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Evolutionary Algorithms for Protein Structure Modeling

 Amarda Shehu is an Associate Professor at George Mason
University in the department of Computer Science. Shehu's
research contributions are in biomolecular modeling and
simulation, with a focus on issues concerning the relationship
between sequence, structure, dynamics, and function. Shehu
has unique expertise in tight coupling of probabilistic search
and optimization techniques with computational protein
biophysics. Shehu is an active member of the Bioinformatics
and Computational Biology ACM and IEEE community and has
been involved in co-organizing workshops, tutorials, and
conferences in these communities.

 Kenneth De Jong is a University Professor at George Mason
University. He is a senior and well-known researcher in the EC
community with a rich and diverse research profile. De Jong's
research interests include genetic algorithms, evolutionary
computation, machine learning, and adaptive systems. He is
an active member of the Evolutionary Computation research
community and has been involved in organizing many of the
workshops and conferences in this area. He is the founding
editor-in-chief of the journal Evolutionary Computation (MIT
Press), and a member of the board of ACM SIGEVO.

Brief Biosketch of Tutorial’s Organizers
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Computational Structural Biology:

Three Fundamental Questions:

How do the parts move?

Mechanistic view == Shape/Form Governs Function

How do the parts come together?

What does the part look like?
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Mechanistic View: Form Governs Function
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“Mechanistic View”

Protein molecule bound 

to small molecule

Source: Wikipedia

Computational microscope on main 

macromolecules of life (DNA, RNA, proteins) 

to elucidate molecular basis of mechanisms 

in healthy and diseased cell
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DNA

Amino Acid Sequence (AKA Protein)
Alphabet of 

20 amino acids

Example of an Amino Acid 

MKELVEMAVPENLVGAILGKGGKTLVEYQELTGARIQ

ISKKGEFLPGTRNRRVTITGSPAATQAAQYLISQRVT

Amino acids link together to form 

a serial protein chain
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Backbone

Side Chain

The chain folds to assume a spatial 

arrangement/conformation that is 

biologically-active/native [Anfinsen 1973]

Amino Acid Sequence (AKA Protein)

MKELVEMAVPENLVGAILGKGGKTLVEYQELTGARIQ

ISKKGEFLPGTRNRRVTITGSPAATQAAQYLISQRVT

Amino acids link together to form 

a serial protein chain

The Anfinsen Experiments: 

Protein Sequence Largely Determines Structure
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De Novo Protein Structure Prediction (PSP)
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Protein Sequence  Protein Structure 

[De novo Protein Structure Prediction] [Protein Folding]

Source: Science Art

Protein chain folds as it comes out the 

ribosome translational machineryProtein Databank 

(structure)

UnitProt (sequence)
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Need to model structure!

Structure Modeling for Proteins with Multiple 

Functional States

Collapsed 

peptide-binding 

state

Calcium binding state
Apo 

state

Sequence  Structure(s)

Energy landscape mapping to understand structural 

effects of disease-causing or disease–involved mutations

Calmodulin
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Protein Energy Landscapes

 Proteins as biological molecules are physics-based systems

 Physics-based systems seek state of lowest (free) energy

 Theory: Native structure (of single chain or multiple chain assembly) 

is that of lowest (free) energy
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unfolded conformation (start states)

local minimum conformation

native structure (goal state)

Implications of Energy Landscape View

 All three problems can be formulated as optimization problems

 Representation

 Scoring

 Optimization algorithm
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PSP as an Optimization Problem

Energy/Objective Function

Random coil

High energy

Native structure:

Low energy

[14/52]

“[...] the native conformation is determined 

by the totality of interatomic interactions 

and hence by the amino acid sequence, 

in a given environment.”   

Anfinsen, C. B. Science 181, 1973

Three Essential Ingredients

 Representation: to keep track of spatial arrangements of the atoms 

in a single or multiple chain (conformations)

 Decisions impact dimensionality and complexity of search space

 Objective/energy function: to score a conformation as it is obtained

 Algorithm: to systematically (or not) iterate over conformations

 Needs fundamentally a technique to compute a new conformation in the 

chosen representation

 Technique will be repeated in some fashion, guided by the objective 

function
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Potential Energy as Objective/Fitness Function

 Non-linear expensive terms

 ELennard-Jones = 

computed over atom pairs

 Competing terms summed together

 Small structural changes may 

increase energy

 PEF is non-linear and multimodal

Functional form of modern energy 

functions, such as Rosetta, AMW, 

AMBER, CHARMM, and others:

= α1 * ELennard-Jones

+ α2 * EH−Bond

+ α3 * Eburial

+ α4 * Ewater

+ α5 * ERg

E

All modern potential energy functions 

(PEFs) exhibit these characteristics:

nb [(Rminij/rij)
12 –

(Rminij/rij)
6]
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All energy functions designed by 

computational chemists are 

approximations of the one nature uses

Funnel-like energy surface rich in local minima

536



No Ideal Representations, but 

Some are Better than Others

 Conformation = instantiation over 

selected representation
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 Amino acid building blocks in protein chain are 

highly coupled!

 They impose spatial constrains on one another

Choice #1 for representation

 Cartesian coordinate-based representation

 N atoms  3N parameters

 Small protein: hundreds of atoms

 High-dimensional conformation space

 Not amenable to enumeration

 Does not satisfy implicit constraints

 Breaks bonds

 Unless, perturbations follow some 

clever rules that move atoms together

No Ideal Representations, but 

Some are Better than Others

 Conformation = instantiation over 

selected representation
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 Amino acid building blocks in protein chain are 

highly coupled!

 They impose spatial constrains on one another

Choice #2 for representation

 Collective-variable representation

 N atoms  K << 3N collective variables

 Statistical analysis/dimensionality reduction 

of known (experimental) structures

 Example: Principal Component 

Analysis

 PCs = collective variables

 Satisfies implicit constraints to extent 

satisfied in input structures

 Atoms “move together”

 Opens opportunities for interesting 

EAs in new reduced search space

No Ideal Representations, but 

Some are Better than Others

 Conformation = instantiation over 

selected representation
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 Angular-based representation

 N atom  ~3N/7 parameters

 Savings in dimensionality

 Still hundreds of dimensions

 Can be further reduced (molecular 

fragment replacement)

 Satisfies local implicit constraints

 Does not breaks bonds

 Does not satisfy distal constraints

 Chain can collide with itself

 To interface with energy function, cartesian 

coordinates need to be obtained by 

accumulating rotations (forward kinematics)

 Angular-based representations save in 

dimensions and are amenable to 

interesting perturbations

 Moreover, only some angles need to be 

modeled as variables (others, such as 

valence angles, can be ignored for 

structure prediction)

Choice #3 for representation

Angular-based Representation: 

State of the Art in PSP

amino acid Q V C

dihedral bond Φ ψ ω ϕ ψ ω ϕ ψ ω

angle -122 129 -178 -123 138 176 -105 152 -179

 n amino acids  3n variables

 Small protein: 

 30-50 amino acids

 90-150 variables
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PSP via Stochastic Optimization 

 Conformational space: high-dimensional and continuous

 Fitness/energy surface/landscape: non-linear and multimodal

 Not amenable for systematic optimization unless heavy use of 

discretization resulting in loss of accuracy

 Stochastic optimization

 Computational biology community: Metropolis Monte Carlo algorithms

 Focus on domain-specific insight 

 Evolutionary computation community: Evolutionary algorithms (EAs)

 Focus on algorithmic strategies for balancing exploration/exploitation
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EAs for PSP in EC Community

 Limited to small proteins (typically < 30 amino acids)

 Do not take advantage of domain-specific insight
Not competitive with 

Monte Carlo-based algorithms 

Memetic/Hybrid Evolutionary Algorithms 

(HEAs)

M. S. Abual-Rub, M. A. Al-Betar, R. Abdullah, and A. T. Khader. A
hybrid harmony search algorithm for ab initio protein tertiary

structure prediction. Network Modeling and Analysis in Health

Informatics and Bioinformatics, 1–17, 2012.

R. Faccioli, I. da Silva, L. Bortot, and A. Delbem. A mono-objective
evolutionary algorithm for protein structure prediction in structural

and energetic contexts. In Evolutionary Computation (CEC), 2012.

A.-A. Tantar, N. Melab, and E.-G. Talbi. A grid-based genetic
algorithm combined with an adaptive simulated annealing for protein

structure prediction. Soft Computing, 12(12):1185–1198, 2008.

M. M. Goldstein, E. E. Fredj, and R. B. R. Gerber. A new hybrid
algorithm for finding the lowest minima of potential surfaces:

approach and application to peptides. Journal of Computational

Chemistry, 32(9):1785–1800, 2011.

Multi-Objective Evolutionary Algorithms 

(MOEAs)

J. Calvo and J. Ortega, Parallel protein structure prediction by
multiobjective optimization. In Proc. of Euromicro Intl Conf on

Parallel, Distributed and Network-based Processing 2009, pp. 268–

275.

J. Calvo, J. Ortega, and M. Anguita, PITAGORAS-PSP: Including
domain knowledge in a multi-objective approach for protein structure

prediction. Neurocomputing, 74,(16):. 2675–2682, 2011.

R. Day, J. Zydallis, G. Lamont, and R. Pachter, Solving the protein
structure pre- diction problem through a multiobjective genetic

algorithm. Nanotechnology 2:32–35, 2002.

Cutello, V, G. Narzisi, and G. Nicosia, A multi-objective evolutionary
approach to the protein structure prediction problem. Journal of The

Royal Society Interface 3(6): 139–151, 2006.

[22/52]

Current state of the art: Random Restart of 

Monte Carlo with Fragment Replacement

 Initialization: random or extended 

conformations

 Each trajectory is a series of 

conformations obtained through 

Metropolis Monte Carlo

 State-of-the-art for de novo 

structure prediction:

 MMC-based frameworks, such 

as Rosetta and Quark

 Why do they outperform most EAs?

 Dihedral angle-based 

representation

 Molecular fragment 

replacement technique

 Special moves

 Special functions
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E
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y

Random restart (multistart)

The Fragment Replacement Technique

Molecular Fragment Replacement

Select position
Select new fragment

Replace fragment

Cx Cx+1Fragment Library

C2C1C Cn
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 Lesson #1: Inject domain-specific insight

 Representation (Backbone dihedral angles)

 Perturbation (Fragment replacement)

 Lesson #2: Establish baseline EA with this insight is competitive

 Lesson #3: Pursue enhancements of interest to EC community

Design of perturbation operators

Memetic/Hybrid EAs

Selection Mechanism

Multi-Objective EAs

Structurization

Further enhancements to investigate exploration/exploitation trade-off

State-of-the-art EAs for PSP
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Parent Population Parent + Child

Population

Reproductive 

Operator(s)

EvaluationSelection

New Population Parent + Child Population (scored)

1+1 EA

=

Monte Carlo

A Baseline EA for PSP

Single Generation/Iteration (repeat for n generations)
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1+1 HEA

=

Basin HoppingParent + Child Population (scored)

A Baseline HEA for PSP

Single Generation/Iteration (repeat for n generations)

Evaluation

Minimization

Parents + Child

Population (minimized)
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Parent Population Parent + Child

Population

EvaluationSelection

New Population Parent + Child Population (scored)

Single Generation/Iteration (repeat for n generations)

Reproductive 

Operator(s)

Population-based EAs for PSP
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EAs with Domain-specific Insight for PSP

 Representation: backbone dihedral angles

 Perturbation operator: molecular fragment replacement (fl = 3)

 Local improvement operator: greedy search vs. Monte Carlo

 Evaluation with state-of-the-art (coarse-grained) knowledge-based 

energy functions for de novo structure prediction: Rosetta

 Nr. of generations: capped by total nr. of energy evaluations

 Comparison setting:

 Versus Rosetta (Monte Carlo-based)

 Explored issues: magnitude of perturbation operator, cost of improvement operator
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Parent Population Parent + Child

Population
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Parent + Child Population (scored)

Minimization

Rich Algorithmic Settings to Explore Role of 

Perturbation Operators, MOO, and more
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Hybrid Genetic Algorithm (GA) for PSP:

HEA + Crossover

parent A parent B

child 

(invalid structure)
child (minimized)

crossover

minimization
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Crossover Point

85 93 -15 96 -57
-

121
38 54 22 180 -35

-

100

Crossover Point

85 93 -15 96 -57
-

121
38 -22 -32 100 16

-

120

-81 61 67 -23 -57
-

121
38 -22 -32 100 16

-

120

Parent 1

Parent 2

Child

Mean reduction in 

conformational 

sampling due to 

crossover:

1 point 11%

2 point 21%

Homologous 7%

Homologous Crossover for Protein Structures
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GA outperforms in lowest 

lRMSD Monte Carlo 

techniques like FixIt 
(Olson et al. GECCO 2013)

Multi-objective EAs for

Handling Imperfections in Energy Function 

[35/52]

Multi-objective 

optimization:

= α1 * ELennard-Jones

+ α2 * EH−Bond

+ α3 * Eburial

+ α4 * Ewater

+ α5 * ERg

E

E1

E2

Evaluation on multiple objectives rather then 

on aggregate energy score

Sorting by Pareto rank, 

Pareto count, and total 

energy in this order 

Truncation-based selection

[Olson et al. BiCoB 2014 and 

ACM BCB 2013]

PDB ID Length Fold

1 1bq9 53 α/β

2 1dtdB 61 α/β

3 1isuA 62 α/β

4 1c8cA 64 α/β

5 1sap 66 α/β

6 1hz6A 67 α/β

7 1wapA 68 β

8 1fwp 69 α/β

9 1ail 70 α

10 1dtjA 76 α/β

11 1aoy 78 α/β

12 2ci2 83 α/β

13 1cc5 83 α

14 1tig 88 α/β

15 2ezk 93 α

16 1hhp 99 β

17 3gwl 106 α

18 2hg6 106 α/β

19 2h5nD 123 α

20 1aly 146 β

[36/52]

Showcase of HEA in Olson et al. GECCO 2013 

Testing Dataset and Experimental Setup

1ail 1wapA 1aoy

PDB stands for Protein Data Bank; PDB ids are unique to protein structures deposited by wet-laboratory groups

Experimentally-determined native structures

Population size : 500                   Elitism rate : HEA=25%

# of Generations : variable

Fragment libraries and energy function (score4) as in Rosetta

10 million energy function evaluations    2.4 GHz Core i7

12-24 hours of CPU user time (depending on protein length)

Repeated five times (total 50 million energy evaluations)

Comparison with Rosetta on several metrics (including lowest lRMSD)
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Target protein system (PDB ID)

[37/52]

Enhanced Exploration Capability over 

Monte Carlo-based Algorithms

Olson et al. BiCoB 2014

Target protein system (PDB ID)
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Higher Accuracy over 

Monte Carlo-based Algorithms

Olson et al. BiCoB 2014

5.8 Å RMSD to native 3.2 Å RMSD to native

Rosetta

Compared to experimentally-determined native structure (in gray)

PDB ID

3gwl

Better Models Over State of the Art 
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MOGA

Olson et al. BiCoB 2014

4.5 Å RMSD to native 0.9 Å RMSD to native

Rosetta MOGA

PDB ID

1dtjA

Better Models Over State of the Art 

[40/52]

Compared to experimentally-determined native structure (in gray)

Olson et al. BiCoB 2014
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2.3 Å RMSD to native 1.0 Å RMSD to native

Rosetta MOGA

Better Models Over State of the Art 

[41/52]

Compared to experimentally-determined native structure (in gray)

PDB ID

1ail

Olson et al. BiCoB 2014
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Single-basin View Does not Apply to All Proteins:

Structure Tuning for Function Tuning

Illustrated: a multi-basin energy landscape

 Existence of multiple basins

 Exploited by multi-functional 

proteins to modulate function

 Some proteins have degenerate 

landscapes

 Are prone to non-deleterious 

mutations

 Example: disease-causing 

mutations in RAS oncogene, ALS 

SOD1, and more

 HEAs produce a discrete representation of the energy landscape through the 

population of sampled minima

 More information obtained about energy landscape than utilized in strict context 

of de novo structure prediction
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EAs for Modeling Multi-Basin Proteins: Energy 

Landscape Mapping

 De novo setting computationally impractical

 Direction: exploit domain-specific knowledge (example: experimental 
structures)

 Idea #1: directly in initial population

 Other algorithmic components as in EAs for PSP

 Idea #2: indirectly to define effective phenotypic representation

 Discrete to continuous mapping (experimental structures to collective 
variables through PCA) [Clausen et a. 2014-2015]

 Other evolutionary strategies

 CMA-ES vs. customized EAs

[44/52]
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CMA-ES: Analysis of Convergence in 

Multimodal Landscapes

[45/52]

CMA-ES exploiting 

knowledge of bounds and 

shape of variable space 

converges to deepest basin 

H-Ras WT

SOD1 WT

Clausen, Sapin, De Jong, 

Shehu, GECCO 2015

Customized EA (SIfTer):

PCA-based Representation and Local Selection

[46/52]

Local selection operator over PCA-based structurization:

Red cell indicates where child falls. Cells outlined in green (l=1) 

are included for comparison. All black cells are included if l=2. 

Clausen, Shehu

J Comput Biol 2015

Comparison of energy landscapes 

obtained for wildtype and variant 

sequences of H-Ras indicate 

mutations change landscape

thus affecting transition of catalytic 

domain of H-RAS between its on 

and off functional states.

SIfTer: Ability to Explain Changes to Landscape 

Upon Sequence Mutations

[47/52]

Clausen et al. 

PLoS Comput Biol 2015

Detailed analysis of application on 

a conformational switching onco-

protein, catalytic domain of H-Ras
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 Low-dimensional, constraint-satisfying representations

 Adaptations, enhancements for protein-protein docking

 Handle structure modeling of multimeric protein assemblies

 Mapping of energy landscapes to move beyond single-basin view

 Key to detailed understanding of sequence-structure-function relationship

 Algorithmic design – effective and efficient

 Local improvement, reproductive operators, single- vs. multi-objective 

evaluation, global vs. local selection, data-driven structurizations, cellular 

vs. spatial, island models, co-evolutionary models, and more

 Room for injecting ideas from machine learning, computational 

(statistical) physics to obtain more powerful EA frameworks

Directions For EC Researchers

[49/52]

Further Reading: Reviews and Web

 A. Shehu. Probabilistic Search and Optimization for Protein Energy 
Landscapes. In Handbook of Computational Molecular Biology 
(Chapman & Hall/CRC Computer & Information Science Series), second 
edition, (Editors: Srinivas Aluru and Mona Singh), 2013.

 B. Olson. Evolving Local Minima in the Protein Energy Surface. Ph.D. 
Thesis, George Mason University, July, 2013.

 B. Olson, I. Hashmi, K. Molloy, and A. Shehu. Basin Hopping as a 
General and Versatile Optimization Framework for the Characterization 
of Biological Macromolecules. Advances in Artificial Intelligence J, 
674832, 2012.

 K. A De Jong. Evolutionary Computation: A Unified Approach. MIT Press, 
2006.

 Internet: http://www.cs.gmu.edu/~ashehu

http://www.cs.gmu.edu/~kdejong
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Further Reading: References in This Tutorial
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On Energy Landscape View

C. B. Anfinsen. Principles that govern the folding of protein chains. Science 181(4096): 223-230, 1973.

K. A. Dill and H. S. Chan. From Levinthal to pathways to funnels. Nat Struct Biol 4(1): 10-19, 1997.

J. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes. Theory of protein folding: the energy landscape perspective. Annu Rev

Phys Chem 48:545-600, 1997.

On Fragment Replacement and Fragment libraries in Rosetta
P. Bradley, K. M. S. Misura, and D. Baker, Toward high-resolution de novo structure prediction for small proteins. Science

309(5742):1868–1871, 2005.

On Basin Hopping (design of variation and improvement operators) for De Novo Protein Structure Prediction

and protein-protein docking

B. Olson and A. Shehu. Rapid sampling of local Minima in protein energy surface and effective reduction through a multi -

objective filter. Proteome Science 11(Suppl1):S12, 2013.

I. Hashmi and A. Shehu. HopDock: A probabilistic search algorithm for decoy sampling in protein-protein docking.

B. Olson and A. Shehu. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy 

surface. Proteome Science 10(Suppl1):S5, 2012.
On Baseline EA for De Novo Protein Structure Prediction

S. Saleh, B. Olson, and A. Shehu. A population-based evolutionary search approach to the multiple minima problem in de 

novo protein structure prediction. BMC Structural Biology J 13(Suppl1):S4, 2013.

On Crossover Design in a GA for De Novo Protein Structure Prediction
B. Olson, K. A. De Jong, and A. Shehu. Off-lattice protein structure prediction with homologous crossover. In Proc. of GECCO 

2013, pp. 287-294.

On MOEAs for De Novo Protein Structure Prediction
B. Olson and A. Shehu. Multi-objective optimization techniques for conformational sampling in template-free protein structure 

prediction. In Proc. of BiCoB 2014.

B. Olson and A. Shehu. Multi-objective stochastic search for sampling local minima in the protein energy surface. In Proc. of 

ACM BCB 2014, pp. 430-439.

 Algorithms (PSP-EA, SIfTER) available as executables 

for linux at: http://www.cs.gmu.edu/~ashehu/?q=OurTools.

Operate over Rosetta, which can be downloaded from the 

Baker lab under an academic license.

 All algorithms presented today can be run through the use 

of configuration files, as described in above link.

How to Get Started
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