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  Malcolm Heywood is a Professor of Computer Science at Dalhousie 

University, Canada. His has a particular interest in scaling up the tasks that 
genetic programming (GP) can potentially be applied to. His current research 
is attempting the appraise the utility of coevolutionary methods under non-
stationary environments as encountered in streaming data applications, and 
coevolving agents for single and multi-agent reinforcement learning tasks. In 
the latter case the goal is to coevolve behaviours for playing soccer under the 
RoboSoccer environment (a test bed for multi-agent reinforcement learning). 
Dr. Heywood is a member of the editorial board for Genetic Programming and 
Evolvable Machines (Springer). He was a track co-chair for the GECCO GP 
track in 2014 and a co-chair for European Conference on Genetic 
Programming in 2015 and 2016.�

  Krzysztof Krawiec is an Associate Professor in the Laboratory of Intelligent 
Decision Support Systems at Poznan University of Technology, Poznań, 
Poland. His primary research areas are genetic programming and 
coevolutionary algorithms, with applications in program synthesis, modeling, 
image analysis, and games. Dr. Krawiec cochaired the European Conference 
on Genetic Programming in 2013 and 2014, the ACM GECCO GP track in 
2016 and is an associate editor of Genetic Programming and Evolvable 
Machines journal. His work in the area of CoEAs includes problem 
decomposition using cooperative coevolution (for machine learning and 
pattern recognition tasks), learning game strategies for Othello, Go, and other 
games using �competetive CoEAs, and discovery of underlying objectives in 
test-based problems.�
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I. Introduction�
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Canonical assumptions made by EA�

 An absolute measure of fitness is available and computable.�

  ‘complete’ definition of task / environment�

 Solutions are (more or less) monolithic.�

  Each individual encodes complete solution to a problem �

  Tasks are not explicitly decomposed. �

 Coevolutionary algorithms (CoEA) revise these assumptions. �
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What is a coevolutionary algorithm?�

 A variant of EC where fitness function mandates the 
individuals to engage into direct interactions.�

 Fitness cannot be computed for isolated individuals.�

 Formally: �

 Evolutionary algorithm (EA): f: X  E �

 Coevolutionary algorithm (CoEA): f: X1×X2×...×Xn  E, 
where E is an evaluation codomain (typically R)�

 Interaction = a tuple from X1×X2×...×Xn �
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EA vs. CoEA�

EA�
Absolute measure of fitness f available 

and computable for each individual 
separately.�

CoEA�
Search gradient can be obtained only 
by letting individuals interact. Exact 
fitness may be not computable. �
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Consequences�

 Individuals' performances depend on each other (fitness is contextual) �
 The solution of a problem can be: �
 An element of Xi (as in an EA)�
 Typical for competitive CoEA (with exceptions)�

 Key questions: What to evolve against? Who is the best teacher?�

 A combination of elements from Xis�
 Typical for cooperative CoEA (with exceptions)�

 Key questions: How to encourage cooperation? Divide and conquer.�

 Pertains to so-called solution concepts, see later�
 Remember: individual ≠ solution �
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What is it good for?�
  CoEAs lend themselves conveniently to a few classes of problems of 

theoretical and practical interest. �

  Competitive CoEAs: test-based problems, games, interactive domains�

 Example: individual=game strategy, fitness=expected game 
outcome �

  Cooperative CoEAs: problem decomposition, modularity, credit assignment�

 Example: individual=a rule in a classifier, fitness=overall 
accuracy of the classifier�

  Class of problems: co-search, co-optimization, generalised optimisation 
(Wolpert and Macready 2005)�
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Other characteristics of CoEAs�

 Operate under incomplete information (uncertainty)�

  Focus on evaluation and interaction schemes (less so on 
search operators)�

  Individuals often maintained in several populations.�

 Biological analogs:�
 No global, static fitness function in Nature�

 Nature does not optimize for anything; EAs do. �

  Individual's fitness results from its interactions with environment, 
including other individuals of the same species�
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Measuring progress: 
Subjective vs. objective fitness�

 Subjective fitness: f calculated using the currently 
available elements of Xis (a sample)�

 Typically those available in the current population, �

 Example: average game outcome against the opponents from 
the current population�

 Objective fitness: f calculated with the elements chosen 
in a principled manner. 
Examples:�

 Average game outcome against all possible opponents �
 Game outcome against a human-crafted opponent.�

II.1. Competitive coevolution�
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Class of problems tackled by competitive 
CoEAs�

  Interactive domains�
  Sets of individuals (entities*)�

  Interaction function (payoff function) 
g: X1×X2×...×Xn  R

  When n=2, the second argument is 
an opponent.�

  Note: g alone does not define the 
search goal.  �
  What is the solution to the 

problem? �

(*) Sometimes, but not always, identified with 
candidate solutions�

  Solution concept (cf. Ficici 2004, 
Popovici et al. 2012): �

  Criterion specifying whether a 
potential solution �

  is better than another solution 
(in co-optimization),�
  is solution to a problem (in co-
search)�

  Most popular SC: Maximization of 
Expected Utility (MEU): 
fo(x) =  E[ g(x1,x2) ]�

  A.k.a. generalization performance 
(Chong et al. 2008)�

  Competitive CoEAs realize 
knowledge-free approach to 
solving problems posed in 
interactive domains. �
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Subjective fitness�
  Challenge: calculation of fo computationally infeasible.�

  Example: Othello: game tree complexity 1058�

  Number of encoded strategies typically much higher due to many-to-one genotype-
phenotype mapping �

  Solutions:�
  1. Fix the set of opponents. �

  For instance, well-performing known opponents (e.g., handcrafted by humans)�
  Strong bias, limited generalization�

  2. Draw the opponents at random�
  What is the 'right' distribution of opponents?�
  Drawing uniformly in the genotypic space does not result in desired (e.g., uniform) 
distribution of skills/capabililties �

  3. Competitive coevolution �
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Example: Game of Othello�
  Two-player, perfect-information, turn-

based, zero-sum game�

  Still unsolved�

  Sudden changes of game state possible�

  Strategy = individual (candidate solution)�

  Common competitive CoEA approach: �

  Evolve board evaluation function b()�

  Use it in one-ply search: simulate all legal 
single moves from the current state and 
choose the one that maximizes b.    �

  Popular representations of board 
evaluation functions: weighted piece 
counter and n-tuples�
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Weighted Piece Counter (WPC)�

  Single linear neuron with 64 
weights: b(s) =  Σi wisi �

  Top: handcrafted Othello WPC 
board evaluation function 
(standard WPC heuristics) �

  Bottom: a function evolved using 
one-population competitive 
CoEA, hybridized with TDL 
(Szubert, Jaśkowski, Krawiec 
2009)�
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N-tuple networks
(Lucas 1997)�

  Combinatorial network with lookup 
tables holding all combinations for 
(usually randomly selected) 
subsets of (usually adjacent) 
board locations �
  3n weights for a single n-tuple for 

tri-state boards (for Othello: empty, 
black, white)�
  Top: Exemplary 3-tuple and 4-

tuple for base-3 numbers: �
  2*32 + 0*31 + 1*30 = 19 �
  1*33 + 0*32 + 2*31 + 1*30 = 34�

  Bottom: Examples of CTDL co-
evolved n-tuples (Szubert, 
Jaśkowski, Krawiec, 2013)�
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One-population competitive CoEA�
  The simplest setup to approach MEU problems.�

  Applicable when X1 = X2 = ... = Xn = X �

  E.g. symmetric games�

  Usually: fs(x) = Σx’∈X’ g(x,x’), where X’ is some sample of X drawn from current population P

  An interaction = single game (symmetric games) or two games (asymmetric 
games)�

  Interaction schemes:�
  Round-robin: n(n-1)/2 interactions (X’ = P \ {x})�

  k-random opponents: kn interactions (|X’| = k)�

  Single-elimination tournament (SET): n interactions�

  Pair the individuals at random. Winners pass to the next stage. Individual's fitness is  the stage 
of tournament it reached. �
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Highlights of one-pop competitive CoEAs�

  Iterated Prisoner’s Dilemma, IPD(Axelrod 1987)�
 Backgammon (Pollack & Blair 1998)�
 Checkers (Samuel 1959, Fogel 2002)�
 NERO, Blackjack, Pong, Small-board GO, Tetris, …�
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Fitnessless Coevolution
(Jaśkowski, Krawiec, Wieloch 2008)�

 More specifically: fitnessless selection �
 Pick k individuals at random�

 Run a SET on them �

 The winner of SET is selected�

 Does not explicitly define subjective fitness. �
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Fitnessless Coevolution for Ant Wars
(Jaśkowski, Krawiec, Wieloch 2008)�

  Fitnessless Coevolution evolved the winner of the Ant Wars GECCO'08 contest�
  Two-player partially observable game�

  Agents (ants) see only a 5x5 fragment of the toroidal 11x11 board�

  The goal: collect more food pellets than the opponent (pellet locations are random).�

  Strategy representation: stateful GP program (maintains intra-game memory)�
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Example: Ant Wars�

Complex behaviors emerged: systematic search, rational 
choice of trajectories, …�
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Example: Ant Wars�
… memorizing locations of food pellets, opponent avoidance, 

pseudo-suicide, …�

 Online demo: http://www.cs.put.poznan.pl/kkrawiec/antwars/ �
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Digression: Importance of transitivity�

  Fitnessless Coevolution is not equivalent to fitness-driven one-population 
coevolution if there are cycles in interactions in between individuals  (Jaśkowski, 
Krawiec, Wieloch 2008)�

  Example: Tic-tac-toe strategies A, B, C: place a mark in the numbered locations 
if free,  otherwise in the location marked by asterisk (*)�

  A beats B, and B beats C. But A does not beat C, just the opposite. �
  Tic-tac-toe is intransitive. �
  No scalar fitness function can model this (can realize only complete orders). �
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The philosophy behind one-pop 
competitive CoEA�

  Individuals create search 
gradient for each other.�

  A form of (population-level) self-
learning �

  Related to: self-play in RL 
(individual-level)�

  Is this sufficient to guarantee 
progress?�

  Not always. 
Coevolutionary pathologies are 
lurking out there. �
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Coevolutionary pathologies�

  Cycling: evolution keeps rediscovering the same solutions �
  Particularly likely if game is intransitive. �

  Disengagement: opponents are either trivial or way too difficult to beat�
  Overspecialization (focusing): mastering the skills of beating some 
opponents while neglecting the others.  �
  Forgetting: opponents defeated in the past turn out to be difficult again. �

  See review and rigorous analysis in (Ficici 2004)�
  Main causes:�

  No access to objective fitness �

  Population responsible for both search and providing search gradient for itself�
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Coevolutionary archive competitive 
CoEAs (one-population)�

Archive = a container storing well-
performing individuals, maintained 
alongside population. �

Functions:�
  Provide long-term memory for a 

search process�
  Prevent some pathologies�
  Maintaining diversity�
  Building search gradient �
  Maintain progress�

Archives help maintaining historic 
progress (Miconi 2009); not 
necessarily progress in the global, 
objective sense.�

How it works:�
  Search algorithm submits some 

individuals to the archive�
  Archive accepts some of them �
  Individuals in population interact with 

peers and archival individuals �
  Outcomes of interactions augment 

the fitness �
  Simplest archive: best-so-far 

individual�
  Hall of fame (Rosin & Belew, 1997) �

  Stores all best-of-generation individuals 
found so far �

  Population members play against each 
other and against the opponents from 
HoF�

II.2. Two-population competitive 
CoEAs�
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Two-population competitive CoEAs�
  One-pop competitive CoEA: Population responsible for both search 
and providing search gradient for itself. �

 Why not separate these functions?�

  Two-pop competitive CoEAs: Maintain separate populations of:�

  candidate solutions S ⊂ X1 – intended to solve the problem �

  tests T ⊂ X2 – provide only search gradient for the individuals in S �

  Applicable in symmetric (X1 = X2) and asymmetric setting (X1 ≠ X2) �
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Two-population competitive CoEA�

 Typical interaction scheme: all-to-all�
 S and T co-evolve in parallel �
 No transfer of individuals between S and T
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What to reward the tests for?�

  Individuals in S should maximize MEU. How to reward the tests?�

  Maximize MEU as well?�

  Pathologies likely�

  Tests should be neither too easy nor to hard for the individuals in S

  Common reward schemes:�

  Distinctions: reward tests for every pair of solutions they distinguish�

  Informativeness: reward tests for unique partitioning of S

  Hybrids (e.g., with MEU)�
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Test-based problems�

  With two populations, the tests can be conceptually different from 
candidate solutions. �
  Formally: Test-based problem (S, T, G, Q) (Popovici et al., 2012)�

  Examples:�
  Asymmetric games (strategies vs. opponents)�

  E.g., tic-tac-toe, Othello, �

  Control problems (controllers vs. initial conditions)�
  Pole balancing, car control, etc. �

  Learning from examples (hypotheses vs. examples)�

  Generally: co-optimization and co-search�
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Pareto-coevolution
(Ficici and Pollack, 2001; Noble and Watson, 2001)�

  Each test considered as a separate objective.�
  Transforms a test-based problem into multiobjective optimization 
problem (or many-objective one).  �
  Example: �

 s1 solves both tests t1 and t2�
 s2 solves only t2�
 s3 solves only t1�

  Problem: large number of tests (and thus objectives).�
  Sparse dominance relation. �
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Coevolutionary archives 
(two-pop)�

  General scheme: individuals are submitted to archive and get 
accepted or rejected by it.�
  Separate archives for solutions and tests�
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Coevolutionary archive algorithms 
(two-pop)�

  Iterated Pareto-Coevolutionary Archive, IPCA (de Jong 2004)�
  A new solution s  is added to Sar if no s’ ∈ Sar dominates s. In that case:�

  All s” ∈ Sar dominated by s are removed from Sar�
  The test t that made it possible for s to be added to Sar is added to Tar �

  Guarantees monotonous progress �
  Unlimited-size archive �
  Tests provide for distinctions between individuals�

  Layered Pareto-Coevolutionary Algorithm, LAPCA (de Jong 2004)�
  Merges the current archive and the submitted elements and builds a Pareto ranking of 

solutions�
  The first k layers of the ranking remain in Sar, the remaining ones are discarded�
  Tar keeps the tests that support Pareto dominance in Sar�
  No guarantee of monotonous progress, but (somehow) controllable size�

  IPCA and LAPCA perform well only on small, usually artificial problems. �
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Coevolutionary archives �
  Maintaining archives can be costly �

 Many interactions required to check if a solution should be added�

  Mitigation: MaxSolve (De Jong 2005), for MEU solution concept�
  Keep in Sar up to n solutions that solve the most tests (at least one), and 
in Tar all tests that a solved by at least one s ∈ Sar �

  [Behaviorally] duplicate tests are discarded�

 Monotonic: will not miss solutions that increase the number of solved 
tests�

  When overhead of maintaining an archive counted in, non-
archived algorithms can be equally efficient.�
  Other types of archives (Jaśkowski & Krawiec 2010)�
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Related results and concepts�

 Ideal evaluation and complete evaluation set (de 
Jong and Pollack 2004)�
 The set of tests that preserves all relations between 
the solutions in S
 Determining the minimal complete evaluation set is 
NP hard (Jaśkowski & Krawiec 2011)�
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Genetic Programming: Program 
synthesis as a test-based problem�

  Genetic programming�
  S = population of candidate 
programs�
  T = population of tests (fitness 
cases)�

  Simple variant: Pairwise Comparison 
of Hypotheses (Krawiec 2001) �

  Dominance-based selection of 
hypotheses�
  Dominance-based maintenance of 
best solutions�
  Dominance-based selection of the 
best solutions (algorithm outcome)�

  Applied to handwritten character 
recognition�

II.3. Advanced topics in 
competitive coevolution�

Hybridization, coordinate systems, 
coevolutionary shaping�
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Hybridization�
  CoEAs are generate-and-test techniques (like EA)�

  In contrast, gradient-based methods provide ‘directed’ corrections/updates of 
parameters �

  Can be more efficient in high-dimensional problems �
  Complementary: CoEAs learn slower than TDL but eventually outperform it (Lucas & 

Runarsson 2006)�
  Coevolutionary Temporal Difference Learning, CTDL (Krawiec & Szubert 2011, 

Szubert et al. 2013)�
  Interleave one-population coevolution (with round-robin interaction scheme) with TD(0) �
  CoEA picks the ‘right’ opponents, TDL tunes the candidate solutions in a self-play 

mode�
  CoEA modifies the topology of n-tuples. TDL only affects the weights. �

  A form of memetic algorithm (genetic local search) (Moscato 1989): individuals’ 
interactions with the environment influence their genotypes (Lamarckian 
evolution). �

  Related to: adversary reinforcement learning �
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Hybridization�

 Othello, n-tuples (Szubert, Jaśkowski, 
Krawiec 2013)�

 Compared also to ETDL= EA+TD(0) �

 Othello Evaluation Function League�

 http://algoval.essex.ac.uk:8080/othello/html/
Othello.html �

 Ranked according to average performance 
against so-called standard heuristic WPC 
(handcrafted strategy; moves partially 
randomized) (as of 2011)�

 Players evolved by ETDL ranked higher 
than those produced by CTDL. Why?�
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Hybridization: EA vs. CoEA�

 Right: distribution of ranks obtained by ETDL 
(top) and CTDL (bottom) best-of-generation 
individuals in a round-robin competition with 
24 top Othello League players. �

 ETDL better on predefined opponent (heuristic 
WPC)�

 CTDL better in face-to face confrontation with 
other opponents �

 ETDL overfits on the WPC�

 CTDL: �

 produces more versatile players�

 scales well with the number of parameters�

 effective interplay of combinatorial evolutionary 
search and gradient-based search in continuous 
space of n-tuple weights.  �
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Coordinate systems�

 An interaction matrix defines a dominance relation�
 Dominance relation defines a partial order in the set of 
individuals ⇒ partially ordered set, poset�

 A poset can be 'stretched' along multiple dimensions 
(underlying dimensions). 
 Dimensions form a coordinate system (Bucci et al. 2004): �

 Axis = ordered list of tests�
 (alternative formulations exist)�

July 9th, 2015� Solving Complex Problems with 
Coevolutionary Algorithms� 44�

Coordinate system: an example�
•  Game: Nim-1-3�

–  Players in turns take sticks from two piles of size 1 and 3.�
•  Total of 144 strategies, �

–  but only 6 behaviorally unique for the first player (S), and 9 for the 
second player (T).�

•  Minimal coordinate system�
–  Some tests not needed to reproduce the dominance relation �

•  Game dimension: 2�
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Coordinate systems: related results�

  Benefits:�
  Can accelerate convergence and/or guarantee progress: Dimension 
Extraction Coevolutionary Algorithm, DECA (de Jong and Bucci 2006)�

  Reveal the internal structure of a problem and relate to problem difficulty�

  Hypothesis: dimensionality of coordinate system is a yardstick of 
problem difficulty�

  The set of all tests forms the complete evaluation set (de Jong & 
Pollack 2004)�

  Game dimension = width of the poset (Jaśkowski & Krawiec 2011)�

  The number of underlying objectives for an abstract problem seems 
to be limited by a logarithm of the number of tests.�
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Problems with exact coordinate systems�

  Problem dimension may be 
underestimated when only 
samples of S and T are used.�
  Finding minimal CS for a 
problem is NP-hard (Jaśkowski 
& Krawiec 2011)�
  Heuristics exist but 
overestimate the number of 
dimensions�
  Nontrivial test-based problems 
have very high dimensionality �
  Can we efficiently acquire 
approximate information on 
underlying dimensions?�
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Heuristic discovery of underlying 
objectives�

  Idea: �

 Construct efficiently approximate underlying objectives from the 
information available at the given stage of search process �

 Use the derived objectives in multiobjective EA setting�

  Derived objectives rather than underlying objectives�

 Approximate (do not reproduce the original dominance) �

 Transient (depend on the current populations) �

  Technical means: clustering of tests �
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Heuristic discovery of underlying objectives
(Liskowski & Krawiec 2014)�

•  ‘Batch evaluation’ of 
population (as in implicit 
fitness sharing)�

•  Example: four candidates:
S = {a,b,c,d}, five tests:
T = {t1,t2,t3,t4,t5} �

•  No guarantee to reproduce 
the original dominance 
relation.�

•  ‘False positive’ dominance 
possible.   �

•  ‘False negative’ – 
impossible.    �
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Heuristic discovery of underlying 
objectives�
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Heuristic discovery of underlying 
objectives�

 Results for 9-choice iterated prisoner’s dilemma, IPD (maximization of expected 
utility)�
 k-MEANS: k objectives derived using k-means clustering algorithm�
 k-RAND: objectives built by random partitioning of tests into k objectives�

 Applied also in non-coevolutionary setting with GP, with k adjusted automatically 
(Krawiec & Liskowski 2015). Better than GP and RAND, comparable to IFS.  �
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Coevolutionary shaping�
  Shaping = key concept in behavioral psychology (Skinner 1938) �

  Expose the learner to a series of training episodes of gradually increasing difficulty. �

  Motivation: Tasks can be too difficult to learn autonomously. �

  Example: To train a pigeon to strike a ball, first reward looking at it, then approaching 
it, and only then striking the ball with the beak.  �

  Used with success in Reinforcement Learning, e.g. pole balancing (Selfridge 
1986)�

  Simplified version of tasks generated by relaxing/parameterizing the original one�

  E.g. change the length of the pole, increase the mass, etc. �

  Related also to: incremental evolution, staged evolution, environmental 
complexification�

  Problem: requires human intervention (decide how to relax the tasks, order 
them, etc.)�
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Coevolutionary shaping
(Szubert 2014)�
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Coevolutionary shaping�

  Coevolution can be seen as a form of 
autonomous shaping�

  In CoEA: training experience = sequence 
of tests to interact with�

  What should be the gauge to decide how 
to form the training experience?�

  Test difficulty: (exact or estimated)�
  d(t) = Σs ∈ S (1 - g(s,t))  �

  Top: manual shaping (d(t) ×100%). �
  Bottom: coevolutionary shaping: 

distribution of test difficulty in a 
coevolving population of tests  (Othello, 
WPC) (Szubert et al. 2013)�

  Coevolutionary shaping works as well as 
the manual shaping, but requires less 
parameter tuning. �
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Coevolutionary shaping�
  Coev-task: tests are opponents.  �
  Coev-diff: a test encodes the difficulty of opponent (difficulty bin) 
drawn from a precomputed library. �
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Some take-home messages�

 Population of tests (and archives) accumulate potentially useful 
knowledge about a problem�
 Coordinate systems = a means of widening the ‘evaluation 
bottleneck’ and making search algorithm better-informed �
 Other means to opening the bottleneck exist (in GP: semantic GP, behavioral 
GP)�

 Competitive CoEAs tend to overspecialize on the stronger 
opponents while forgetting how to deal with the weaker ones �
 Importance of diversity (in particular diversity of tests) �
 A competitive CoEA can guide itself towards the optimum more 
efficiently �
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Not covered in this tutorial�
 Measuring and visualizing progress (e.g., CIAO plots)�
 Artificial problems: number games. Strategies represented as vectors of n elements. �
 Compare-on-all: A solution wins if it is better on all elements �

 Compare-on-one: a test picks a dimension at random; the solution wins if it’s greater on that dimension�

 Other solution concepts (Ficici 2004, Poppovici et al. 2011)�
 Simultaneous maximization of all outcomes, Nash equilibrium, Pareto-optimal set, Algorithms: (Ficici 2004) 
and review in (de Jong 2005) �

 Deciding upon the final outcome of a CoEA: “output mechanism” (Popovici and Winston 2015)�

 Random Sampling Evolutionary Algorithm (Chong et al. 2008) - no true coevolution, but hard to 
beat using competitive CoEAs.�
 Coevolutionary free lunches (Wolpert & Macready 2005; Service and Tauritz 2008; Popovici 
and Winston 2015)�
 Hybridization with CMA-ES (Jaśkowski & Szubert, 2015) �
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III. Cooperative Coevolution�

July 2015� Solving complex problems with 
coevolution� 57�

Cooperative Coevolution�

 Answers the question: �
 How to encourage collaboration?�

 Metaphor:�
 Divide and conquer!�

 Why (is it useful?): Promoting modularity / reuse�
 additional clarity in: (relative to a monolithic solution)�

 credit assignment�
  search space projected into multiple smaller search spaces�
  agents do not need to solve all the task�

 solution transparency�
 capacity to react to changes (Simon’s parable of the two watch makers)�

  Fitness: who to credit for what?�
 generalist pathology: �

 individuals rewarded for maximizing the number of collaborations�
 stable / mediocre solutions rather than optimal solutions�
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A Metaphor…�

 “species [individuals] represent solution components. 
Each individual forms a part of a complete solution but 
need not represent anything meaningful on its own. The 
components are evolved by measuring their contribution 
to complete solutions and recombining those that are 
most beneficial to solving the task.” [Gomez et al., (2008)]�

 Central questions�
 How to:�

 compose a candidate solution (team)�
 distinguish between credit to the team versus that to team 
members�
 balance the exploration / exploitation tradeoff�
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Cooperative Coevolution for complex 
systems : Some milestones�

  Neural Networks�
  Moriarty, Miikkulainen (1998)�
  Potter & de Jong (2000)�
  Gomez et al. (2008)�

  Genetic Programming�
  Krzystof & Bhanu (2006, 2007)�
  Thomason & Soule (2007), 
Rubini et al. (2009)�
  Lichodzijewski & Heywood 
(2008)�
  Wu & Banzhaf (2011)�

  Formulating fitness functions�
  Panait et al. (2006, 2008)�
  Agogino & Tumar (2008), 
Knudson & Tumar (2010)�

  Diversity maintenance�
  Lichodzijewski et al. (2011)�
  Doucette et al. (2012)�
  Kelly & Heywood (2014)�

  Non-stationary tasks�
  Agogino & Tumar (2008)�
  Vahdat et al, (2015)�

  Reinforcement Learning�
  Moriarty & Miikkulainen (1998)�
  Gomez et al. (2008)�
  Agogino & Tumar (2008), 
Knudson & Tumar (2010)�
  Rubini et al. (2009)�
  Doucette et al. (2012)�
  Kelly & Heywood (2014, 2015)�
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Cooperative Coevolution: An architecture
(Potter & De Jong, 2000)�

July 2015� Solving complex problems with 
coevolution� 61�

P1� P2� Pn�

g1� g2� gn�

Task domain�

g1 g2 g Candidate�
Solution�

Prior decomposition of the solution into ‘n’ independent populations (species)�

Biased and Lenient cooperation
(Panait et al., 2006), (Panait et al., 2008)�

Biased cooperation�
 Consider team versus 
individual fitness�

  Individuals receive avg. of 
fitness from teams�
 Promotes generalists�
 Hitchhiking�

 Recommend defining 
individual fitness as�

 an *optimal* team of 
collaborators�
 Not clear how an *optimal* 
collaborator set is found in 
the general case�

Lenient cooperation�
  Individual fitness�

 MAXi in team  (teami fitness)�

 Hitchhicking still exists�

  Is hitchhiking all negative?�
 Enables individuals to find 
their niche�
 Provides a memory of 
previous / alternative 
policies�
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Coevolving a cascade network
(Potter & De Jong, 2000)�
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x0�

x1�

+�
w0�

w1�
w2�

y1�

-1�

+� y2�

w0�

w1�

w2�

-1�

+� y3�

w0�

w1�

w2�

-1�

w3�

w3�
w4�

Individual 
from pop #1�

Individual 
from pop #2�

Individual 
from pop #3�

SANE with blueprints
 (Moriarty & Miikkulainen, 1998)�
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Blueprint population�
(neural networks)�

Weight population�
(weights & connections)�
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Difference evaluation functions
(Agogino & Tumar, 2008), (Knudson & Tumar, 2010), 

(Codly & Tumar, 2012)�
  Global fitness�

  Performance of entire collective�
  Difficult to identify the contribution 

from each agent�
  Local fitness�

  Performance of single agent�
  Difficult to encourage non-

overlapping collective behaviours�
  Difference evaluation function (Di)�

  Explicitly estimate value added by 
agent ‘i’�

  Global fitness needs to be locally 
‘decomposable’�

  Agents assigned w.r.t. physical 
locality to distributed sub-tasks�

  Form of ‘spatial embedding’�

  Di formulation�
  Di = G(s) – G(s-i + Ci) �

  G(s)�
  G( ) is the global evaluation function�
  ‘s’ state of the system�

  s-i �
  States for which agent ‘i’ have no 

contribution�
  Ci�

  Default vector of constants�
  Observations�

  In the worst case s-i is empty�
  Agent ‘i’ impacts on all states�

  Di directly expresses the impact of 
agent ‘i’ not present�

  Limited by capacity to design 
appropriate `difference’ expression�
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Cooperative Synapse NeuroEvolution
(Gomez et al., 2008)�

 Select Parents �
 NNs (say, top 25%)�

 Variation�
 75% children�

 Sort Pi w.r.t. f(wij)�
 Pi : f(wi1) > f(wi2) >… 
f(wiβ)�

 Stochastic permutation 
of Pi content�

 Pi : f(wi1) f(wi2) … f(wiβ)�
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ontent
(w ) f(ff w ) f(ff wi1wi1ww ) f(ff w )22) …22 f(ff wi2wi2w )22

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)�

 Motivation�
 Team selection:�

 Good cooperation�
 Poor individual fitness�

 Island (individual) 
selection:�

 Poor cooperation�
 Strong individual fitness�

 OET1 (OET2)�
 Select w.r.t individuals 
(teams)�
 Replace w.r.t. teams 
(individuals)�
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GP (individuals) 
capable of 

performing role ‘i’

Team ‘j’

Fixed number of team members�

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)�

OET1�
 Team = NULL�
 Select best individual per 
role�
 Create 2 such teams�
 Apply variation operators�
 Evaluate fitness�
 Replace worst teams�

OET2�
 Select 2 best teams�
 Apply variation operators�
 Evaluate fitness�
 Award fitness to 
individuals in same team�
 Replace weakest 
individuals�
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Level of Decomposition
(Krawiec & Bhanu, 2005), (Krawiec & Bhanu, 2007)�
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III.1 Case Study – Symbiotic 
bid-based GP�
Variable GP teams, �

diversity maintenance, and �
separating action from context�
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Abstract Model of Symbiosis
(Maynard Smith, 1991)�

E
co

lo
gi

ca
l c

oe
xi

st
en

ce
 

Different subsets 
of individuals 

coexist 

Compartmentalization 
of the subsets 

Synchronized 
replication 

Increasing organism complexity 

Symbiotic Bid-Based GP (SBB)
(Lichodzijewski & Heywood, 2008, 2010), (Lichodzijewski et al., 2011) �
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Inter Host: 
Diversity 

Maintenance�

Intra Host:�
Symbiont�

Cooperation�

Bid-based GP�
(context)�
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Achieving Symbiont Context
Bid-based GP�

Action� Bid�

Scalar� Program�

Instruction�
Set�

Single ‘atomic’�
Action�
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Host Fitness�

 Outcome vector, G( )�
 Point (p(k)) to Host (h(i)) Outcome�

G(h(i), p(k)) = �

 Host Speciation�
 Fitness sharing�
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Real valued reward (how close to 
target)�
Domain specific�

si =
X

k

 
G(hi, pk)P
j G(hj , pk)

!3

Asexual Reproduction
Species independence�
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III.2 Case Study – SBB under 
non-stationary streams�

Supporting Evolvability / Plasticity 
through Cooperative Coevolution�
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Non-stationary Streaming data
(Vahdat et al., 2015)�

Drift – ‘gradual’ variation�
 150,000 exemplars over 
stream�
 Window interface�

 500 window locations�
 20 exemplars sampled per 
window location�

 10 attributes�
 3 classes�

 16%, 74%, 10%�

Shift – ‘sudden’ variation�
 6.5 million exemplars 
over stream�
 Window interface�

 1,000 window locations�
 20 exemplars sampled per 
window location�

 6 attributes�
 5 classes�

 36%, 49%, 6%, 0.5%, 
1.5%, 3%, 4%�
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Accumulated multi-class detection rate
(Vahdat et al., 2015)�
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Modular�

Drift�
Monolithic�

Shift�
Modular�

Shift�
Monolithic�

Age of champion individual
During course of stream – Drift�
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Age of champion individual
During course of stream – Drift

Solving complex problems with
coevolution

(Vahdat et al., 2015)�

Age of champion individual
During course of stream – Shift�
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Age of champion individual
During course of stream – Shift

Solving complex problems with
coevolution

(Vahdat et al., 2015)�
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Observations�

 Context for the symbionts must be evolved�
 Bidding mechanism�

 Support for problem decomposition�
 Mix of symbionts per host an evolved trait�
 Fitness sharing encourages decomposition at host level�

 No prior knowledge on the nature of an appropriate 
decomposition�

 Lower ‘age’ of champion�
 Easier to switch in / out functional non-functional 
symbionts as contexts change�

 What if no single host dominates?�
 ‘traditional’ implication�

 Re-parameterize and begin from scratch�
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III.3 Case Study – Diversity 
maintenance and Policy reuse�

Hierarchical organization of 
programs, program abstraction�
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Motivation – Population fails in task
(Lichodzijewski et al., 2011)�
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Evolving a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)�
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Evaluating a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)�
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Hidden State Truck Backer-upper
(Lichodzijewski et al., 2011)�
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Goal�

(0
,0
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Parameterization
(Lichodzijewski et al., 2011)�

 SBB�
 Max. Eval.: 16,800,000�

 8,400,000 per layer�
 Max Host Size: 10�
 Host Pop.: 120�
 Host Gap: 60 (50% turnover)�
  (12 other parameters)�

 Single layer SBB config.�
 16,800,000 gen over 1 layer�
 Double Max host size�

 SBB (generic)�
  Instruction set:�

 {+, −, ×, ÷, cos, ln, exp, if R[x] 
< R[y] THEN sign(R[x])}�

 NEAT�
 Max. Eval.: 16,812,000�
 NN Pop.: 150�
  (17 other parameters)�

 Common�
 Point pop.: 120�

 Point Gap: 20 (17% turnover)�
 Uniform sampling (x, y, θc)�

 Atomic actions (steering)�
 0°, +30°, -30°�
 Movement fixed at constant 
rate�
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Level 0� Level 1� Single Level�

NEAT�
single�

single�

single�

single�

Pop.�
Pop.� Pop.�

Pop.�
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Sample Solution Trajectories�
(1 ‘pin’ per 10 moves)�
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Sequencing of�
`Atomic’�
Actions�

Deployment of�
Layer 0 hosts�

Key:�
+ denotes 30 degrees�
- denotes -30 degrees�

Key:�
Each symbol represents�
(1 of 5) different layer 0�

Hosts�

Solving complex problems with 
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Keepaway soccer
Task definition (Stone et al, 2005)�
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State variables�
-- takers to keepers�
-- ball assumes similar description�

Game initial state�
-- Stochastically defined�
-- Robocup server�

Interface to policy learner
Prior ‘keeper’ decision tree

Stone et al, (2005)�
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‘Novelty’ style diversity metric
Kelly & Heywood (2014)�

 All start states the ‘same’�
 Encourage diversity in failure�
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Reward of individual 
‘hi’ on game ‘ej’�

Distance between current 
game (ej) and ‘closest’ 

historical game (ehist) for 
alternate solution (hk)�

Reward of 
alternate individ. 
(hk) in historical 

game (ehist)�

si =
∑

j∈hhist

(
G(hi, ej)∑

k �=i(1− dist(ej , ehist))G(hk, ehist)

)
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Kelly and Heywood (2014)�

10

15

20

1 125 250 1 125 250
Generations

M
ax

 fit
ne

ss
 sc

or
e 

(m
ea

n 
ep

iso
de

 le
ng

th
 in

 se
co

nd
s)

Keepaway TEST performance
1000 games, Sampled at intervals of 125 generations�
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Kelly and Heywood (2014)�
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Configuration 
experienced 

during training�
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Cooperative Coevolution 
Concluding Comments�

  Highlights�
  Separation of context and action�

  Arbitrary team sizes under GP�
  Maintaining Diversity significant�

  Making diversity metrics ‘task free’? (see below)�
  Reuse of previous policies leverages diversity for generalization�
  Solutions generally significantly simpler than monolithic models�

  Some open questions�
  Credit for collective versus individuals�
  What learning bias are most appropriate for diversity maintenance�

  Task specific metrics�
  E.g., (Nelson et al. 2009)�

  … versus task independent metrics�
  Compression distance (Gomez, 2009)�
  Connectivity biases (Clune et al., 2013)�
  Hitchhiking formulations (Kelly, Heywood 2015)�

  … versus how to ‘present’ diversity�
  EMO versus switching between multiple diversity metrics (Donieux, Mouret, 2013)�

  Relation to ML concepts:�
  Layered Learning�
  Task transfer�
  Potential role for ‘curiosity’ or ‘intrinsically motivated ML’�
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Cooperative Coevolution
Example Benchmark task domains�

  Double inverted pendulum / cart pole�
 Gomez et al, (2008)�

 Capacity for solving the task�
  Truck reversal with obstacle�

  Lichodzijewski et al, (2011)�
 Capacity for solving the task / generalization�

  Acrobot�
  Doucette et al, (2012)�

 Capacity for solving the task / generalization�
  Distributed multi-object location�

  Agogino, Tumar (2008); Knudson, Tumar (2010); Colby, Tumar (2012)�
 Task decomposition and (heterogeneous) collective problem solving�

  Keepaway or Half field offense (soccer)�
  Kelly, Heywood (2014, 2015)�

 Task decomposition and (homogeneous) collective problem solving�
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IV. Closing remarks�

Closing remarks�

 Coevolutionary algorithms = conceptually interesting 
and oftentimes efficient paradigm for solving complex 
problems�
 Addresses key aspects of computational intelligence:�

 What/who to learn from?�
 How to drive the search/optimization?�
 What is solution to my problem?�
 How do I decompose my problem? �
 How do I make some entities cooperate?�

 Many interesting results, �
 … even more open questions! �
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