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Introduction

Our task

Given a function f : X → R

and a set D ⊆ X of feasible solutions,

find arg max
x∈D

f(x).

We are interested in general purpose algorithms that can be applied
without problem knowledge

Parameterized Complexity Analysis of EAs

Introduction

Why General Purpose Algorithms?

Algorithms are the heart of every nontrivial computer
application.

For many problems we know good or optimal algorithms.

Sorting
Shortest paths
Minimum spanning trees

What about new or complex problems?

Often there are no good problem specific algorithms.

Parameterized Complexity Analysis of EAs

Introduction

Points that may rule out problem specific algorithms

Problems that are rarely understood.

Quality of solutions is determined by simulations.

Problems that fall into the black box scenario.

Not enough resources such as time, money, knowledge.

General purpose algorithms are often a good choice.
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Introduction

General purpose algorithms for optimizing a function f : X → R

1. Choose a representation for the elements in X.

2. Fix a function to evaluate the quality (might be different from f).

3. Define operators that produce new elements.

Parameterized Complexity Analysis of EAs

Evolutionary Algorithms

Evolutionary algorithms are general purpose algorithms.

Follow Darwin’s principle (survival of the fittest).

Work with a set of solutions called population.

Parent population produces offspring population by variation operators
(mutation, crossover).

Select individuals from the parents and children to create a new parent
population.

Iterate the process until a “good solution” has been found.

Parameterized Complexity Analysis of EAs

Simple Evolutionary Algorithm

(1+1) EA

x← an element of {0, 1}n uniformly at random.
repeat forever

Produce y by flipping each bit of x with probability 1/n.
if f(y) ≥ f(x) then x← y

Parameterized Complexity Analysis of EAs

Theory of Evolutionary Algorithms

Evolutionary algorithms are successful for many complex optimization
problems.

Rely on random decisions ⇒ randomized algorithms.

Goal: understand how and why they work.

Study the computational complexity of these algorithms on prominent
examples.
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Runtime analysis

Black box scenario

Measure the runtime T by the number of fitness evaluations.

Studies consider time in dependence of the input to reach

An optimal solution
A good approximation

Rigorous estimates

Expected number of fitness evaluations E(T )

Tail bounds, e.g., useful bounds on Pr(T ≤ g(n)) where n measures
the size of the problem instance

Parameterized Complexity Analysis of EAs

Motivation

We want to tackle the analysis of randomized search heuristics applied to
NP-hard problems

Reducing the base of the exponent

Conflict-directed walk (Schöning, 1999) O(1.334n) for 3-SAT

Polynomial-time approximation

Partition (Witt, 2005)
Vertex Cover (Friedrich et al., 2007, Oliveto et al., 2007)
Set Cover (Friedrich et al., 2007)
Intersection of p ≥ 3 matroids (Reichel & Skutella, 2010)

Average-case analysis

Partition (Witt, 2005)

Classical view: understand runtime as a function of problem size alone.

Real world problems: inputs are often structured or restricted in some
way.

Parameterized Complexity Analysis of EAs

Motivation

Type-checking in ML

No explicit typing in ML: compiler must infer types/check for
consistency: complete for EXPTIME

Let k be the nesting depth of a type declaration, there is an exact
algorithm that solves the problem in O(2kn)

In most real-world problems: k ≤ 10

Parameterized Complexity Analysis of EAs

Motivation

Reconfigurable computing

Given:

an n× n memory array A with some defective elements
k1 extra rows of spare memory, k2 extra columns of spare memory

A defective element can be repaired by replacing the row/column
that contains it with a spare row/column

Determine if there is a replacement arrangement that repairs all
defective elements in A

Reduces to: constrained minimum vertex cover in bipartite graphs:
NP-complete

Chen & Kanj (2003): O(1.26kn) algorithm where k = k1 + k2

In the real world, due to hardware constraints, k ≤ 40
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Motivation

Many heuristics are successful in practice because they can take
advantage of problem structure...
...want analyses to capture that

Parameterized Complexity Analysis of EAs

Parameterized complexity

Find a hardness parameter k that isolates the source of exponential
complexity.

n n
k

Let L be a language over a finite alphabet Σ.

A parameterization of L is a mapping κ : Σ∗ → N

Corresponding parameterized problem is given by (L, κ).

For a string x ∈ Σ∗, let k = κ(x) and n = |x|.

An algorithm deciding x ∈ L in the time bounded by f(k) · poly(n) is
called a fixed-parameter tractable (FPT) algorithm for the
parameterization κ.
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Parameterized complexity for EAs

Monte-Carlo FPT algorithm: in FPT-time, accept with probability at
least 1/2 if x ∈ L, with probability 0 if x 6∈ L.

Definition

An evolutionary algorithm is called fixed-parameter tractable (FPT) if it
finds an optimal solution in expected time O(f(k) · poly(n)).

vertex cover (Kratsch and Neumann, 2013)

maximum leaf spanning tree (Kratsch et al., 2010)

MAX-2-SAT (Sutton, Day, Neumann, GECCO 2012)

Makespan scheduling (Sutton and Neumann, PPSN 2012)

Euclidean TSP (Nallaperuma et al., CEC 2013)

Bilevel optimization (Corus, Lehre, and Neumann, GECCO 2013)

Hypervolume indicator (Bringmann and Friedrich, GECCO 2013)

Parameterized Complexity Analysis of EAs

The Minimum Vertex Problem

Friedrich, He, Hebbinghaus, Neumann and Witt (ECJ 2010)
Kratsch and Neumann (Algorithmica 2013)
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The Problem

The Vertex Cover Problem:

Given an undirected graph G = (V,E)

Find a minimum subset of vertices such that each edge is covered at
least once.

NP-hard, several 2-approximation algorithms

Simple, single-objective evolutionary algorithms fail!!!

Parameterized Complexity Analysis of EAs

The Problem

Integer Linear Program (ILP)

min
∑n
i=1 xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E
xi ∈ {0, 1}

Linear Program (LP)

min
∑n
i=1 xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E
xi ∈ [0, 1]

Decision problem: is there a set of vertices of size at most k covering
all the edges?

Our parameter: value of an optimal solution (OPT)

Parameterized Complexity Analysis of EAs

Evolutionary Algorithm

Representation: bitstrings of length n

x1 = 1

x2 = 0

x3 = 1

x4 = 0

x5 = 0

x6 = 0

Minimize fitness function:
f1(x) = (|x|1, |U(x)|)
f1(x) = (2, 2)

f2(x) = (|x|1, LP (x))
f2(x) = (2, 1)

U(x) := edges not covered by x
G(x) := G[U(x)]
LP (x) := the value of LP applied to G[U(x)]

Parameterized Complexity Analysis of EAs

Evolutionary Algorithm

1/n

1/n

1/n

1/2

1/2

1/2

Two mutation operations:

1. Standard bit mutation with probability 1/n

2. Mutation probability 1/2 for vertices adjacent to edges of U(x).
Otherwise, mutation probability 1/n.

Decide uniformly at random which operator to use in each iteration
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Multi-objective approach

Treat the different objectives in the same way

Keep trade-offs of the two criteria

|U(x)|

|x
| 1

Parameterized Complexity Analysis of EAs

Multi-objective approach

Empty set included
in the population

|U(x)|

|x
| 1

Parameterized Complexity Analysis of EAs

Multi-objective approach

What can we say about these solutions?

(logn)-approximation (Friedrich, Hebbinghaus, He, Neumann, Witt (2010))

Kernelization in expected polynomial time
Subset of a minimum vertex cover.

G(x) has degree at most OPT.

G(x) has at most OPT+OPT2

non-isolated vertices

Optimal solution

|U(x)|

|x
| 1

Expected time g(OPT) · poly(n)

Fixed-parameter evolutionary algorithm

Parameterized Complexity Analysis of EAs

Multi-objective approach

Kernelization in expected polynomial time
Subset of a minimum vertex cover.

G(x) has at most 2OPT non-isolated
vertices

Optimal solution

|LP (x)|

|x
| 1

Expected time 4OPT · poly(n)

Fixed-parameter evolutionary algorithm
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Linear programming

Combination with linear programming

LP-relaxation is half integral, i.e.,

xi ∈ {0, 1/2, 1}, 1 ≤ i ≤ n.

Theorem (Nemhause, Trotter (1975)):

Let x∗ be an optimal solution of the LP. Then there is a minimum vertex
cover that contains all vertices vi where x∗i = 1.

Lemma:

All search points x with LP (x) = LP (0n)− |x|1 are Pareto optimal.
They can be extended to minimum vertex cover by selecting additional
vertices.

Can we also say something about approximations?

Parameterized Complexity Analysis of EAs

Approximations

Kernelization in expected polynomial time

Expected time

O(4(1−ε)·OPT · poly(n))

|x|1 + 2LP (x) ≤ (1 + ε)OPT

|x|1 ≤ (1 + ε)OPT

|LP (x)|

|x
| 1

Parameterized Complexity Analysis of EAs

Maximum Leaf Spanning Trees

Kratsch, Lehre, Neumann and Oliveto (PPSN 2010)

Parameterized Complexity Analysis of EAs

The Problem

The Maximum Leaf Spanning Tree Problem:

Given an undirected connected graph G = (V,E),

find a spanning tree with a maximum number of leaves.

NP-hard, different classical FPT-studies.
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Two Evolutionary Algorithms

Algorithm 1: Generic (1+1) EA

Choose a spanning tree T of G uniformly at random
repeat forever

Produce T ′ by swapping each edge of T indep. w/ prob. 1/m
if T ′ is a tree and `(T ′) ≥ `(T ) then T ← T ′

Parameterized Complexity Analysis of EAs

Two Evolutionary Algorithms

Algorithm 2: Tree-based (1+1) EA

Choose a spanning tree T of G uniformly at random.
repeat forever

Choose s ∼ Pois(λ = 1)
Produce T ′ by performing sequentially s random edge-exchange

operations.
if `(T ′) ≥ `(T ) then T ← T ′

A random exchange operation applied to a spanning tree T̃ chooses an
edge e ∈ E \ T̃ uniformly at random. The edge e is inserted and one

randomly chosen edge of the cycle in T̃ ∪ {e} is deleted.

Does the mutation operator make the difference between FPT and
non-FPT runtime?

Parameterized Complexity Analysis of EAs

Local Optimum

x

y
ui

vi
r vertices

Parameterized Complexity Analysis of EAs

Lower Bounds

Theorem 1.

The expected optimization time of Generic (1+1) EA on Gloc is lower

bounded by
(
m
c

)2(r−2)
where c is an appropriate constant.

Theorem 2.

The expected optimization time of Tree-Based (1+1) EA on Gloc is lower

bounded by
(
r−2
c

)r−2
where c is an appropriate constant.

Idea for lower bounds:

Both algorithms may get stuck in local optimum.

For the Generic (1+1) EA it is less likely to escape the local
optimum as it often flips edges on the path.
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Structural insights
Similar to Fellows, Lokshatanov, Misra, Mnich, Rosamond, Saurabh (2009)

Lemma 2.

Any connected graph G on n nodes and with a maximum number of k
leaves in any spanning tree has at most n+ 5k2 − 7k edges and at most
10k − 14 nodes of degree at least three.

Proof idea:

Let T be a maximum leaf spanning tree with k leaves

Let P0 be the set of all leaves and all nodes of degree at least three
in T

Let P be the set of nodes that are of distance at most 2 (w.r.t. T )
to any node in P0 and let Q be the set of remaining nodes.

Show: all nodes of Q have degree 2 in G.

Implies: number of nodes in P is at most 10k − 14.

No node has degree greater than k, which implies bound on
number of edges.

Parameterized Complexity Analysis of EAs

Upper Bound

Theorem 3.

If the maximal number of leaf nodes in any spanning tree of G is k, then
Tree-Based (1+1) EA finds an optimal solution in expected time

O(215k2 log k).

Proof idea:

We call an edge distinguished if it is adjacent to at least one node
of degree at least 3 in G.

Number of distinguished edges on any cycle is at most 20k − 28.

Total number of edges in G: m ≤ n+ 5k2 − 7k.

Probability to introduce a specific non-chosen distinguished edge is
at least 1/(m− (n− 1)) ≥ 1/5k2.

Show: length of created cycle is at most 20k.

Probability to remove edge of the cycle that does not belong to
optimal solution is at least 1/20k.

Parameterized Complexity Analysis of EAs

Proof of Upper Bound (continued)

Probability to obtain a specific spanning tree that can be obtained
by an edge-swap is at least 1/(20k · 5k2).

Probability to produce optimal spanning tree, which has distance
r ≤ 5k2, is at least

r! · 1

er!

(
1

5k2
· 1

20k

)r
≥ 1

e

(
1

100k3

)5k2

≥ 1

2

(
1

100

)5k2(
1

k

)3·5k2

,

Implies that the expected time to get the maximum leaf spanning
tree is at most O(215k2 log k).

Parameterized Complexity Analysis of EAs

Euclidean Planar TSP

Given a set V of n points in the plane, find a Hamiltonian cycle of
minimum length (NP-hard, Papadimitriou, 1977)

Dĕıneko et al. (2006): dynamic programming (simple polygon, k inner
points)

Out(V )

Inn(V )
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TSP parameterization

How does this structure affect evolutionary algorithms?

For n points in the plane with |Inn(V ) | = k interior to the convex hull,
what is the runtime of an EA in terms of n and k?

Each tour is represented by a permutation π : V → V .

vπ(1) ⇒ vπ(2) ⇒ · · · ⇒ vπ(n) ⇒ vπ(1)

Fitness function

f(π) =

(
n−1∑
i=1

d(vπ(i), vπ(i+1))

)
+ d(vπ(n), vπ(1))

where d(u, v) is the distance between points u and v.

Parameterized Complexity Analysis of EAs

TSP parameterization

Main structural idea: An optimal tour does not intersect itself.

Lemma

Suppose π? is a permutation that minimizes f . Then the elements of
Out(V ) appear in π? in the same order they appear on the hull.

Definition

We define γ as a linear order on Out(V )

γ = (p1, p2, . . . , pn−k)

such that for all i ∈ {1, . . . , n− k}, pi
and pi+1 are adjacent on the boundary
of the convex hull of V .

p1

p2

p3

p4

p5

p6

p7

p8

For any V , γ can be computed in O(n log n) time

Parameterized Complexity Analysis of EAs

TSP parameterization

Definition

A permutation π on a subset S of V is γ-respecting if and only if, for
any pi, pj ∈ γ ∩ S,

π−1(pi) < π−1(pj) =⇒ i < j.

where γ ∩ S means the restriction of γ to S.

Some examples. . .

(p1, v4, v6, p2, v1, v3, p3, p4, v2, p5, v7, p6, p7, v5)

(v7, v5, p1, v4, p2, v2, v6, p3, p4, p5, v1, v3, p6, p7)

Parameterized Complexity Analysis of EAs

(1+1) EA in the black-box setting

We start in the black-box setting (EA has no access to instance
structure)

No crossover, mutation is by edge-exchange operations, e.g., 2-opt:

x(i− 1)

x(j)

x(j − 1)

x(j + 1)

x(i)

x(i+ 1)

x(1)

x(n)

x(i− 1)

x(j)

x(j − 1)

x(j + 1)

x(i)

x(i+ 1)

x(1)

x(n)
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(1+1) EA in the black-box setting

Improvement in fitness if sum of edge lengths of new edges is strictly less
than sum of edge lengths of old edges.

θu θs

θt

θv

u

s

v

t

p

Main challenge with edge-exchange operations: if angles can be
arbitrarily close, fitness improvements can be arbitrarily small.

Idea: assume the angles are bounded (or embedded on an m×m grid).

Parameterized Complexity Analysis of EAs

(1+1) EA in the black-box setting

Theorem

Given a set of (angle bounded) points, a (1+1) EA solves the Euclidean
TSP with k inner points in expected time O(n4k(2k − 1)!).

Proof idea.
If a tour has edges that cross, an improving move is possible.

With appropriate angle bounds, EA spends poly(n) time on such tours
(independent of k).

If the tour has no edges that cross, then it is γ-respecting.

γ-respecting tours are closer to optimal tours: the EA only must operate
on the inner points to find a solution.

Time to fix inner points: O(n4k(2k − 1)!).

Parameterized Complexity Analysis of EAs

(µ+1) EA

FPT evolutionary algorithms (we leave the black-box setting)

FPT (µ+1) EA: based on exact (µ+1) EA for TSP by Theile (2009)

Population of permutations on subsets of V with special structure

Ground set

An integer i ∈ {1, . . . , n− k}
A set S ⊆ Inn(V )

A vertex r ∈ S ∪ {pi}
we identify (i, S, r) with the set S ∪ {p1, . . . , pi} distinguished by r

An individual π = π(i,S,r) is a permutation on the ground set
S ∪ {p1, p2 . . . , pi} and a “tail” vertex r where

π(1) = p1 and π(|S|+ i) = r,

π is γ-respecting that is, p1, p2, . . ., pi appear in order.

Parameterized Complexity Analysis of EAs

(µ+1) EA

The subtour defined by a permutation π(i,S,r):
p1 ⇒ vπ(2) ⇒ · · · ⇒ vπ(|S|+i−1) ⇒ r ⇒ p1

starts at p1,

runs over all nodes in (S ∪ {p2, . . . , pi}) \ r (respecting γ)

finally visits r before returning to p1.

Full population consists of an individual for every i ∈ {1, . . . , n− k}, for
every S ⊆ Inn(V ), and every possible tail vertex r, given S and i.

The fitness of an individual is the cost of the corresponding subtour
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(µ+1) EA

(µ+1) EA

Maintain a population P such that each ground-set/tail vertex
combination (i, S, r) is represented exactly once.

While optimal tour is not in P

Select an individual π(i,S,r) ∈ P uniformly at random
Mutate π(i,S,r) to produce π(i′,S′,r′) (mutation extends the ground
set, and only creates γ-respecting permutations).
If the fitness of the mutant π(i′,S′,r′) is better than the current
individual representing (i′, S′, r′), then replace that individual with
the mutant.

(1, {}, p1)

...

(i, S, r)

(i′, S′, r′)

...

π(i,S,r)

π′(i′,S′,r′)

selection

mutation

replacement

Parameterized Complexity Analysis of EAs

(µ+1) EA

Mutation

To mutate a single individual π = π(i,S,r),

choose v uniformly at random from (Inn(V ) \ S) ∪ {pi+1}
concatenate v to the linear order described by π. For
j ∈ {1, . . . , |S|+ i+ 1},

π′(j) =

{
v if j = |S|+ i+ 1;

π(j) otherwise.

Thus π′ is defined on a different (slightly larger) ground set than π using
v as the new tail vertex.

π′ =

{
π′(i,S∪{v},v) if v ∈ Inn(V );

π′(i+1,S,v) if v = pi+1.

When i = n− k and S = Inn(V ) no effect.

Parameterized Complexity Analysis of EAs

Runtime of the (µ+1) EA

Lemma

The population size µ is bounded by O(2kkn).

Proof. For every ground set / tail vertex combination, there is exactly
one individual (invariant).

There are
(
k
|S|
)

ways to choose a distinct set S ⊆ Inn(V )

There are (n− k) ways to choose a distinct set of γ-respecting outer
points

There are |S|+ 1 ways of choosing the tail vertex r ∈ S ∪ {pi}.

(n− k)
k∑
s=0

(
k

s

)
(s+ 1) = O(2kkn).

Parameterized Complexity Analysis of EAs

(µ+1) EA

Optimal substructure property

If there is an optimal permutation π(i,S,r) in P , there exists some correct
mutation that can construct a slightly larger subtour that is also optimal.

F (i, S, r) := length of optimal tour for (i, S, r) – can be defined
recursively using the Bellman Principle

F (i, S, r) =


min

q∈S∪{pi−1}
F (i− 1, S, q) + d(q, r) if r ∈ Out(V );

min
q∈(S\{r})∪{pi}

F (i, S \ {r}, q) + d(q, r) if r ∈ Inn(V ).

q

r
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(µ+1) EA

Theorem

Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k.
After O(2kk2n2) generations, the (µ+1) EA has solved the TSP on V to
optimality in expectation and with probability 1− e−Ω(n).

Proof. Suppose ∃ π = π(i,S,r) ∈ P with f(π(i,S,r)) = F (i, S, r).

with probability 1/µ, π is selected for mutation

with probability at least 1/(k + 1), π is extended optimally

Probability of extending an optimal path of length m is at least
Ω(1/(µ(k + 1)) (Bernoulli trial).

We can use induction on m since the permutation corresponding to
(1, {}, p1) is already optimal.

Since optimal paths for a given (i, S, r) are never lost, the expected time
until the optimal path of length n exists is
O(nµ(k + 1)) = O(2kk2n2).

Parameterized Complexity Analysis of EAs

(1+1) EA

We already know that every optimal permutation must be γ-respecting

Suppose we only search the space of orderings on k inner points

Given a permutation π on Inn(V ), need to find where to insert the outer
points into π so that the resulting permutation

1. respects γ and π

2. corresponds to the shortest tour of all permutations that respect γ
and π

γ = (p1, p2, . . . , pn−k) π = (q1, q2, . . . , qk)

(p1, q1, p2, p3, q2, p4, q3, . . .)

Exhaustive search O(nk), but we can be more clever. . .

Parameterized Complexity Analysis of EAs

(1+1) EA

Direct dynamic programming

Maintain F [i, j,m], a (n− k)× (k + 1)× 2 array where
i ∈ {1, . . . , n− k}, j ∈ {0, 1, . . . , k} and m ∈ {Inn,Out}.

F [i, j,m] stores fitness of optimal permutation through points p1, . . . , pi
and q1, . . . , qj ending on an outer point (m = Out) or an inner point
(m = Inn).

Fitness of π

Dyn(π) = min{F [n−k, k,Out]+d(pn−k, p1), F [n−k, k, Inn]+d(qk, p1)}

Starting with F [1, 0, Out] = 0, use dynamic programming to fill out F .

F [i, j, Inn] = min{F [i, j−1, Out]+d[pi, qj ], F [i, j−1, Inn]+d[qj−1, qj ]}

Cost of computing Dyn(π) is O(kn).

Parameterized Complexity Analysis of EAs

(1+1) EA

Search the space of permutations on Inn(V )

(1+1) EA

Choose uniformly at random a permutation x = (q1, . . . , qk) on the
inner points

While optimum not found

Construct x′ from x by applying s+ 1 random inversions where s is
chosen according to Pois(1)
If Dyn(x′) ≤ Dyn(x) then x← x′.

Inversion mutation (pick a subsequence of the permutation and invert it)

(2, 1, 6, 7, 4, 5, 3)⇒ (2, 4, 7, 6, 1, 5, 3)

This corresponds to the common 2-opt operation for the TSP.
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Runtime analysis of the (1+1) EA

Theorem

The (1+1) EA solves the TSP with k inner points in O
(
(k − 1)!k2k−2

)
expected calls to the fitness function.

Proof. The probability that a mutation operation for a specific sequence
of ` basic operations is at least

1

e(`− 1)!
· 1

k2`
.

Expected waiting time for such a mutation operation is(
1

e(`− 1)!
· 1

k2`

)−1

= O(`!k2`).

Need at most (k − 1) inversions to transform arbitrary permutation on k
points to another.

Fitness function costs O(kn) =⇒ the (1+1) EA is FPT.

Parameterized Complexity Analysis of EAs

Makespan Scheduling

Given a set of n jobs to be scheduled on two machines

Job j time pj on either machine.

A schedule is a decision vector x ∈ {0, 1}n

The load of a machine is the sum of processing times assigned to it

The makespan is the maximum load over both machines:

f : {0, 1}n → N := x 7→ max


n∑
j=1

xjpj ,
n∑
j=1

(1− xj)pj

 .

Objective is to find the schedule with the minimum makespan.

P =
∑n
j=1 pj .

P/2 ≤ f(x) ≤ P .

WLOG, p1 ≥ · · · ≥ pn.

Parameterized Complexity Analysis of EAs

Makespan Scheduling – parameterization

Definition

The discrepancy ∆(x) = 2f(x)− P is the difference in load across
machines.

machine 1 machine 2

discrepancy

Given an instance of makespan scheduling and an integer k, is
pk ≥ ∆∗ ≥ pk+1?

∆∗ ≥ 0 discrepancy of optimal schedule

pn+1 = 0

Parameterized Complexity Analysis of EAs

Makespan Scheduling

Let `(n) denote the run length.

k-biased RLS

x← an element of {0, 1}n uniformly at random.
for i← 1 to `(n)

y ← x
Choose 0 ≤ r ≤ 1 uniformly at random.
if r < 1/n, then Choose j ∈ {1, . . . , k} u.a.r.
else Choose j ∈ {k + 1, . . . , n} u.a.r.
yj ← 1− yj
if f(y) ≤ f(x) then x← y

Same as traditional RLS, but prefers not to flip “large” jobs
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Makespan Scheduling

Lemma.

Let k be such that pk+1 ≤ ∆∗. Let x′ be a decision vector such that the
contribution of jobs 1, . . . , k is minimal. Then starting from x′, k-biased
RLS with a run length of `(n) = d2n(lnn+ 1)e solves the problem with
probability bounded below by Ω(n−2).

Proof sketch.

Jobs 1 through k are already correct.

Need to move any small jobs (index > k) off of the fuller machine.

Always possible since ∆(x) is always larger than a small job, ELSE it
is optimal.

Coupon collector and Markov inequality: d2n(lnn+ 1)e probability
Ω(1) as long as k large jobs aren’t moved.

Prob. large jobs aren’t touched in d2n(lnn+ 1)e steps:
(1− 1/n)d2n(lnn+1)e = Ω(n−2).
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Makespan Scheduling

Theorem.

A multi-start k-biased RLS procedure using a run length of
d2n(lnn+ 1)e solves the problem after O(2kn3 log n) steps with
probability at least 1− 1/e.

Proof sketch.

Probability that run starts with the first k jobs correctly placed is at
least 2−k. Let q(n) be the probability that such a run is successful.

Failure probability of t consecutive runs is at most(
1− 1

2kq(n)−1

)t
Setting t = 2kq(n)−1 makes the failure probability at most 1/e

By the previous lemma q(n) = Ω(n−2) so t = O(2kn2)

Run length is O(n log n)
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Thank you
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