
Solving Complex Problems with
Coevolutionary Algorithms�

Malcolm Heywood1, Krzysztof Krawiec2 �
1Dalhousie University, Canada�

2Poznan University of Technology, Poland�
mheywood@cs.dal.ca, krawiec@cs.put.poznan.pl�

http://www.sigevo.org/gecco-2015/�

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s). �
Copyright is held by the owner/author(s).�
GECCO'15 Companion, July 11–15, 2015, Madrid, Spain.
ACM 978-1-4503-3488-4/15/07.�
http://dx.doi.org/10.1145/2739482.2756580�

Instructors�
  Malcolm Heywood is a Professor of Computer Science at Dalhousie

University, Canada. His has a particular interest in scaling up the tasks that
genetic programming (GP) can potentially be applied to. His current research
is attempting the appraise the utility of coevolutionary methods under non-
stationary environments as encountered in streaming data applications, and
coevolving agents for single and multi-agent reinforcement learning tasks. In
the latter case the goal is to coevolve behaviours for playing soccer under the
RoboSoccer environment (a test bed for multi-agent reinforcement learning).
Dr. Heywood is a member of the editorial board for Genetic Programming and
Evolvable Machines (Springer). He was a track co-chair for the GECCO GP
track in 2014 and a co-chair for European Conference on Genetic
Programming in 2015 and 2016.�

  Krzysztof Krawiec is an Associate Professor in the Laboratory of Intelligent
Decision Support Systems at Poznan University of Technology, Poznań,
Poland. His primary research areas are genetic programming and
coevolutionary algorithms, with applications in program synthesis, modeling,
image analysis, and games. Dr. Krawiec cochaired the European Conference
on Genetic Programming in 2013 and 2014, the ACM GECCO GP track in
2016 and is an associate editor of Genetic Programming and Evolvable
Machines journal. His work in the area of CoEAs includes problem
decomposition using cooperative coevolution (for machine learning and
pattern recognition tasks), learning game strategies for Othello, Go, and other
games using �competetive CoEAs, and discovery of underlying objectives in
test-based problems.�

July 2015� Solving complex problems with
coevolution� 2�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 3�

Agenda�
  I. Introduction�
  II. Competitive coevolution�
  Core concepts�
  One-population competitive coevolution�
  Two-population competitive coevolution�
  Advanced techniques�

  III. Cooperative coevolution�
  Core concepts�
  Case study: Symbiotic bid-based GP�
  Case study: SBB under non-stationary streams�
  Case study: Diversity maintenance and policy reuse�

  IV. Closing remarks ��

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 4�

I. Introduction�

547

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 5�

Canonical assumptions made by EA�

 An absolute measure of fitness is available and computable.�

  ‘complete’ definition of task / environment�

 Solutions are (more or less) monolithic.�

  Each individual encodes complete solution to a problem �

  Tasks are not explicitly decomposed. �

 Coevolutionary algorithms (CoEA) revise these assumptions. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 6�

What is a coevolutionary algorithm?�

 A variant of EC where fitness function mandates the
individuals to engage into direct interactions.�

 Fitness cannot be computed for isolated individuals.�

 Formally: �

 Evolutionary algorithm (EA): f: X E �

 Coevolutionary algorithm (CoEA): f: X1×X2×...×Xn E,
where E is an evaluation codomain (typically R)�

 Interaction = a tuple from X1×X2×...×Xn �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 7�

EA vs. CoEA�

EA�
Absolute measure of fitness f available

and computable for each individual
separately.�

CoEA�
Search gradient can be obtained only
by letting individuals interact. Exact
fitness may be not computable. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 8�

Consequences�

 Individuals' performances depend on each other (fitness is contextual) �
 The solution of a problem can be: �
 An element of Xi (as in an EA)�
 Typical for competitive CoEA (with exceptions)�

 Key questions: What to evolve against? Who is the best teacher?�

 A combination of elements from Xis�
 Typical for cooperative CoEA (with exceptions)�

 Key questions: How to encourage cooperation? Divide and conquer.�

 Pertains to so-called solution concepts, see later�
 Remember: individual ≠ solution �

548

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 9�

What is it good for?�
  CoEAs lend themselves conveniently to a few classes of problems of

theoretical and practical interest. �

  Competitive CoEAs: test-based problems, games, interactive domains�

 Example: individual=game strategy, fitness=expected game
outcome �

  Cooperative CoEAs: problem decomposition, modularity, credit assignment�

 Example: individual=a rule in a classifier, fitness=overall
accuracy of the classifier�

  Class of problems: co-search, co-optimization, generalised optimisation
(Wolpert and Macready 2005)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 10�

Other characteristics of CoEAs�

 Operate under incomplete information (uncertainty)�

  Focus on evaluation and interaction schemes (less so on
search operators)�

  Individuals often maintained in several populations.�

 Biological analogs:�
 No global, static fitness function in Nature�

 Nature does not optimize for anything; EAs do. �

  Individual's fitness results from its interactions with environment,
including other individuals of the same species�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 11�

Measuring progress:
Subjective vs. objective fitness�

 Subjective fitness: f calculated using the currently
available elements of Xis (a sample)�

 Typically those available in the current population, �

 Example: average game outcome against the opponents from
the current population�

 Objective fitness: f calculated with the elements chosen
in a principled manner.
Examples:�

 Average game outcome against all possible opponents �
 Game outcome against a human-crafted opponent.�

II.1. Competitive coevolution�

549

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 13�

Class of problems tackled by competitive
CoEAs�

  Interactive domains�
  Sets of individuals (entities*)�

  Interaction function (payoff function)
g: X1×X2×...×Xn R

  When n=2, the second argument is
an opponent.�

  Note: g alone does not define the
search goal. �
  What is the solution to the

problem? �

(*) Sometimes, but not always, identified with
candidate solutions�

  Solution concept (cf. Ficici 2004,
Popovici et al. 2012): �

  Criterion specifying whether a
potential solution �

  is better than another solution
(in co-optimization),�
  is solution to a problem (in co-
search)�

  Most popular SC: Maximization of
Expected Utility (MEU):
fo(x) = E[g(x1,x2)]�

  A.k.a. generalization performance
(Chong et al. 2008)�

  Competitive CoEAs realize
knowledge-free approach to
solving problems posed in
interactive domains. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 14�

Subjective fitness�
  Challenge: calculation of fo computationally infeasible.�

  Example: Othello: game tree complexity 1058�

  Number of encoded strategies typically much higher due to many-to-one genotype-
phenotype mapping �

  Solutions:�
  1. Fix the set of opponents. �

  For instance, well-performing known opponents (e.g., handcrafted by humans)�
  Strong bias, limited generalization�

  2. Draw the opponents at random�
  What is the 'right' distribution of opponents?�
  Drawing uniformly in the genotypic space does not result in desired (e.g., uniform)
distribution of skills/capabililties �

  3. Competitive coevolution �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 15�

Example: Game of Othello�
  Two-player, perfect-information, turn-

based, zero-sum game�

  Still unsolved�

  Sudden changes of game state possible�

  Strategy = individual (candidate solution)�

  Common competitive CoEA approach: �

  Evolve board evaluation function b()�

  Use it in one-ply search: simulate all legal
single moves from the current state and
choose the one that maximizes b. �

  Popular representations of board
evaluation functions: weighted piece
counter and n-tuples�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 16�

Weighted Piece Counter (WPC)�

  Single linear neuron with 64
weights: b(s) = Σi wisi �

  Top: handcrafted Othello WPC
board evaluation function
(standard WPC heuristics) �

  Bottom: a function evolved using
one-population competitive
CoEA, hybridized with TDL
(Szubert, Jaśkowski, Krawiec
2009)�

550

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 17�

N-tuple networks
(Lucas 1997)�

  Combinatorial network with lookup
tables holding all combinations for
(usually randomly selected)
subsets of (usually adjacent)
board locations �
  3n weights for a single n-tuple for

tri-state boards (for Othello: empty,
black, white)�
  Top: Exemplary 3-tuple and 4-

tuple for base-3 numbers: �
  2*32 + 0*31 + 1*30 = 19 �
  1*33 + 0*32 + 2*31 + 1*30 = 34�

  Bottom: Examples of CTDL co-
evolved n-tuples (Szubert,
Jaśkowski, Krawiec, 2013)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 18�

One-population competitive CoEA�
  The simplest setup to approach MEU problems.�

  Applicable when X1 = X2 = ... = Xn = X �

  E.g. symmetric games�

  Usually: fs(x) = Σx’∈X’ g(x,x’), where X’ is some sample of X drawn from current population P

  An interaction = single game (symmetric games) or two games (asymmetric
games)�

  Interaction schemes:�
  Round-robin: n(n-1)/2 interactions (X’ = P \ {x})�

  k-random opponents: kn interactions (|X’| = k)�

  Single-elimination tournament (SET): n interactions�

  Pair the individuals at random. Winners pass to the next stage. Individual's fitness is the stage
of tournament it reached. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 19�

Highlights of one-pop competitive CoEAs�

  Iterated Prisoner’s Dilemma, IPD(Axelrod 1987)�
 Backgammon (Pollack & Blair 1998)�
 Checkers (Samuel 1959, Fogel 2002)�
 NERO, Blackjack, Pong, Small-board GO, Tetris, …�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 20�

Fitnessless Coevolution
(Jaśkowski, Krawiec, Wieloch 2008)�

 More specifically: fitnessless selection �
 Pick k individuals at random�

 Run a SET on them �

 The winner of SET is selected�

 Does not explicitly define subjective fitness. �

551

July 9th, 2015 Solving Complex Problems with Coevolutionary
Algorithms

21

Fitnessless Coevolution for Ant Wars
(Jaśkowski, Krawiec, Wieloch 2008)�

  Fitnessless Coevolution evolved the winner of the Ant Wars GECCO'08 contest�
  Two-player partially observable game�

  Agents (ants) see only a 5x5 fragment of the toroidal 11x11 board�

  The goal: collect more food pellets than the opponent (pellet locations are random).�

  Strategy representation: stateful GP program (maintains intra-game memory)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 22�

Example: Ant Wars�

Complex behaviors emerged: systematic search, rational
choice of trajectories, …�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 23�

Example: Ant Wars�
… memorizing locations of food pellets, opponent avoidance,

pseudo-suicide, …�

 Online demo: http://www.cs.put.poznan.pl/kkrawiec/antwars/ �
July 9th, 2015� Solving Complex Problems with

Coevolutionary Algorithms� 24�

Digression: Importance of transitivity�

  Fitnessless Coevolution is not equivalent to fitness-driven one-population
coevolution if there are cycles in interactions in between individuals (Jaśkowski,
Krawiec, Wieloch 2008)�

  Example: Tic-tac-toe strategies A, B, C: place a mark in the numbered locations
if free, otherwise in the location marked by asterisk (*)�

  A beats B, and B beats C. But A does not beat C, just the opposite. �
  Tic-tac-toe is intransitive. �
  No scalar fitness function can model this (can realize only complete orders). �

552

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 25�

The philosophy behind one-pop
competitive CoEA�

  Individuals create search
gradient for each other.�

  A form of (population-level) self-
learning �

  Related to: self-play in RL
(individual-level)�

  Is this sufficient to guarantee
progress?�

  Not always.
Coevolutionary pathologies are
lurking out there. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 26�

Coevolutionary pathologies�

  Cycling: evolution keeps rediscovering the same solutions �
  Particularly likely if game is intransitive. �

  Disengagement: opponents are either trivial or way too difficult to beat�
  Overspecialization (focusing): mastering the skills of beating some
opponents while neglecting the others. �
  Forgetting: opponents defeated in the past turn out to be difficult again. �

  See review and rigorous analysis in (Ficici 2004)�
  Main causes:�

  No access to objective fitness �

  Population responsible for both search and providing search gradient for itself�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 27�

Coevolutionary archive competitive
CoEAs (one-population)�

Archive = a container storing well-
performing individuals, maintained
alongside population. �

Functions:�
  Provide long-term memory for a

search process�
  Prevent some pathologies�
  Maintaining diversity�
  Building search gradient �
  Maintain progress�

Archives help maintaining historic
progress (Miconi 2009); not
necessarily progress in the global,
objective sense.�

How it works:�
  Search algorithm submits some

individuals to the archive�
  Archive accepts some of them �
  Individuals in population interact with

peers and archival individuals �
  Outcomes of interactions augment

the fitness �
  Simplest archive: best-so-far

individual�
  Hall of fame (Rosin & Belew, 1997) �

  Stores all best-of-generation individuals
found so far �

  Population members play against each
other and against the opponents from
HoF�

II.2. Two-population competitive
CoEAs�

553

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 29�

Two-population competitive CoEAs�
  One-pop competitive CoEA: Population responsible for both search
and providing search gradient for itself. �

 Why not separate these functions?�

  Two-pop competitive CoEAs: Maintain separate populations of:�

  candidate solutions S ⊂ X1 – intended to solve the problem �

  tests T ⊂ X2 – provide only search gradient for the individuals in S �

  Applicable in symmetric (X1 = X2) and asymmetric setting (X1 ≠ X2) �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 30�

Two-population competitive CoEA�

 Typical interaction scheme: all-to-all�
 S and T co-evolve in parallel �
 No transfer of individuals between S and T

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 31�

What to reward the tests for?�

  Individuals in S should maximize MEU. How to reward the tests?�

  Maximize MEU as well?�

  Pathologies likely�

  Tests should be neither too easy nor to hard for the individuals in S

  Common reward schemes:�

  Distinctions: reward tests for every pair of solutions they distinguish�

  Informativeness: reward tests for unique partitioning of S

  Hybrids (e.g., with MEU)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 32�

Test-based problems�

  With two populations, the tests can be conceptually different from
candidate solutions. �
  Formally: Test-based problem (S, T, G, Q) (Popovici et al., 2012)�

  Examples:�
  Asymmetric games (strategies vs. opponents)�

  E.g., tic-tac-toe, Othello, �

  Control problems (controllers vs. initial conditions)�
  Pole balancing, car control, etc. �

  Learning from examples (hypotheses vs. examples)�

  Generally: co-optimization and co-search�

554

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 33�

Pareto-coevolution
(Ficici and Pollack, 2001; Noble and Watson, 2001)�

  Each test considered as a separate objective.�
  Transforms a test-based problem into multiobjective optimization
problem (or many-objective one). �
  Example: �

 s1 solves both tests t1 and t2�
 s2 solves only t2�
 s3 solves only t1�

  Problem: large number of tests (and thus objectives).�
  Sparse dominance relation. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 34�

Coevolutionary archives
(two-pop)�

  General scheme: individuals are submitted to archive and get
accepted or rejected by it.�
  Separate archives for solutions and tests�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 35�

Coevolutionary archive algorithms
(two-pop)�

  Iterated Pareto-Coevolutionary Archive, IPCA (de Jong 2004)�
  A new solution s is added to Sar if no s’ ∈ Sar dominates s. In that case:�

  All s” ∈ Sar dominated by s are removed from Sar�
  The test t that made it possible for s to be added to Sar is added to Tar �

  Guarantees monotonous progress �
  Unlimited-size archive �
  Tests provide for distinctions between individuals�

  Layered Pareto-Coevolutionary Algorithm, LAPCA (de Jong 2004)�
  Merges the current archive and the submitted elements and builds a Pareto ranking of

solutions�
  The first k layers of the ranking remain in Sar, the remaining ones are discarded�
  Tar keeps the tests that support Pareto dominance in Sar�
  No guarantee of monotonous progress, but (somehow) controllable size�

  IPCA and LAPCA perform well only on small, usually artificial problems. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 36�

Coevolutionary archives �
  Maintaining archives can be costly �

 Many interactions required to check if a solution should be added�

  Mitigation: MaxSolve (De Jong 2005), for MEU solution concept�
  Keep in Sar up to n solutions that solve the most tests (at least one), and
in Tar all tests that a solved by at least one s ∈ Sar �

  [Behaviorally] duplicate tests are discarded�

 Monotonic: will not miss solutions that increase the number of solved
tests�

  When overhead of maintaining an archive counted in, non-
archived algorithms can be equally efficient.�
  Other types of archives (Jaśkowski & Krawiec 2010)�

555

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 37�

Related results and concepts�

 Ideal evaluation and complete evaluation set (de
Jong and Pollack 2004)�
 The set of tests that preserves all relations between
the solutions in S
 Determining the minimal complete evaluation set is
NP hard (Jaśkowski & Krawiec 2011)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 38�

Genetic Programming: Program
synthesis as a test-based problem�

  Genetic programming�
  S = population of candidate
programs�
  T = population of tests (fitness
cases)�

  Simple variant: Pairwise Comparison
of Hypotheses (Krawiec 2001) �

  Dominance-based selection of
hypotheses�
  Dominance-based maintenance of
best solutions�
  Dominance-based selection of the
best solutions (algorithm outcome)�

  Applied to handwritten character
recognition�

II.3. Advanced topics in
competitive coevolution�

Hybridization, coordinate systems,
coevolutionary shaping�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 40�

Hybridization�
  CoEAs are generate-and-test techniques (like EA)�

  In contrast, gradient-based methods provide ‘directed’ corrections/updates of
parameters �

  Can be more efficient in high-dimensional problems �
  Complementary: CoEAs learn slower than TDL but eventually outperform it (Lucas &

Runarsson 2006)�
  Coevolutionary Temporal Difference Learning, CTDL (Krawiec & Szubert 2011,

Szubert et al. 2013)�
  Interleave one-population coevolution (with round-robin interaction scheme) with TD(0) �
  CoEA picks the ‘right’ opponents, TDL tunes the candidate solutions in a self-play

mode�
  CoEA modifies the topology of n-tuples. TDL only affects the weights. �

  A form of memetic algorithm (genetic local search) (Moscato 1989): individuals’
interactions with the environment influence their genotypes (Lamarckian
evolution). �

  Related to: adversary reinforcement learning �

556

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 41�

Hybridization�

 Othello, n-tuples (Szubert, Jaśkowski,
Krawiec 2013)�

 Compared also to ETDL= EA+TD(0) �

 Othello Evaluation Function League�

 http://algoval.essex.ac.uk:8080/othello/html/
Othello.html �

 Ranked according to average performance
against so-called standard heuristic WPC
(handcrafted strategy; moves partially
randomized) (as of 2011)�

 Players evolved by ETDL ranked higher
than those produced by CTDL. Why?�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 42�

Hybridization: EA vs. CoEA�

 Right: distribution of ranks obtained by ETDL
(top) and CTDL (bottom) best-of-generation
individuals in a round-robin competition with
24 top Othello League players. �

 ETDL better on predefined opponent (heuristic
WPC)�

 CTDL better in face-to face confrontation with
other opponents �

 ETDL overfits on the WPC�

 CTDL: �

 produces more versatile players�

 scales well with the number of parameters�

 effective interplay of combinatorial evolutionary
search and gradient-based search in continuous
space of n-tuple weights. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 43�

Coordinate systems�

 An interaction matrix defines a dominance relation�
 Dominance relation defines a partial order in the set of
individuals ⇒ partially ordered set, poset�

 A poset can be 'stretched' along multiple dimensions
(underlying dimensions).
 Dimensions form a coordinate system (Bucci et al. 2004): �

 Axis = ordered list of tests�
 (alternative formulations exist)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 44�

Coordinate system: an example�
•  Game: Nim-1-3�

–  Players in turns take sticks from two piles of size 1 and 3.�
•  Total of 144 strategies, �

–  but only 6 behaviorally unique for the first player (S), and 9 for the
second player (T).�

•  Minimal coordinate system�
–  Some tests not needed to reproduce the dominance relation �

•  Game dimension: 2�

557

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 45�

Coordinate systems: related results�

  Benefits:�
  Can accelerate convergence and/or guarantee progress: Dimension
Extraction Coevolutionary Algorithm, DECA (de Jong and Bucci 2006)�

  Reveal the internal structure of a problem and relate to problem difficulty�

  Hypothesis: dimensionality of coordinate system is a yardstick of
problem difficulty�

  The set of all tests forms the complete evaluation set (de Jong &
Pollack 2004)�

  Game dimension = width of the poset (Jaśkowski & Krawiec 2011)�

  The number of underlying objectives for an abstract problem seems
to be limited by a logarithm of the number of tests.�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 46�

Problems with exact coordinate systems�

  Problem dimension may be
underestimated when only
samples of S and T are used.�
  Finding minimal CS for a
problem is NP-hard (Jaśkowski
& Krawiec 2011)�
  Heuristics exist but
overestimate the number of
dimensions�
  Nontrivial test-based problems
have very high dimensionality �
  Can we efficiently acquire
approximate information on
underlying dimensions?�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 47�

Heuristic discovery of underlying
objectives�

  Idea: �

 Construct efficiently approximate underlying objectives from the
information available at the given stage of search process �

 Use the derived objectives in multiobjective EA setting�

  Derived objectives rather than underlying objectives�

 Approximate (do not reproduce the original dominance) �

 Transient (depend on the current populations) �

  Technical means: clustering of tests �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 48�

Heuristic discovery of underlying objectives
(Liskowski & Krawiec 2014)�

•  ‘Batch evaluation’ of
population (as in implicit
fitness sharing)�

•  Example: four candidates:
S = {a,b,c,d}, five tests:
T = {t1,t2,t3,t4,t5} �

•  No guarantee to reproduce
the original dominance
relation.�

•  ‘False positive’ dominance
possible. �

•  ‘False negative’ –
impossible. �

558

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 49�

Heuristic discovery of underlying
objectives�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 50�

Heuristic discovery of underlying
objectives�

 Results for 9-choice iterated prisoner’s dilemma, IPD (maximization of expected
utility)�
 k-MEANS: k objectives derived using k-means clustering algorithm�
 k-RAND: objectives built by random partitioning of tests into k objectives�

 Applied also in non-coevolutionary setting with GP, with k adjusted automatically
(Krawiec & Liskowski 2015). Better than GP and RAND, comparable to IFS. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 51�

Coevolutionary shaping�
  Shaping = key concept in behavioral psychology (Skinner 1938) �

  Expose the learner to a series of training episodes of gradually increasing difficulty. �

  Motivation: Tasks can be too difficult to learn autonomously. �

  Example: To train a pigeon to strike a ball, first reward looking at it, then approaching
it, and only then striking the ball with the beak. �

  Used with success in Reinforcement Learning, e.g. pole balancing (Selfridge
1986)�

  Simplified version of tasks generated by relaxing/parameterizing the original one�

  E.g. change the length of the pole, increase the mass, etc. �

  Related also to: incremental evolution, staged evolution, environmental
complexification�

  Problem: requires human intervention (decide how to relax the tasks, order
them, etc.)�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 52�

Coevolutionary shaping
(Szubert 2014)�

559

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 53�

Coevolutionary shaping�

  Coevolution can be seen as a form of
autonomous shaping�

  In CoEA: training experience = sequence
of tests to interact with�

  What should be the gauge to decide how
to form the training experience?�

  Test difficulty: (exact or estimated)�
  d(t) = Σs ∈ S (1 - g(s,t)) �

  Top: manual shaping (d(t) ×100%). �
  Bottom: coevolutionary shaping:

distribution of test difficulty in a
coevolving population of tests (Othello,
WPC) (Szubert et al. 2013)�

  Coevolutionary shaping works as well as
the manual shaping, but requires less
parameter tuning. �

ith July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 54�

Coevolutionary shaping�
  Coev-task: tests are opponents. �
  Coev-diff: a test encodes the difficulty of opponent (difficulty bin)
drawn from a precomputed library. �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 55�

Some take-home messages�

 Population of tests (and archives) accumulate potentially useful
knowledge about a problem�
 Coordinate systems = a means of widening the ‘evaluation
bottleneck’ and making search algorithm better-informed �
 Other means to opening the bottleneck exist (in GP: semantic GP, behavioral
GP)�

 Competitive CoEAs tend to overspecialize on the stronger
opponents while forgetting how to deal with the weaker ones �
 Importance of diversity (in particular diversity of tests) �
 A competitive CoEA can guide itself towards the optimum more
efficiently �

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 56�

Not covered in this tutorial�
 Measuring and visualizing progress (e.g., CIAO plots)�
 Artificial problems: number games. Strategies represented as vectors of n elements. �
 Compare-on-all: A solution wins if it is better on all elements �

 Compare-on-one: a test picks a dimension at random; the solution wins if it’s greater on that dimension�

 Other solution concepts (Ficici 2004, Poppovici et al. 2011)�
 Simultaneous maximization of all outcomes, Nash equilibrium, Pareto-optimal set, Algorithms: (Ficici 2004)
and review in (de Jong 2005) �

 Deciding upon the final outcome of a CoEA: “output mechanism” (Popovici and Winston 2015)�

 Random Sampling Evolutionary Algorithm (Chong et al. 2008) - no true coevolution, but hard to
beat using competitive CoEAs.�
 Coevolutionary free lunches (Wolpert & Macready 2005; Service and Tauritz 2008; Popovici
and Winston 2015)�
 Hybridization with CMA-ES (Jaśkowski & Szubert, 2015) �

560

III. Cooperative Coevolution�

July 2015� Solving complex problems with
coevolution� 57�

Cooperative Coevolution�

 Answers the question: �
 How to encourage collaboration?�

 Metaphor:�
 Divide and conquer!�

 Why (is it useful?): Promoting modularity / reuse�
 additional clarity in: (relative to a monolithic solution)�

 credit assignment�
  search space projected into multiple smaller search spaces�
  agents do not need to solve all the task�

 solution transparency�
 capacity to react to changes (Simon’s parable of the two watch makers)�

  Fitness: who to credit for what?�
 generalist pathology: �

 individuals rewarded for maximizing the number of collaborations�
 stable / mediocre solutions rather than optimal solutions�

July 2015� Solving complex problems with
coevolution� 58�

A Metaphor…�

 “species [individuals] represent solution components.
Each individual forms a part of a complete solution but
need not represent anything meaningful on its own. The
components are evolved by measuring their contribution
to complete solutions and recombining those that are
most beneficial to solving the task.” [Gomez et al., (2008)]�

 Central questions�
 How to:�

 compose a candidate solution (team)�
 distinguish between credit to the team versus that to team
members�
 balance the exploration / exploitation tradeoff�

July 2015� Solving complex problems with
coevolution� 59�

Cooperative Coevolution for complex
systems : Some milestones�

  Neural Networks�
  Moriarty, Miikkulainen (1998)�
  Potter & de Jong (2000)�
  Gomez et al. (2008)�

  Genetic Programming�
  Krzystof & Bhanu (2006, 2007)�
  Thomason & Soule (2007),
Rubini et al. (2009)�
  Lichodzijewski & Heywood
(2008)�
  Wu & Banzhaf (2011)�

  Formulating fitness functions�
  Panait et al. (2006, 2008)�
  Agogino & Tumar (2008),
Knudson & Tumar (2010)�

  Diversity maintenance�
  Lichodzijewski et al. (2011)�
  Doucette et al. (2012)�
  Kelly & Heywood (2014)�

  Non-stationary tasks�
  Agogino & Tumar (2008)�
  Vahdat et al, (2015)�

  Reinforcement Learning�
  Moriarty & Miikkulainen (1998)�
  Gomez et al. (2008)�
  Agogino & Tumar (2008),
Knudson & Tumar (2010)�
  Rubini et al. (2009)�
  Doucette et al. (2012)�
  Kelly & Heywood (2014, 2015)�

July 2015� Solving complex problems with
coevolution� 60�

561

Cooperative Coevolution: An architecture
(Potter & De Jong, 2000)�

July 2015� Solving complex problems with
coevolution� 61�

P1� P2� Pn�

g1� g2� gn�

Task domain�

g1 g2 g Candidate�
Solution�

Prior decomposition of the solution into ‘n’ independent populations (species)�

Biased and Lenient cooperation
(Panait et al., 2006), (Panait et al., 2008)�

Biased cooperation�
 Consider team versus
individual fitness�

  Individuals receive avg. of
fitness from teams�
 Promotes generalists�
 Hitchhiking�

 Recommend defining
individual fitness as�

 an *optimal* team of
collaborators�
 Not clear how an *optimal*
collaborator set is found in
the general case�

Lenient cooperation�
  Individual fitness�

 MAXi in team (teami fitness)�

 Hitchhicking still exists�

  Is hitchhiking all negative?�
 Enables individuals to find
their niche�
 Provides a memory of
previous / alternative
policies�

July 2015� Solving complex problems with
coevolution� 62�

Coevolving a cascade network
(Potter & De Jong, 2000)�

July 2015� Solving complex problems with
coevolution� 63�

x0�

x1�

+�
w0�

w1�
w2�

y1�

-1�

+� y2�

w0�

w1�

w2�

-1�

+� y3�

w0�

w1�

w2�

-1�

w3�

w3�
w4�

Individual
from pop #1�

Individual
from pop #2�

Individual
from pop #3�

SANE with blueprints
 (Moriarty & Miikkulainen, 1998)�

July 2015� Solving complex problems with
coevolution� 64�

Blueprint population�
(neural networks)�

Weight population�
(weights & connections)�

562

Difference evaluation functions
(Agogino & Tumar, 2008), (Knudson & Tumar, 2010),

(Codly & Tumar, 2012)�
  Global fitness�

  Performance of entire collective�
  Difficult to identify the contribution

from each agent�
  Local fitness�

  Performance of single agent�
  Difficult to encourage non-

overlapping collective behaviours�
  Difference evaluation function (Di)�

  Explicitly estimate value added by
agent ‘i’�

  Global fitness needs to be locally
‘decomposable’�

  Agents assigned w.r.t. physical
locality to distributed sub-tasks�

  Form of ‘spatial embedding’�

  Di formulation�
  Di = G(s) – G(s-i + Ci) �

  G(s)�
  G() is the global evaluation function�
  ‘s’ state of the system�

  s-i �
  States for which agent ‘i’ have no

contribution�
  Ci�

  Default vector of constants�
  Observations�

  In the worst case s-i is empty�
  Agent ‘i’ impacts on all states�

  Di directly expresses the impact of
agent ‘i’ not present�

  Limited by capacity to design
appropriate `difference’ expression�

July 2015� Solving complex problems with
coevolution� 65�

Cooperative Synapse NeuroEvolution
(Gomez et al., 2008)�

 Select Parents �
 NNs (say, top 25%)�

 Variation�
 75% children�

 Sort Pi w.r.t. f(wij)�
 Pi : f(wi1) > f(wi2) >…
f(wiβ)�

 Stochastic permutation
of Pi content�

 Pi : f(wi1) f(wi2) … f(wiβ)�

July 2015� Solving complex problems with
coevolution� 66�

ontent
(w) f(ff w) f(ff wi1wi1ww) f(ff w)22) …22 f(ff wi2wi2w)22

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)�

 Motivation�
 Team selection:�

 Good cooperation�
 Poor individual fitness�

 Island (individual)
selection:�

 Poor cooperation�
 Strong individual fitness�

 OET1 (OET2)�
 Select w.r.t individuals
(teams)�
 Replace w.r.t. teams
(individuals)�

July 2015� Solving complex problems with
coevolution� 67�

GP (individuals)
capable of

performing role ‘i’

Team ‘j’

Fixed number of team members�

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)�

OET1�
 Team = NULL�
 Select best individual per
role�
 Create 2 such teams�
 Apply variation operators�
 Evaluate fitness�
 Replace worst teams�

OET2�
 Select 2 best teams�
 Apply variation operators�
 Evaluate fitness�
 Award fitness to
individuals in same team�
 Replace weakest
individuals�

July 2015� Solving complex problems with
coevolution� 68�

563

Level of Decomposition
(Krawiec & Bhanu, 2005), (Krawiec & Bhanu, 2007)�

July 2015� Solving complex problems with
coevolution� 69�

III.1 Case Study – Symbiotic
bid-based GP�
Variable GP teams, �

diversity maintenance, and �
separating action from context�

July 2015� Solving complex problems with
coevolution� 70�

July 2015� Solving complex problems with
coevolution� 71�

Abstract Model of Symbiosis
(Maynard Smith, 1991)�

E
co

lo
gi

ca
l c

oe
xi

st
en

ce

Different subsets
of individuals

coexist

Compartmentalization
of the subsets

Synchronized
replication

Increasing organism complexity

Symbiotic Bid-Based GP (SBB)
(Lichodzijewski & Heywood, 2008, 2010), (Lichodzijewski et al., 2011) �

July 2015� Solving complex problems with
coevolution� 72�

Inter Host:
Diversity

Maintenance�

Intra Host:�
Symbiont�

Cooperation�

Bid-based GP�
(context)�

564

Achieving Symbiont Context
Bid-based GP�

Action� Bid�

Scalar� Program�

Instruction�
Set�

Single ‘atomic’�
Action�

July 2015� 73�Solving complex problems with
coevolution�

Host Fitness�

 Outcome vector, G()�
 Point (p(k)) to Host (h(i)) Outcome�

G(h(i), p(k)) = �

 Host Speciation�
 Fitness sharing�

July 2015� Solving complex problems with
coevolution� 74�

Real valued reward (how close to
target)�
Domain specific�

si =
X

k

G(hi, pk)P
j G(hj , pk)

!3

Asexual Reproduction
Species independence�

July 2015� Solving complex problems with
coevolution� 75�

III.2 Case Study – SBB under
non-stationary streams�

Supporting Evolvability / Plasticity
through Cooperative Coevolution�

July 2015� Solving complex problems with
coevolution� 76�

565

Non-stationary Streaming data
(Vahdat et al., 2015)�

Drift – ‘gradual’ variation�
 150,000 exemplars over
stream�
 Window interface�

 500 window locations�
 20 exemplars sampled per
window location�

 10 attributes�
 3 classes�

 16%, 74%, 10%�

Shift – ‘sudden’ variation�
 6.5 million exemplars
over stream�
 Window interface�

 1,000 window locations�
 20 exemplars sampled per
window location�

 6 attributes�
 5 classes�

 36%, 49%, 6%, 0.5%,
1.5%, 3%, 4%�

July 2015� Solving complex problems with
coevolution� 77�

Accumulated multi-class detection rate
(Vahdat et al., 2015)�

July 2015� Solving complex problems with
coevolution� 78�S l i l bl i h

M
ul

ti-
cl

as
s

D
R
�

Drift�
Modular�

Drift�
Monolithic�

Shift�
Modular�

Shift�
Monolithic�

Age of champion individual
During course of stream – Drift�

July 2015� Solving complex problems with
coevolution� 79�

Age of champion individual
During course of stream – Drift

Solving complex problems with
coevolution

(Vahdat et al., 2015)�

Age of champion individual
During course of stream – Shift�

July 2015� Solving complex problems with
coevolution� 80�

Age of champion individual
During course of stream – Shift

Solving complex problems with
coevolution

(Vahdat et al., 2015)�

566

Observations�

 Context for the symbionts must be evolved�
 Bidding mechanism�

 Support for problem decomposition�
 Mix of symbionts per host an evolved trait�
 Fitness sharing encourages decomposition at host level�

 No prior knowledge on the nature of an appropriate
decomposition�

 Lower ‘age’ of champion�
 Easier to switch in / out functional non-functional
symbionts as contexts change�

 What if no single host dominates?�
 ‘traditional’ implication�

 Re-parameterize and begin from scratch�

July 2015� Solving complex problems with
coevolution� 81�

III.3 Case Study – Diversity
maintenance and Policy reuse�

Hierarchical organization of
programs, program abstraction�

July 2015� Solving complex problems with
coevolution� 82�

Motivation – Population fails in task
(Lichodzijewski et al., 2011)�

July 2015� Solving complex problems with
coevolution� 83�

Evolving a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)�

July 2015� Solving complex problems with
coevolution� 84�

567

Evaluating a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)�

July 2015� Solving complex problems with
coevolution� 85�

Hidden State Truck Backer-upper
(Lichodzijewski et al., 2011)�

W
al

l o
bs

ta
cl

e
�

O
ut

 o
f b

ou
nd

s�

(0
,0

)�
Y-

ax
is
�

X-axis� trailer�

Start
configuration�

Defined by point�
population�

<x,y,θ(cab),θ(trailer)>�b),θ > GP�
<θ(steering>�

Goal�

(0
,0

July 2015� 86�Solving complex problems with
coevolution�

Parameterization
(Lichodzijewski et al., 2011)�

 SBB�
 Max. Eval.: 16,800,000�

 8,400,000 per layer�
 Max Host Size: 10�
 Host Pop.: 120�
 Host Gap: 60 (50% turnover)�
  (12 other parameters)�

 Single layer SBB config.�
 16,800,000 gen over 1 layer�
 Double Max host size�

 SBB (generic)�
  Instruction set:�

 {+, −, ×, ÷, cos, ln, exp, if R[x]
< R[y] THEN sign(R[x])}�

 NEAT�
 Max. Eval.: 16,812,000�
 NN Pop.: 150�
  (17 other parameters)�

 Common�
 Point pop.: 120�

 Point Gap: 20 (17% turnover)�
 Uniform sampling (x, y, θc)�

 Atomic actions (steering)�
 0°, +30°, -30°�
 Movement fixed at constant
rate�

July 2015� Solving complex problems with
coevolution� 87� July 2015� 88�

Level 0� Level 1� Single Level�

NEAT�
single�

single�

single�

single�

Pop.�
Pop.� Pop.�

Pop.�

Solving complex problems with
coevolution�

568

July 2015� 89�J l 2015 89

Sample Solution Trajectories�
(1 ‘pin’ per 10 moves)�

Solving complex problems with
coevolution� July 2015� 90�

Sequencing of�
`Atomic’�
Actions�

Deployment of�
Layer 0 hosts�

Key:�
+ denotes 30 degrees�
- denotes -30 degrees�

Key:�
Each symbol represents�
(1 of 5) different layer 0�

Hosts�

Solving complex problems with
coevolution�

Keepaway soccer
Task definition (Stone et al, 2005)�

July 2015� Solving complex problems with
coevolution� 91�

State variables�
-- takers to keepers�
-- ball assumes similar description�

Game initial state�
-- Stochastically defined�
-- Robocup server�

Interface to policy learner
Prior ‘keeper’ decision tree

Stone et al, (2005)�

July 2015� Solving complex problems with
coevolution� 92�

569

‘Novelty’ style diversity metric
Kelly & Heywood (2014)�

 All start states the ‘same’�
 Encourage diversity in failure�

July 2015� Solving complex problems with
coevolution� 93�

Reward of individual
‘hi’ on game ‘ej’�

Distance between current
game (ej) and ‘closest’

historical game (ehist) for
alternate solution (hk)�

Reward of
alternate individ.
(hk) in historical

game (ehist)�

si =
∑

j∈hhist

(
G(hi, ej)∑

k �=i(1− dist(ej , ehist))G(hk, ehist)

)

15

20

25

30

35

1 125 250 125 250
Generations

M
ax

 fit
ne

ss
 sc

or
e

(m
ea

n
ep

iso
de

 le
ng

th
 in

 se
co

nd
s)

Keepaway TRAINING performance
With / Without diversity�

July 2015� Solving complex problems with
coevolution� 94�

Kelly and Heywood (2014)�

10

15

20

1 125 250 1 125 250
Generations

M
ax

 fit
ne

ss
 sc

or
e

(m
ea

n
ep

iso
de

 le
ng

th
 in

 se
co

nd
s)

Keepaway TEST performance
1000 games, Sampled at intervals of 125 generations�

July 2015� Solving complex problems with
coevolution� 95�

Kelly and Heywood (2014)�

10

20

30

15x15 20x20 25x25 30x30
Field Size

M
ax

 fit
ne

ss
 sc

or
e

(m
ea

n
ep

iso
de

 le
ng

th
 in

 se
co

nd
s)

SBB Diversity
SarsaRBF

Keepaway TEST performance
1000 games, Different field sizes�

July 2015� Solving complex problems with
coevolution� 96�

Configuration
experienced

during training�

570

Cooperative Coevolution
Concluding Comments�

  Highlights�
  Separation of context and action�

  Arbitrary team sizes under GP�
  Maintaining Diversity significant�

  Making diversity metrics ‘task free’? (see below)�
  Reuse of previous policies leverages diversity for generalization�
  Solutions generally significantly simpler than monolithic models�

  Some open questions�
  Credit for collective versus individuals�
  What learning bias are most appropriate for diversity maintenance�

  Task specific metrics�
  E.g., (Nelson et al. 2009)�

  … versus task independent metrics�
  Compression distance (Gomez, 2009)�
  Connectivity biases (Clune et al., 2013)�
  Hitchhiking formulations (Kelly, Heywood 2015)�

  … versus how to ‘present’ diversity�
  EMO versus switching between multiple diversity metrics (Donieux, Mouret, 2013)�

  Relation to ML concepts:�
  Layered Learning�
  Task transfer�
  Potential role for ‘curiosity’ or ‘intrinsically motivated ML’�

July 2015� Solving complex problems with
coevolution� 97�

Cooperative Coevolution
Example Benchmark task domains�

  Double inverted pendulum / cart pole�
 Gomez et al, (2008)�

 Capacity for solving the task�
  Truck reversal with obstacle�

  Lichodzijewski et al, (2011)�
 Capacity for solving the task / generalization�

  Acrobot�
  Doucette et al, (2012)�

 Capacity for solving the task / generalization�
  Distributed multi-object location�

  Agogino, Tumar (2008); Knudson, Tumar (2010); Colby, Tumar (2012)�
 Task decomposition and (heterogeneous) collective problem solving�

  Keepaway or Half field offense (soccer)�
  Kelly, Heywood (2014, 2015)�

 Task decomposition and (homogeneous) collective problem solving�

July 2015� Solving complex problems with
coevolution� 98�

July 9th, 2015� Solving Complex Problems with
Coevolutionary Algorithms� 99�

IV. Closing remarks�

Closing remarks�

 Coevolutionary algorithms = conceptually interesting
and oftentimes efficient paradigm for solving complex
problems�
 Addresses key aspects of computational intelligence:�

 What/who to learn from?�
 How to drive the search/optimization?�
 What is solution to my problem?�
 How do I decompose my problem? �
 How do I make some entities cooperate?�

 Many interesting results, �
 … even more open questions! �

July 2015� Solving complex problems with
coevolution� 100�

571

Acknowledgements�

 The content of this tutorial has benefited from a host of
collaborations over the years including, but not limited to:�

�John Doucette, Wojciech Jaśkowski, Stephen Kelly, Peter
Lichodzijewski, Paweł Liskowski, Marcin Szubert, Ali Vahdat,
Bartosz Wieloch�

 MIH would like to acknowledge funding for aspects of
research reported on in this tutorial from the NSERC
Discovery and CRD programs (Canada).�
 KK would like to acknowledge funding for aspects of
research reported on in this tutorial from the National
Science Centre and National Centre for Research and
Development in Poland (Poland).�

July 2015� Solving complex problems with
coevolution� 101�

References
Competitive Coevolution (1 of 3)�

  R. Axelrod (1987) The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis, editor, Genetic
Algorithms in Simulated Annealing, 32–41. Pitman, London. �

  A. Bucci, J.B. Pollack, E. de Jong (2004) Automated extraction of problem structure. In K. Deb et al. (Eds.),
Genetic and Evolutionary Computation, GECCO-2004, Part I. Lecture Notes in Computer Science, Vol. 3102,
501–512. Berlin: Springer-Verlag�

  S. Y. Chong, P. Tino, and X. Yao (2008) Measuring generalization performance in coevolutionary learning, IEEE
Trans. Evol. Comput., vol. 12, no. 4, 479–505�

  S.G. Ficici (2004) Solution concepts in coevolutionary algorithms, Ph.D. thesis, Brandeis University, Waltham, MA,
USA.�

  S.G. Ficici, J.B. Pollack (2001) Pareto optimality in coevolutionary learning. In J. Kelemen and P. Sosık (Eds.),
Advances in Artificial Life, 6th European Conference, ECAL’01. Lecture Notes in Computer Science, Vol. 2159,
316–325. Berlin: Springer-Verlag�

  D.B. Fogel (2002) Blondie24: Playing at the Edge of AI, Morgan Kaufmann Publishers Inc., San Francisco, CA.�
  W. Jaśkowski, K. Krawiec and B. Wieloch (2008) Evolving Strategy for a Probabilistic Game of Imperfect

Information using Genetic Programming. Genetic Programming and Evolvable Machines, 9(4):281-294�
  W. Jaśkowski, K. Krawiec (2010) Coordinate System Archive for coevolution. In IEEE Congress on Evolutionary

Computation.�
  W. Jaśkowski, K. Krawiec (2011) How many dimensions in co-optimization. In GECCO (Companion), 829-830.�
  W. Jaśkowski, K.Krawiec (2011) Formal Analysis, Hardness, and Algorithms for Extracting Internal Structure of

Test-Based Problems. Evolutionary Computation, 19(4):639-671.�
  E.D. de Jong (2004) Towards a Bounded Pareto-Coevolution Archive. In Proceedings of the IEEE Congress on

Evolutionary Computation, volume 2, 2341– 2348, Portland, Oregon, USA.�

July 2015� Solving complex problems with
coevolution� 102�

References
Competitive Coevolution (2 of 3)�

  E.D. de Jong (2004) The Incremental Pareto-Coevolution Archive. In K. Deb et al., editor, Genetic and
Evolutionary Computation–GECCO 2004. Proceedings of the Genetic and Evolutionary Computation Conference.
Part I, 525–536, Seattle, Washington, USA, Springer-Verlag, Lecture Notes in Computer Science Vol. 3102.�

  E.D. de Jong, J.B. Pollack (2004) Ideal evaluation from coevolution. Evolutionary Computation, 12(2):159–192. �
  E. D. de Jong (2004) The MaxSolve algorithm for coevolution, in GECCO 2005: Proceedings of the 2005

conference on Genetic and evolutionary computation, 2005, 483–489. dissertation, Waltham, MA, USA.�
  E.D. de Jong, A. Bucci (2006) DECA: Dimension extracting coevolutionary algorithm. In Proceedings of the 8th

Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, 313–320�
  K. Krawiec, (2001) Pairwise Comparison of Hypotheses in Evolutionary Learning. In Machine Learning.

Proceedings of the Eighteenth International Conference, ICML 2001. Morgan Kaufmann Publishers, 266-273.�
  K. Krawiec, P. Liskowski (2015) Automatic Derivation of Search Objectives for Test-Based Genetic Programming,

in P. Machado, M. Heywood, J. McDermott (eds.), 18th European Conference on Genetic Programming, Springer�
  K. Krawiec and M. Szubert (2011) Learning N-tuple networks for Othello by coevolutionary gradient search, in

Proc. Genetic Evol. Comput. Conf., ACM 355–362.�
  T. Miconi (2009) Why coevolution doesn’t work: Superiority and progress in coevolution, In: L. Vanneschi, et al.

(eds.), EuroGP 2009, Springer-Verlag, Berlin Heidelberg New York, 49–60.�
  G.A. Monroy, K.O. Stanley, and R. Miikkulainen (2006) Coevolution of neural networks using a layered Pareto

archive. In M. Keijzer et al., editors, GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, volume 1, 329–336, Seattle, Washington, USA, 8-12 July 2006. ACM Press. �

  P. Moscato (1989) On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms, Caltech Concurrent Computation Program C3P Rep., vol. 826.�

  J. Noble, R.A. Watson (2001) Pareto coevolution: Using performance against coevolved opponents in a game as
dimensions for Pareto selection. In L. Spector et al. (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, 493–500.�

  J.B. Pollack, A.D. Blair (1998) Co-evolution in the successful learning of backgammon strategy. Mach. Learn.
32(3), 225–240.�

  E. Popovici, A. Bucci, R.P. Wiegand, and E.D. de Jong (2012) Coevolutionary Principles. In Rozenberg, G., Baeck,
T., and Kok, J. N., editors, Handbook of Natural Computing, 987–1033. Springer.�

July 2015� Solving complex problems with
coevolution� 103�

References
Competitive Coevolution (3 of 3)�

  E. Popovici, E. Winston (2015) A framework for co-optimization algorithm performance and its application
to worst-case optimization, Theoretical Computer Science, Volume 567, Pages 46-73�

  C.D. Rosin and R. K. Belew (1997) New methods for competitive coevolution, Evolutionary Computation,
vol. 5, no. 1, 1–29.�

  A.L. Samuel (1959) Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3):211–229. �

  O.G. Selfridge, R.S. Sutton, A.G. Barto (1985) Training and Tracking in Robotics. In Joshi, A. K., editor,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI, 670–672, Los
Angeles, CA. Morgan Kaufmann.�

  T.C. Service, D.R. Tauritz (2008) A no-free-lunch framework for coevolution, in: Proceedings of the
Genetic and Evolutionary Computation Conference, ACM, 371–378. �

  M. Szubert, Coevolutionary (2014) Shaping for Reinforcement Learning, Phd Thesis, Institute of
Computing Science, Poznan University of Technology.�

  M. Szubert, W. Jaśkowski, K. Krawiec (2009) Coevolutionary Temporal Difference Learning for Othello. In
IEEE Symposium on Computational Intelligence and Games. 104-111.�

  M. Szubert, W. Jaśkowski, P. Liskowski, K. Krawiec (2013) Shaping Fitness Function for Evolutionary
Learning of Game Strategies. In Proceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference, GECCO ’13, 1149–1156, New York, NY, USA. ACM.�

  M. Szubert, W. Jaśkowski, K. Krawiec (2013) On Scalability, Generalization, and Hybridization of
Coevolutionary Learning: A Case Study for Othello. Computational Intelligence and AI in Games, IEEE
Transactions on, 5(3):214-226.�

  B. F. Skinner (1938) The behavior of organisms: An experimental analysis. Appleton-Century.�
  D. Wolpert, W. Macready (2005) Coevolutionary free lunches, IEEE Trans. Evol. Comput. 9: 721–735. �

July 2015� Solving complex problems with
coevolution� 104�

572

References
Cooperative Coevolution (1 of 2)�

  A. K. Agogino, K. Tumar (2008) Efficient evaluation functions for evolving coordination. Evolutionary Computation 16(2):
257–288�

  J. Clune, J.-B. Mouret, H. Lipson (2013) The evolutionary origins of modularity. Proceedings of the Royal Society – B 280
20122863�

  M. Colby, K. Tumer (2012) Shaping fitness functions for coevolving cooperative multiagent systems. ACM AAMAS 425–432�
  S. Doncieux, J.-B. Mouret (2013) Behavioral diversity with multiple behavioral distances. IEEE CEC 1–8�
  F. Gomez, J. Schmidhuber, R. Miikkulainen (2008) Accelerated neural evolution through cooperatively coevolved synapses.

Journal of Machine Learning Research 9:937–965�
  F. Gomez (2009) Sustaining diversity using behavioural information distance. ACM GECCO 113–120�
  M. Knudson, K. Tumar (2010) Coevolution of heterogeneous multi-robot teams. ACM GECCO 127–132�
  K. Krawiec, B. Bhanu (2007) Visual learning by evolutionary and coevolutionary feature synthesis. IEEE Transactions on

Evolutionary Computation 11(5): 635–650�
  K. Krawiec, B. Bhanu (2006) Visual learning by coevolutionary feature synthesis. IEEE Transactions on Systems, Man and

Cybernetics. Prt B. 35: 409–425�
  J. Maynard Smith (1991) A Darwinian view of symbiosis. Chapter 3 in Symbiosis as a source of evolutionary innovation.

(eds) L. Margulis and R. Fester (MIT Press)�
  D. E. Moriarty, R. Miikkulainen (1998) Forming neural networks through efficient and adaptive coevolution. Evolutionary

Computation 5(4):373–399�
  A. L. Nelson, G. J. Barlow, L. Doitsidis (2009) Fitness functions in evolutionary robotics: A survey and analysis. Robotics and

Autonomous Systems 57: 345–370�
  L. Panait, S. Luke, R. P. Wiegand (2006) Biasing coevolutionary search for optimal multiagent behaviors. IEEE Transactions

on Evolutionary Computation 10(6): 629–645�
  L. Panait, K. Tuyls, S. Luke (2008) Theoretical advantages of lenient learners: An evolutionary game theoretic perspective.

Journal of Machine Learning Research 9: 423–457�
  M. A. Potter, K. A. De Jong (2000) Cooperative coevolution: An architecture for coevolving coadapted subcomponents.

Evolutionary Computation 8(1): 1–29�
  J. Rubini, R. B. Heckendorn, T. Soule (2009) Evolution of team composition in multi-agent systems. ACM GECCO 1067–

1072�
  P. Stone, R. Sutton, G. Kuhlmann (2005) Reinforcement learning for RoboCup soccer Keepaway. Adaptive Behavior 13:

165–188 �
  R. Thomason, T. Soule (2007) Novel ways of improving cooperation and performance in ensemble classifiers. ACM GECCO

1708–1716 �
  S. Wu, W. Banzhaf (2011) Rethinking multilevel selection in genetic programming. ACM GECCO. 1403 – 1410�

July 2015� Solving complex problems with
coevolution� 105�

References
Cooperative Coevolution (2 of 2)�

  J. A. Doucette, P. Lichodzijewski, M. I. Heywood (2012) Hierarchical task decomposition through
symbiosis in reinforcement learning. ACM GECCO 97–104�

  Finding optimal solutions to the Acrobot ‘handstand’ task�
  S. Kelly, M.I. Heywood (2014) On diversity, teaming, and hierarchical policies: Observations from the

Keepaway soccer task. EuroGP LNCS 8599:75–86 �
  Diversity maintenance, modularity and generalization under keepaway�
  https://web.cs.dal.ca/~skelly/keepaway-gecco-2015/�

  S. Kelly, M.I. Heywood (2015) Knowledge transfer from keepaway soccer to half- field offense through
program symbiosis: Building simple programs for a complex task. ACM GECCO. �

  Task free diversity metrics, scaling to more difficult problems with task transfer�
  P. Lichodzijewski, M. I. Heywood (2008) Managing team-based problem solving with symbiotic bid-based

genetic programming. ACM GECCO 363–370�
  Basic architecture, no hierarchy, supervised learning; benchmark with multi-class classification and LCS�

  P. Lichodzijewski, M. I. Heywood (2010) Symbiosis, Complexification and Simplicity under GP. ACM
GECCO 853–860�

  Simplified basic architecture, no hierarchy, supervised learning; benchmark against monolithic GP solutions�
  P. Lichodzijewski, J.A. Doucette, M. I. Heywood (2011) A symbiotic framework for hierarchical policy

search. FCS, Dalhousie University. Tech. Report CS-2011-06.�
  Truck reversal domain tutorial�
  http://www.cs.dal.ca/research/techreports/cs-2011-06�

  A. Vahdat, J. Miller, A. McIntyre, M. I. Heywood, N. Zincir-Heywood (2015) Evolving GP classifiers for
streaming data tasks with concept change and label budgets. Handbook of GP Applications. (Springer) �

  Significance of coevolving task decomposition under non-stationary streaming data�

July 2015� Solving complex problems with
coevolution� 106�

573

