (1= p+ VT= (0= e s/
N——
decay factor normalization factor 10° S 5
10 10
C « (1 — Ccov)C + Ceov pcch dimension
—~—
rank-one

The overall model complexity is n?> but important parts of the model

where [, = <, ceov < cc < 1 such that 1/c. is the “backward time horizon”. in ti
S can be learned in time of order n
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Rank-. Update

xi = m+toy, yi o~ Ni(0,0),
m < m-+oyy Iw = Ziuzlwiyt':A

The rank-p update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.
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Rank-. Update

xi = m+toy, yi o~ Ni(0,0),
m < m-+oyy Iw = Ziuzlwiyt':A

The rank-p update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.
The weighted empirical covariance matrix

m
Cu =) wiyiaVia
i=1

computes a weighted mean of the outer products of the best ;1 steps and has
rank min(u, n) with probability one.

with 1« = X\ weights can be negative '°
The rank-p update then reads

C+ (1-ceov) CtenCp
where cqoy ~ pw/n2 and c.oy < 1.

OJastrebskl and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Rank-. Update

xi = m+toy, yi o~ Ni(0,0),
m < m-+oyy Iw = Ziuzlwiyt':A

The rank-p update extends the update rule for large population sizes A using
w1 > 1 vectors to update C at each generation step.
The weighted empirical covariance matrix

I
Cu = Z Wiyi:UIA
i=1

computes a weighted mean of the outer products of the best 11 steps and has
rank min(u, n) with probability one.

with 1« = X weights can be negative '°

OJastrebskl and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-n Update

xi = m+oy, yi~N(OC) Cu = ﬁzyi:uh

mpew < m+ i 2oVisa
C « (-DxC+1xC,

new distribution

sampling of A = 150
solutions where
C=Tando =1

calculating C where
w =50,
wl::Wu:%!
and ceoy = 1
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-n Update

Rank-u CMA versus Estimation of Multivariate Normal Algorithm EMNAgopa '

PCA of
steps

PCA of
points

,,,,,,,,,,,,,,,,,,,,,,,,

Tnew = Mold + ﬁ ¥ioa

x; =mgq +yi, yi~N(0,C)
C« ﬁ 22 (xi:x —Mnew) (Xi:k*"’new)T

sampling of A = 150  calculating C from p = 50
solutions (dots) solutions

mpew IS the minimizer for the variances when calculating C

new distribution

" Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E.
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of:distribution algorithms. pp. 75-102
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a
large population size is used

say A >3n+ 10
The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

12Hansen, Mdiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
95

rank-p CMA
conducts a

EMNAgIobaI
conducts a
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-un Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

12Hansen, Mdiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
94

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-n Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*

@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)

given p, x A < n

Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

Rank-one update and rank-u update can be combined

12Hansen, Mdiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
96



CMA-ES Summary

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy
Input: m € R", o € Ry, A (problem dependent)
Initialize: C=1,andp. =0, p, =0,
Set: ce ®4/n, co m4/n, ¢ = 2/n%, ¢\ & /0, 1+ < 1, dy = 1+ Ve,
and wi—i...x such that p, = s~ ~ 0.3
i=1"1
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,..., ) sampling
m<— Yt wixpy =m+ oy, wherey, =>" wyi update mean

De (1 — Cc)pc + 1I{‘|pﬁ“<1.5\/ﬁ}\/ 1-— (1 — Cc)zw/lllwyw cumulation for C
Do (1= o) po + /1= (1 = Co)2 /iy C 2y, cumulation for o

C+ (I—ci—cu)CH+ crpep” + cp Xt wiyioviy update C
0 4 0 X exp (2—: (E”””((’OIJI)” - 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and

encoding
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CMA-ES Summary Strategy Internal Parameters

Strategy Internal Parameters

@ related to selection and recombination

> )\, offspring number, new solutions sampled, population size
> 4, parent number, solutions involved in updates of m, C, and o
> Wi—1,...,u, recombination weights

@ related to C-update

> ¢, decay rate for the evolution path
> ¢y, learning rate for rank-one update of C
> ¢, learning rate for rank-u update of C

@ related to o-update

> ¢, decay rate of the evolution path
> ds, damping for o-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the
first place depend on the objective function and are not meant to be in the users choice.
Only(?) the population size A (and the initial o) might be reasonably varied in a wide range,
depending on the objective function

Useful: restarts with increasing population size (IPOP)
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Source Code Snippet

W CMA-ES - Wikipedia, t... * (&2

« 2 i [& hup/enwikipediaorg/wik

counteval = 0;
while count

t, arx(:,k)); % obje

ueff) * invsqretC * (xmean-xold) / sigma;
(1-cs)* (2*counteval /lambda) ) /chiN < 1.4 + 2/(N+1);

+ heig * (2-cc) *mueff) * (xmean-xold) / sigma;
xC

x(:,arindex(l:mu)) -

+ (l-hsig) * cc*(2-cc) * ©) .
+ cmu * artmp * diag(weights) * artmp';

[B,D] - eig(C);
D - sqrt(diag(D));
invsqrtC = B * diag(D."-1) * B';

end
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (0)

What did we want to achieve?

@ reduce any convex-quadratic function

f(x) =x"Hx

eg.f(x) = Y, 1007122
to the sphere model

without use of derivatives

@ lines of equal density align with lines of equal fitness

CocH™!

in a stochastic sense
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (1)

f convex quadratic, separable

biye:abs(f), cyan:i-min(f), greensigma, red:axis ratio Object Variables (9-D)
10 15 (1)=3.0931e
(2)=2.2083¢
10 (6)=5.6127¢
(7)=2.7147¢
5 (8)=4.5138e
| (9)=2.741e-
0 e ——x(5)=-1.0864
N (4)=-3.8371
107 =2.66178883753772e-10 5 5)3):76.9109
[ 2000 4000 6000 0 2000 4000 600
@ Principle Axes Lengths ‘Ségndard Deviations in Coordinates divided by sigma
2
10° 10° :
\ s
\ 5
107 107 6
7
8
10 10 9
[ 2000 4000 6000 0 2000 4000 6000
function evaluations function evaluations

Fx) =30, 1047122, a = 6

i=
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Theoretical Foundations

@ Theoretical Foundations

103

CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (2)
f convex quadratic, as before but non-separable (rotated)

bl%e:abs(f), cyan:f-min(f), green:sigma, red:axis ratio Object Variables (9-D)
10

(1)=2.0052¢
(5)=1.2552¢
(6)=1.2468¢
(9)=-7.3812
(4)=-2.9981
(7)=-8.3583
LN 85 (3)=-2.0364
(2)=-2.1131
_10 f=7.91055728188042e-10
10 81):72.6301
0 2000 4000 6000 [ 2000 4000 600
N Principle Axes Lengths Standard Deviations in Coordinates divided by sigma
10 3
1
8
10° »
e
\‘\ 7
10° 5
6
9
107 4
[ 2000 4000 6000 o 2000 4000 6000

function evaluations function evaluations

f(x) = g (x"Hx), g : R — R stricly increasing
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Theoretical Foundations

Natural Gradient Descend

CxH 'forall g, H

@ Consider arg ngn E(f(x)|0) under the sampling distribution x ~ p(.|0)

104

338



Theoretical Foundations

Natural Gradient Descend
@ Consider argngnE(f(x)|0) under the sampling distribution x ~ p(.|0)
we could improve E(f(x)|0) by following the gradient VoE(f(x)|6):
0 « 0 —nVE(f(x)|0), n>0

1056

Theoretical Foundations

Natural Gradient Descend
@ Consider argngnE(f(x)|0) under the sampling distribution x ~ p(.|0)
we could improve E(f(x)|0) by following the gradient VoE(f(x)|0):
0 + 0 — nVeE(f(x)|0), n>0
Vy depends on the parameterization of the distribution, therefore
@ Consider the natural gradient of the expected transformed fitness
Vo E(wo Py(f(x))|0) = Fy ' VoE(w o P(f(x))|0)
= E(w o Py(f(x))Fy ' Vo Inp(x[6))
using the Fisher information matrix F :((E%g%“’)))/ of the density p.

The natural gradient is invariant under re-parameterization of the
distribution.
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Theoretical Foundations

Natural Gradient Descend
@ Consider argngnE(f(x)|0) under the sampling distribution x ~ p(.|0)
we could improve E(f(x)|0) by following the gradient VoE(f(x)|0):
0 « 0 —nVE(f(x)|0), n>0
Vy depends on the parameterization of the distribution, therefore
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Theoretical Foundations

Natural Gradient Descend
@ Consider argngnE(f(x)|0) under the sampling distribution x ~ p(.|0)
we could improve E(f(x)|0) by following the gradient VoE(f(x)|0):
0 + 0 — nVeE(f(x)|0), n>0
Vy depends on the parameterization of the distribution, therefore
@ Consider the natural gradient of the expected transformed fitness
Vo E(wo Py(f(x))|0) = Fy ' VoE(w o P(f(x))|0)
= E(w o Py(f(x))Fy ' Vo Inp(x[6))
using the Fisher information matrix F :((E%g%“’)))/ of the density p.

The natural gradient is invariant under re-parameterization of the
distribution.

@ A Monte-Carlo approximation reads
A

Vo E@(f(x)|0) = > wiFy'Volnp(xial6), wi = w(f(xi)|60)

i=1
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CMA-ES = Natural Evolution Strategy + Cumulation

Natural gradient descend using the MC approximation and the normal distribution
@ Rewriting the update of the distribution mean

Iz M
Mpew < E WiXp\ =m+ § wixi) — m)
i=1 i=1

natural gradient for mean %E(w o Pr(f(x))|m, C)

@ Rewriting the update of the covariance matrix'3

rank one
~ =

Chew +— C + Cl(PcPcT - C)

rank-p

+ % ZM: w,-( (xin —m) (xix —m)" — 02C>

i=1

-~

natural gradient for covariance matrix %E(W o Pr(f(x))|m, C)

13
109

Maximum Likelihood Update

The new distribution mean m maximizes the log-likelihood
17
Mnew = arg max > wilog pnr(xilm)

i=1

independently of the given covariance matrix

Akimntn et al (2010): Ridirectinnal Relatinn hatwean CMA Funlitinn Strateaies and Natiiral Funliitinn Stratenies PPSNF X

The rank-;. update matrix C,, maximizes the log-likelihood

m
Xi:\ — Hold
C, =arg mcélle:wi logpr (%’mold, C)
=

log pyr(x[m, C) = —1logdet(2rC) — 1 (x — m)TC~ (x — m)
py is the density of the multi-variate normal distribution

111

340

Theoretical Foundations

Maximum Likelihood Update

The new distribution mean m maximizes the log-likelihood

w
Mnew = argmax Y wilog par(xi|m)
m

i=1

independently of the given covariance matrix

log pr(x[m, C) = —1logdet(2rC) — 1 (x — m)TC~ 1 (x — m)
py is the density of the multi-variate normal distribution
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Theoretical Foundations

Variable Metric

On the function class

o) = ¢ (50— xH (s — )T

the covariance matrix approximates the inverse Hessian up to a
constant factor, that is:

CxH™' (approximately)

In effect, ellipsoidal level-sets are transformed into spherical level-sets.

g : R — Riis strictly increasing
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Theoretical Foundations

On Convergence

Evolution Strategies converge with probability one on,
e.g., g (3x"Hx) like

Vel

g — x| oc e =K,

Monte Carlo pure random search converges like

e—clog k,

|y — x*|| <k~ € = c=

113

Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H diagonal
[~A- NEWUOA g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
10' i I, increasing function (for all other)

10 10 104 10 10 10

Condition number
SP1 = average number of objective function evaluations' to reach the target function
value of g7'(107?)

14 . . — P .
Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
115
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Comparing Experiments

e Comparing Experiments

114

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H full
[-A- NEWUOA g identity (for BFGS and
| NEWUOA)
|2 s g any order-preserving = strictly
10' T i I, increasing function (for all other)
10 10 10 10 10 10

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g~'(107?)

5Auqer et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sart of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

H full

g : x> x'/* (for BFGS and
NEWUOA)

g any order-preserving = strictly

10 ! i ., increasing function (for all other)
10

i [-A- NEWUOA

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of g7'(107?)

16Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparison during BBOB at GECCO 2010
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Comparison during BBOB at GECCO 2009
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Comparing Experiments
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Comparison during BBOB at GECCO 2009
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Comparing Experiments

Comparison during BBOB at GECCO 2010
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Summary and Final Remarks

The Continuous Search Problem

Difficulties of a non-linear optimization problem are

@ dimensionality and non-separabitity

demands to exploit problem structure, e.g. neighborhood
cave: design of benchmark functions

@ ill-conditioning

demands to acquire a second order model

@ ruggedness

demands a non-local (stochastic? population based?) approach
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e Summary and Final Remarks
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Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by
orders of magnitude
the update follows the natural gradient
C o« H™' <= adapts a variable metric
<= new (rotated) problem representation
= f :x +> g(x"Hx) reduces to x + x"x
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Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~8xn? seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

» small dimension (n <« 10) for example Nelder-Mead
elaer-ieal

» small running times (number of f-evaluations < 100xn)
model-based methods
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Summary and Final Remarks

Thank You

Source code for CMA-ES in C, Java, Matlab, Octave, Python, Scilab is
available at http://www.lri.fr/ "hansen/cmaes_inmatlab.html
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