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Often argued in the EC field that theory lags behind “practice”
still true for ES ... but less true than 15 years ago

Obijectives of the tutorial

Give an overview of state-of-the-art theoretical results on ES
related to important practical properties of ES
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Theory of Evolution Strategies Theory vs Experiments

Basics: from discrete to continuous optimization Theory and experimental work complement each other very well
“interesting” theoretical questions and

: : ; : theoretical results can hold for class of functions (infinite # of f)
their relationship to practice

experiments done on single functions
Linear convergence of adaptive algorithms

illustrate benefits and limitations of theory wrt experiments (often) on functions where theory cannot be tackled
need theoretical results to generalize (like invariance)
Progress rate theory
provides “tight” lower bounds on convergence rates and
give optimal parameter settings

theory can reveal unexpected results that one would not have
thought about (testing)

Information geometry perspective theory finds inspiration in simulation / experiments
where theory sheds new light on “old” algorithms and

gives new perspectives for algorithm design simulations are useful to test quickly (promising) hypothesis

for algorithm design: both theory and experiments are essential
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Optimization in the Continuous World

Minimize f : D C R® — R™

i.e. find essential infimum f(x*) = essinf f

Essential infimum qu = essinf f

Prxu(f(X) <qu) =0
Prx,(f(X) < g, +¢€) >0 for all €

depends on p Qi

A Simple Continuous Algorithm
(1+1)-ES

Given f:R" - RT, o0 >0
Initialize Xy € R"
While not happy
X; = X; + oN(0, 1)
If f(Xe) < f(Xy)

This algorithm
A will never hit the optimum
X1 = Xy

v=1a

(I+1)-ES constant step-size

Vx # X, YVt > 0, Pr(X; =x) =0

because for a continuous random variable Y
Pr(Y = x) =0 for all x
_ here Y = N(0, Iy)
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A Simple Continuous Algorithm
(1+1)-ES

Given f:R" - RT, o0 >0
Initialize Xy € R"
While not happy

X; = X; + oN(0, I)
If f(Xy) < f(Xe)

X1 = Xy
t=t+1

(I+1)-ES constant step-size

Sampling density

comparison-based algorithm

2-D multivariate normal
distribution density

A Simple Continuous Algorithm
( I+] )-ES (1+1)-ES constant step-size

Given f:R* - R, 0 >0
Initialize X € R™

This algorithm
will never hit the optimum

Vx # X0, YVt > 0, Pr(X; =x) =0

While not happy
Xt = Xt + O'N(O, Id)
If £(X¢) < f(X0)

X1 = Xy
t=t+1

instead
Pr(Y € B(x,¢€)) > 0 for all x

8

.



A Simple Continuous Algorithm
(1+1)-ES
Given f:R"” - RT, 0 >0
Initialize Xy € R"
While not happy
X; = X; + oN(0, I)
If f(Xy) < f(Xy)

This algorithm
A will never hit the optimum
Xit1 = Xy

t=t+1 Vx # X0, Vt > 0, Pr(X; =x) = 0

instead the algorithm can approximate the
optimum with arbitrary precision

9

Hitting Time versus Convergence

Finite hitting time for all epsilon
T. = inf{t € N, X, € B(x*,€)}
T. < oo for all e >0

—

Convergence towards the optimum
lim X; = x*
t—o0

translate that an algorithm approximates the
optimum with arbitrary precision

(I+1)-ES constant step-size

Discrete versus Continuous
Hitting Time

Discrete domain: hitting time of the optimum

T = inf{t € N,X; = x*}

Continuous domain: hitting time of epsilon-ball around optimum
fix an arbitrary e, define
T. = inf{t e N,X; € B(x*,¢€)}
=inf{t e N, ||X; — x*|| < €}

(alternative) T, = inf{t € N, |f(X;) — f(x*)] < €}

Note: depends also on dimension

T. =T (e,n)

Hitting Time versus Convergence

two side of a coin, measuring
the hitting time T, given a fixed precision €
the precision || Xy — x*|| (or €) given the iteration number ¢

10°

fixed cost

[ Xe = x|

fixed precision

10° 0 260 46 \O} 800 1000 1200
%sz‘ £

{,



On Convergence alone ... Quantifying How Fast the Optimum is Approached

A theoretical convergence result is a “guarantee” that the algorithm
will approach the solution in infinite time

. X
tliglo Xy =x convergence speed of dependency in € of T,

often the first/only question investigated about an optimization algorithm X; towards x* find € — 7'(6, n)

For a fixed dimension

But a convergence result alone is pretty meaningless in practice as it

does not tell how fast the algorithm converges i i )
Scaling wrt the dimension

m S dependency of convergence

@) find n— 7(e,n)
function evaluations 13

Linear Convergence Linear Convergence

distance to optimum

logt— — 1~ — 1 -
l BUX, —x _
05 500 . 1000 1500

0 ‘ ||Xt - X*H C
10 E randern-search log ———— ~ ~ ——¢ o .
W 8 Xo — x| " Different formal statements (not exactly equivalent)
) = il almost surely in expectation
=, 3 N : | E[|| X1 — x*
7, 10 ‘ i L 1o e =X _ e Bl = >l _ oy, (*E)
| N ¢ Ay R e I R n
b . —— = X1 —x*|| ¢
=10 n Az Elogto——— = 1 — _
S X
Connection with Hitting Time formulation
_9 ; ; )
%% 500 1000 1500 n. e
t Te =~ —log —
C €
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Pure Random Search
Simple Convergence Rate Analysis

Joxoe [lx— x|, x* €0, 1"

Pure Random Search

sample Y ~ Ujg 1jn 1.1.d.

Xy = argmin{ f(Y1),..., f(Yy)}

sample uniformly, keep best solution seen
blind algorithm

Convergence with probability one

lim X; = x* almost surely
t—00

proof ingredients: Pr(|Y - x*|| <€) > d(> 0)

ZPr Xy —x*[| > €) < Z(l —0) < oo implies as. convergence

(corollary of Borel Cantelli lemma)
I7

Convergence Rates - Hitting time
Wrap up

Rate of convergence Hitting time
scaling
Pure Random Search 1 1
(141)-ES constant step-size tl/ n e—n
Linear Convergence (fixed n) g [|X, — x*||] = exp (77) E (X0 — x*[] n o
. + — log —
Linear dependence wrt n 1 1%, — x| . ¢ c
hrglozlog Xo = =

Pure Random Search
Simple Convergence Rate Analysis

Theorem: For all e such that B(x*,¢) C]0,1["

I'(n/2+1) 1
B(r) =~ 2t L

proof idea: T. follows a geometric distribution with parameter p(e, n)

= )

T(n/2+ 1)/ 1

— * ~U
e x|~

=Pr[Y € B(x*,¢)]

same convergence rate for (1+1)-ES with constant step-size

18

constant o]

0 0
1 r d h
1 0 random search 10 random seare
step-size too small -}
() constaht step-size [}
% 3 2,3
g10 s 10
s c
ie] o
° =
Q 5]
S, S, 6
2107 210
optimal step-size optimal step-siz! adapti\{e
9 (scale invariant) (scale invariant) step-size o
10 ; ; ; 10 ; ;
0 0.5 1 15 2 0 500 1000

function evaluations x10* function evaluations

How to achieve linear convergence?
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Adaptive Stochastic Search Algorithms

Given f:R" = R*, 0 >0
Initialize Xg € R"”
While not happy

X; = X¢ + oN(0, 1)

If £(Xy) < f(Xy)

Xit1 = Xy
t=t+1

the step-size o needs to be adapted

adapt the scaling of the mutation

o 2.

(1+1)-ES with One-fifth
Step-size adaptive algorithm
Given f:R" — R™T
Initialize Xy € R™, o9 > 0
While not happy

Xt = X + o N(0, Iy)

If f(Xy) < f(Xe)

X1 = Xy

Gonstant o

random search

function value

adaptive

optimal step-si
. fant step-size o

le invariant)
9| (scale invariant)

0 500 1000
function evaluations

1500

optimal step-size on f(x) = ||x||?
or = o*|| Xy ]|

step-size proportional to the distance
to the optimum

Success Rule

1 00 i : random-search -
€
S ‘ - constant o
E v
E=
o L 1
510
o
=
Q
e
-6
@ L
b 10
he)
adapt
step-si
-9
10

0 500 1000 1500

function evaluations

7r1 = exp(1/3)o lincrease sepssae f success |

Else

i = (1) o R R

r=uql

Adaptive Stochastic (Comparison-Based)

Optimization Algorithms
Matyas, Random optimization, 1965

Schumer, Steiglitz, Adaptive step size random search, 1968

Devroye, The compound random search, 1972

Rechenberg, Evolution Strategies (ES), One-fifth success rule, 1973

Schwefel, Self-adaptive Evolution Strategies (SA-ES), 1981
Ostermeier, Hansen, Path-Length Control (CSA), 1994,2001

Covariance matrix adaptive algorithms

Kjellstrom, Gaussian Adaptation, 1969
Hansen, Ostermeier, Covariance Matrix Adaptation ES, 2001
Glasmachers, Schaul,Yi,Wiestra, Schmidhuber, Exponential Natural ES, 2010

)

Linear Convergence
General Lower Bounds

General Lower Bound

Independently of how the mutation is adapted and on which function is
optimized, the (1+A) and (1,A\)-ES (A > 1) need

Q(nlog(l/e)A\/In(N))
function evaluations (w.o.p.) until the approximation error is at most an -
fraction from the initial one.

State-of-the-art algorithm

Teytaud, Gelly PPSN 2006: general lower bounds for comparison-based algorithms

A, Hansen GECCO 2006, Jebalia, A, Liardet 2007: tight lower bounds, explicit
asymptotic (in n) estimates
related to progress rate theory (Beyer, Arnold)
important for algorithm design



Linear Convergence - Upper bound
(1 +1)-ES with one-fifth success rule

Upper Bound on the sphere

Consider a (I+1)-ES with one-fifth success rule optimizing the SPHERE
function f(x) = ||x||?, then the algorithm needs

O(nlog(1/e)\/VIn\)
function evaluations until the approximation error is an &-fraction
from the initial one.

if A\ is smaller than O(n) then v/In A faster

results on certain convex-quadratic functions where linear dependency
in the condition numbers is proven (Jagerskipper, TCS 2006)

25

Linear Convergence on Scaling-Invariant Functions
Markov Chain Approach

Proof |dea

We want to prove that:

[ & ]

Xl . _cR

In
Xl t— 00

~ | —

o
0 500

1000 1500
function evaluations

ToXd

|
n = —
t [IXoll ot

T invariant measure
of (Zt)

s /

if (Zt) "stable" enough
(to satisfy LLN)
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Linear Convergence on Scaling-Invariant Functions
Markov Chain Approach

Proof Idea
We want to prove that: o
13
£
X, B 10
g 1l ,_CR !
il Y
! 0790 500 1000 1500
function evaluations
g Xl 1=t (1K
~1In =<) . oln
t [1Xoll t Z’:o ||X,H
N——
:g(zl- = ?)
2

\ homogeneous Markov chain

on some functions

26

On functions where (Z;) is a "stable" Markov chain, we will have
that for all Xy, o¢

4 _CR i
[ Xoll —— t oo
— G(2)m(dz)

I
X
t

Remaining questions

On which class of functions, for which algorithms do we have
1. (Zy) is an homogeneous Markov chain?

2. (Z4) is stable?

28



Answer to |.

Class of functions: scaling-invariant functions
f is scaling-invariant if for all p > 0, x,y € R™
fx) < fly) & f(X" +p(x —x7) < f(X" + ply —x7)) .

=1

N

0|

-

-10 -05 00 05 1.0 L B 2

N

N

2

4 _6—10 0 10 20 30 40 50 60 70 80

Examples: if f(x) = g(||x||) for any norm || || and g : RT — R strictly increasing.
In particular all convex-quadratic functions are scaling invariants

Class of algorithms

Scale and translation invariant step-size adaptive randomized search
In particular step-size adaptive Evolution Strategies

Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains, Auger, Hansen, 2014,

http://arxiv.org/abs/1310.7697 29

Benefits and Limitations of Theory
Linear CV of Adaptive Stochastic Search Algorithms

Convergence is proven on whole class of functions (pos. homogeneous
functions) containing infinitely many functions
impossible to experiment on all those functions

proofs limited to a few algorithms (not CMA yet), not on all functions
where we want to check the convergence
resort to experiments

Jagerskiipper’s proofs likely to be difficult to generalize to other
algorithms (according to the author himself), not clear how much they
generalize to other functions

MC approach does not allow to obtain explicit estimates for the
convergence rate

582

Answer to 2.

The chain associated to the (1+1)-ES with one-fifth success rule is stable
on positively homogeneous functions
flmx) =1 f(x)

Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized
Search: the (1+1) ES with Generalized One-fifth Success Rule, Auger, Hansen, 2014, http://arxiv.org/abs/
1310.8397

The chain associated to the (I,\)-ES with self-adaptation is stable on the
SPHERE function (AA, TCS 2005)
presumably also on positively homogeneous functions

Presumably stability can be proven for many more algorithms

30

Theory of Evolution Strategies

Progress rate theory
provides “tight” lower bounds on convergence rates and
give optimal parameter settings

32



Definition: Progress Rate and Quality Gain Relation to Linear Convergence Rate

o = EllnflX; — x| = InllX; 1 — x71]

1X 1 — x* | ) If pin = cu >0 for all ¢ = £,

1X, —x*l
one step expected progress in the search space

Progress Rate o =n (1 -E ) .
Elln[lX; - x*[] = E[ln|lX;, — x*[I1 + X3 2, (B0l Xksr — x*1I] - E[In]|Xg — x*[[T)

< Elln||X;, — x* 1 = 242}, cu

X
Quality Gain A" :=n (1 - Ed[f;(;;;)]) = ElInl|X;, = x"I = cu( = t0)
t
one step expected progress in the objective space

If pin = cifor all ¢ = 1,

In || X — 27|

Log Progress om :=E[ln]| X, — x*|| = In|| X1 — x7[]

E[In|lX; — x*[I] = ElIn||X;, — x*[11 = ¢/ (t = t0) RN
U 50 T00 150 00
10° 10° 5 #iteration = #eval / A

1 I
10 " = The expected slope (in log-scale) is bounded
il [T Wb
T = 1ol
s IR =, . 1 E[ln|lX, — x[] .
= 10 X S u =) - = ==
o s : \ t — 1o E[In[| X, — x*|] “
1 0 50 00 150 200 102 50 0 150 7\.\1 - 50 00 50 200
#iteration = #eval / A #iteration = #eval / A #iteration = #eval / A

How do these quantities depend33on the strategy and parameters!? y

Log-Progress of (1 + 1)-ES on Spherical Function (1 + 1)-ES with adaptive step-size

Define Fi;1(0) = E[max(-In|le; + cN|,0)] for > 0

Def. (1+1)-ES Def. Scale-invariant step-size cer=/10,.. 0]
Initialize Xo e R",r =0 o; = || X,|| for some o > 0 * N~ N(0.1I,)independently
while not happy not a practical step-size adaptation
compute o — Upper bound of the log-progress Log-progress for scale-invariant o;
Y, = X, + -, N(O,1,) Def. Conditional Log-Progress - - -
1= AT ON n For (1+1)-ES with adaptive o, For (1+1)-ES with ;= | X/||,
X, = Yo it f() < f(X0) onXi o) em(Xr,00) < sup Fiiq(0) em( Xz, 0¢) = Fry1(0)
t+l = X, otherwise = E[In|| X || = Inl| X; 11l | X,0] oel0,00)
independent on t since our algorithm is
t=t+1 time-homogenous
The upper bound is reached by the scale-invariant step-size
Def. Spherical Function with o = argmax Fi.1(0") [Jebalia et al. 2008]
f(x) = g(llx]l), where g increasing

they are equivalent for our algorithm
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(1, 2)-ES with adaptive step-size

Define Fu,a(0) = —E[lgligﬂ Injle; + o N;[1,0)] for o> 0

ce;=[10,..,0] o
* Ni ~N(0,1,) independently

Def. (1, \)-ES on Spherical Function
Upper bound of the log-progress Initialize Xo € R",7 = 0
For (1, A)-ES with adaptive o, while not happy
(X, o) £ sup Fg, (o) compute o;
o €[0,00) .
fori=1,...,1

Log-progress for scale-invariant o; b =X +.0-’N(0’ In)

- X1 = argmin - f(x)
For (1, M)-ES with o; = o]|X/|, xelYyrn.Yia)

e (Xe,00) = F,a)(0) t=t+1

The upper bound is reached by the scale-invariant step-size
with o =argmax F(;, 1)(0°)  [Auger etal.2011]

37

How helpful?

constant o]
100 I random search
0.5 f sphere
] == c¢" xn/A
E - == eppa Xn/A
© 10 TPA
; A4 SA
2 Bl CsA
S o9 TPA
210
. 0033 5 10 20 40 100
optimal step-sl: adaptive n
(scale invariant) step-size o
10° [Hansen et al. 2014]

0 500 1000 1500
function evaluations

* To evaluate how close your step-size adaptation is to the optimal one
* To design new step-size adaptation

39

Optimal o for (1, 1)-ES in the limit n — oo

Let 6" =no. Forn — o

lim I’lF(L,l)(O'*/n) = C1;/10'* -
n—oo

For a large n,

I’lO’2

Fu, (o) = cr.00 - -

The RHS is maximized when

15 (1.4)-ES with scale-invariant step-size

n* (o)

(u/ pw,A)-ES

Def. (1/pw, A)-ES

Given w; € R
Initialize Xy € R, =0
while not happy
compute o,
fori=1,...,4
Yi=X +0,N(,1,)
sort ¥, ; w.r.t. f and
denote the ith best as ¥; ;.1
Xeet = X8 wisina
t=t+1

(0*)?
2

where ¢4 = Elmax(MV),. .., Ny)]
Ni ~N(0,1)
C1:
o=—
n

40

n* pn(o)

* (1, 1)-ES is recovered when
wr=1andw;,=0fori>1

* How much can we gain by using
all the information to update X;?



Normalized Quality Gain for (u/u,,,A)-ES

[Arnold 2005]

Normalized Quality Gain on Spherical Function

n_ [ (X)) = f(Xis1) ] n [IIXMII2 ]
A(X;, = -E|l¥————= 1 X;, ==-|1-E X,
(Xt,0¢) ) [ (X)) | Xi,0¢ ) ”th|2 | Xi,0¢
Let o;=-— Forn— o
[l
1 2 A
o
lim A(X;,00) =07} E wici;,l—( é) E w%
n—oo
i1 i=1

ci- : the expectation of the ith largest among 4 i.i.d. r.v. from N(0, 1)

The RHS is maximized when

*

a
. Z,‘:] WiCi:a
ot =0l = =—~

1 2
X Wy

2
A
(Z,‘:] Wici:/l)

then A" =
’ . 1
2 E i=1 Wi

lim A(X,,0,) =
n—o00

Comparison of Normalized Progress Rate

Optimal Recombination Weight for (u/u,,, 4)-ES

[Arnold 2005]
2 -1 P 2
2 .
(Z Wi] . Then A = /JTW (ZZ_; Wicit/l] .

i=1

Let uw =

For an arbitrary u. > 0, the optimal normalized quality gain is

A1
2
Zci:/l
i=1

A" =

N =

when

cf.for (1, 1)-ES (w; = 1, wi = 0fori > 1), aA* = 14

= we gain the factor

Wi

Ci:a

= 172
(ﬂw Z1{1:1 Cizz/l) !

and

A

# 1/2
o= (Y )"

i=1

A
i

=1
2
Cl:

Ciia

a

2

2

2

Progress Rate Theory: Summary

by introducing weighted recombination

¢>1< Optlmal o* ‘F*(f:;pl)
o* (0_*)2 (0.*)2 o
(1+1)-ES exp (— ) -—|l-ef|— 1.224 0.202
\r 3) 4 i X
o*)? ‘Lia
(1, 1)-ES o crg — c L
i o 2 i3 21/1
(/u/)uw,/l)-ES o ZW'C‘ 1 0-*)2 2 —‘/-l:lc'?:’l / i / e
with optimal w = o o Lowl 204 H
(1)1, )-ES g S Cia (@) i‘“ (3, era)’
with p=10.272) | SHopo 2 =g 22u
0.5 -
...' — (1+1)
04} » e e (1))
—~< ° ® o (in/npA)
T 03} @ ® o (u/p..A) [
_'Sj 02} BT
9 “~
01k ™
%
04 for i 100 100 107
A

More results on Noisy Sphere, Parabolic Ridge

H.-G. Beyer: The Theory of Evolution Strategies (Springer Verlag, 2001)
Hansen, N., D.V. Arnold, and A. Auger (2015). Evolution Strategies. To appear in Janusz Kacprzyk and Witold
Pedrycz (Eds.): Handbook of Computational Intelligence, Springer

Used to design new algorithms
® Mirrored Sampling [Brockhoff et al.2010]
® Median Success Rule (step-size adaptation) [aic Elhara et al. 2013]

Limitations
® based on the approximation (n — o)
® sometimes based on other approximations (not easy to appraise
the validity of the result)
® existence of the stationary distribution assumed
® scale-invariant step-size is not practical

Connexion to Markov chain approach for linear convergence:
o Xd
In “progress rate” approach, it is assumed that % is constant
by assuming oy = || X¢|| (remove stochasticity), while for a step-size

adaptive algorithm it is the norm of a Markov chain.
585



Theory of Evolution Strategies

Information geometry perspective
where theory sheds new light on “old” algorithms and
gives new perspectives for algorithm design

45

Change of Perspective: Optimization of 6

Natural Evolution Strategies (NES) (o wierstra et a1, 2008, 20141
Optimization of x — Optimization of 6

Search Space X — Statistical Manifold ©
equipped with the Fisher metric |

Objective function f — Function | of 6

Objective of the update of 0

Expectation of f over Peg:

J(9)=fo(x)Pe(x)dx

“adds one degree of smoothness”[T. Glasmachers. PGMO-COPI 2014]

* typically, igf J(0) = f* = essinf f(x)
. i i s« JO)-f*
by Markov inequality, Pr[|f(x) — f*| < €] 2 1 — ———

47 minimization of | = minimization of f

586

Black-Box Search Template

A black-box search template to minimize f: R" — R

Initialize distribution parameters ¢, set population size A
While not terminate

I. Sample distribution p,(x) : x|, ...,x) € R"

2. Evaluate x|,...,xyonf

coXon X)), - f(x)

3. Update parameters ¢ < F((/,xy, .

Example of p, on R"

multivariate normal distribution: m + oA/ (0, C)
|

density : p._,,, cy(x) = (27:)"|C| exp (—3(x—m)TC (x —m))

* Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [N. Hansen et al, 2001-2014]
* Exponential Natural Evolution Strategies (xNES) [T. Glasmachers et al, 2010] \\
{x|(x = m)TC™" (x — m) = cst}

46

Gradient Descent on J(0)

Natural Gradient 1s.Amari, 1998]

Instead of taking the “vanilla” gradient VJ(0) = [ 25.... 24 |"

that gives the steepest direction in the Euclidean sense

VJ(0)

—— = lime 'argmax J(0 + A)
VIO 3

€0 lAll<e

taking the “natural” gradient VJ(9) = 7(9)~'VJ(0)
that gives the steepest direction w.r.t. the KL-divergence

vVJ(@©o
~—() = lim e ! argmax J(6 + A)
IVIOIN €20y (PyliPga) <€

considered also as the gradient on the differential manifold ©
equipped with the Fisher metric in the given coordinate 6

48



Update of 6

Stochastic Natural Gradient Descent

V() lg=or = VI(O) lo=or

= v(\f f(xX)pe(x)dx) lg=ot

= ff(x)ﬁ(l?e(x)) lo=¢ dx [exchange of int. and diff.]
= f F)Ppo(0)V In(pg(x)) lo=r dx Vpo(x) = pe(x)V In(per)
[log-likelihood trick]
1 ¢ .
~ = 2, F DT In(pa(x) lo-or Xlo...,xq are iid.from pyr
i=1

[Monte-Carlo Approx.]
Parameter update

A
1 Z - . ;
0t+1 — 61‘ +n_ f(xi)Vhl(pH(xi)) IQ:Q‘ n.learnlng rate
=

(i.e., step-size)

v In(pg(x)) is analytically derivable for some probability models, e.g., normal distributions
49

Instantiation

. . . . . G .2010
Multivariate Normal Distribution N(m, C) [iime'a 5000
A

t+1 t t
m’=m +77mzwrk(x,~)(xi -m)
i=1

A
C"'=C"+nc Zwrk(Xi)[(xi = m")(x; =m")" ~ C']
i=1

= Pure rank-u update CMA-ES [Hansen et al.2003]

Multivariate Bernoulli Distribution with probability parameter 6
[Ollivier et al. 201 1]

A d
' _ Xi _pNl-x
o+ =g 4 Z Wiy (xi — 6 pmf: po(x) = [ |01 =00
i=1

i=1

= Population Based Incremental Learning (PBIL) [Baluja et al. 1995]
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Information Geometric Optimization [Y. Ollivier et al. (2011)]

Not invariant to increasing transformations of f
not woking well without # adaptation because of this defect

f FCOpox)dx # f (g 0 N)(Xpo(x)dx

=
Ngl

5 = 5
PO In(po(x)) lo-or# ~ > (8 0 F)(x)V In(po () lo-ar
i=1

L

1l
—_

Quantile-based Obijective Transformation

FO) = W () = w(Par[X 1 f(X) < f(0)])
~w(#x; : f(x) < fQMA) xi,...,x0 ~ Por
* w:nonincreasing

* scaled in /w(1), w(0)] at each iteration
* invariant to any increasing transformation, (g © f)

A
Parameter Update: | ¢'*! = ¢ + Z Wik VIn(pa (X)) lg=gt

i=1

1 (rk(xi) -1/2
(=) = 1/2

W )= =
rk(x;) 1 1

), where rk(x;) =#{x; : f(x;) < f(x;)}
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How is this perspective helpful?
Theoretical Aspects

Twofold approximation of the solution to the ODE
dot) -
# = VJy: (0) lo=0(1)

Euler Discretization &
ety 0" = 0" + nVJpe (0) g
n—0
Monte-Carl d
onte;)aﬂpprox' 6" =0" +1n Z Wik(x;) V In(po(x7)) lo=ot
= i=1
I. Convergence analysis of the ODE solution

* variant with isotropic Gaussian [Akimoto et al. 2012][Glasmachers et al.2012]
* full Gaussian [Beyer 2014]

2. Convergence analysis of the infinite population model [akimoto 2012]
* Pure rank-mu update CMA with fitness proportional weight
¢ lim Cond(C "A) = 1 and its geometric convergence is proven on f(x)= x"Ax
5



How is this perspective helpful?
Algorithm Design and U

Deriving algorithm variants from the same principle as CMA
* Linear time/space variants with restricted Gaussian for large scale problem
- RI-NES [sun etal.2013]
- VD-CMA [Akimoto et al.2014]

Provide new interpretation of existing algorithms
e Active CMA [jastrebski et al.2006] is interpreted as the natural gradient
estimation with baseline [Sun et al. 2009] (technique to reduce the estimation variance)
* Separable CMA [Ros et al.2008] is derived from the IGO with Gaussian with
diagonal covariance matrix [Akimoto et al.2012]

Still, Information Geometric framework does not cover “many”’
Y

relevant aspects for robust algorithm design:
* choice of some parameters (learning rate, ...)

e cumulation, ...
53
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Not covered topics

Invariance
allow to generalize an empirical result on a function to a set of (infinitely

many) functions
* invariance to order preserving transformation of f
* invariance to affine transformation of the search space X

- translation

- rotation

- coordinate-wise scaling
Unbiasedness of the parameter update

Rapid divergence on a linear function

Maximal Likelihood Principle ...
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