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Instructors

• Alberto Moraglio
– Position: Lecturer in Computer Science at the University of Exeter, UK
– Research Area: founder of the Geometric Theory of Evolutionary

Algorithms, which unifies Evolutionary Algorithms across representations
and has been used for the principled design of new successful search
algorithms, including a new form of Genetic Programming based on
semantics, and for their rigorous theoretical analysis.

• Krzysztof Krawiec
– Position: Associate Professor at Poznan University of Technology, Poland
– Research Area: genetic programming and coevolutionary algorithms, with

applications in program synthesis, modeling, image analysis, and games.
Within GP: design of effective search operators (particularly crossovers),
discovery of semantic modularity of programs, and exploitation of program
execution traces for improving performance of program synthesis.
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Aims

• Give a comprehensive overview of semantic methods in
genetic programming

• Illustrate in an accessible way a formal geometric framework
for program semantics

• Analyze rigorously their performance (runtime analysis)

• Present current challenges and trends in semantic GP

• Outline new emerging approaches
July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 4

Agenda

1. Introduction to Semantic Genetic Programming

2. Geometric Operators on Semantic Space

3. Approximating Geometric Semantic Genetic Programming

4. Geometric Sematic Genetic Programming

5. Other Developments and Current Research Directions
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I. Introduction to
Semantic Genetic Programming
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Genetic Programming

• Generate-and test approach to program synthesis

• Programs represented as symbolic structures (usually abstract syntax trees, ASTs)

• Population-based

• Iterative: start with a population of programs drawn at random, and repeat:

– select the most promising individuals,

– perturb using mutation and crossover

• … until solution found

• This tutorial: focus on tree-based GP (but usually easily generalizable to other
genres).

July 9th, 2015
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Motivations for Semantic GP (SGP)

• Traditional GP search operates directly
on syntax, largely disregarding program
semantics.

• Consequences:

– Complex, rugged genotype-phenotype
mapping

– Low relatedness of offspring to parents

– Slight change can dramatically change the
output of the program

– And conversely: high likelihood of no-effect
(neutrality)

– Low fitness-distance correlation
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Questions

• Can we make GP more aware about the effects of program
execution, i.e., program ‘behavior’?

• Can we design search operators that produce offspring
program which behave similarly to parent(s)?

• Can we design search operators that are guaranteed to do so?

July 9th, 2015
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Program Semantics

• Program semantics = a formal method of capturing program
behavior in abstraction from syntax.

• Common formalisms: denotational semantics, operational
semantics.
– Rarely applicable in GP, where program correctness typically

expressed w.r.t. to fitness cases (tests).
• Note: semantics (noun) vs. semantic (adj.)
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GP Semantics

• Problems in GP are typically posed using a set of fitness cases (tests)
• Observation: Program behavior is reflected in the effects of computation,

i.e., program output.
• Program semantics in GP: the tuple (vector) of outputs for the training

fitness cases. Example:

• Important consequence: semantic s(p) is a point in an n-dimensional
space.

• A distance between s(p1) and s(p2) reflects semantic similarity of p1 and p2

July 9th, 2015
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Semantic Building Blocks

(McPhee, Ohs, Hutchison 2007/2008)

• Studied the impact of subtree crossover in terms of semantic building
blocks.

• Describe the semantic action of crossover.

• Provide insight into what does (or doesn’t) make crossover effective.

• Define semantics of subtrees and semantics of contexts, where
context = a tree with one branch missing.

• Definition of program semantics inspired by Poli's and Page's work on
sub-machine code GP

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 12

Semantic Building Blocks

(McPhee, Ohs, Hutchison 2007/2008)

• Distribution of context semantics are
key in the success (or failure) of runs.

• A very high proportion (typically over
75%) of crossover events are
guaranteed to perform no useful
search in the semantic space.

July 9th, 2015
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Semantically-Driven Crossover (SDC)
(Beadle and Johnson 2008)

• Program semantics = reduced ordered binary decision diagram
(ROBDDs)

• Trial-and error wrapper of tree-swapping crossover:

– Pick a pair of parents and generate from them a potential offspring (candidate
offspring)

– Calculate ROBDD semantics of parents and offspring

– Repeat if semantics the same as of any of the parents

Analogously: Semantically-driven mutation (SDM)
(Beadle & Johnson 2009)
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Semantic-Aware Crossovers

• Motivation: swap semantically similar subprograms in the parent
programs,  to ‘smoothen’ the semantic effect of crossover.

• Semantic-aware crossover (SAX) (Quang et al. 2011)

– Select a pair of subprograms such that their semantics are sufficiently similar (upper
limit on distance)

• Semantic Similarity-based Crossover (SSX) (Quang et al. 2011)

– As SAX, but imposes also lower limit on distance between the subprograms, to
prevent producing semantically neutral offspring (see efficiency later in this tutorial).

• (Quang et al. 2013): Picks the closest semantically different subprogram in
the other parent.

• Analogous mutations defined too.
July 9th, 2015
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Semantic-Aware Initialization

Semantically-driven Initialization (Beadle and Johnson 2009)

• Constructs a population of semantically distinct programs of gradually
increasing complexity.

• Start with population P filled with all single-instruction programs

• To generate a new program:

– Repeat:

• Create a random program p by combining a randomly selected non-terminal
instruction r (of arity k) with k randomly selected programs in P

– Until p has a non-constant semantics that is sufficiently distant from semantics of
all programs in P

– Add p to P and return p
July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 16

Semantic-Aware Initialization

• Behavioral Initialization (Jackson 2010)

– Set P 

• To generate a new program:

– Repeat:

• Create a random program p using conventional methods (e.g., Grow or Full)

– Until the semantic of p is sufficiently distant from semantics of all programs in P

– Add p to P and return p

• Observation: Semantic diversity decreases rapidly with run progress (as
opposed to syntactic/structural which increases and then levels-off)

July 9th, 2015
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II. Geometric Operators
on Semantic Space
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Squared Balls & Chunky Segments
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infinitely many geodesics

Manhattan space
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Geometric Crossover & Mutation

• Geometric crossover: a recombination operator is a geometric
crossover under the metric d if all its offspring are in the d-metric
segment between its parents.

• Geometric mutation: a mutation operator is a r-geometric
mutation under the metric d if all its offspring are in the d-ball of
radius r centred in the parent.

21GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Example of Geometric Mutation

000
001

010 011

100 101

111110

Neighbourhood structure naturally associated with the shortest path
distance.

Traditional one-point mutation is 1-geometric under Hamming
distance.
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Example of Geometric Crossover

• Geometric crossover: offspring are in a segment
between parents for some distance.

• The traditional crossover is geometric under the
Hamming distance.
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H(A,X)  + H(X,B) = H(A,B)
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Significance of Geometric View

• Unification Across Representations

• Simple Landscape for Crossover

• Crossover Principled Design

• Principled Generalisation of Search Algorithms

• General Theory Across Representations

24GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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• Semantic search operators: operators that act on
the syntax of the programs but that guarantee that
some semantic criterion holds (e.g., semantic
mutation: offspring are semantically similar to
parents)

Semantic Operators

25

Semantic
Mutation

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1

Induced
Mutation

Semantics

Semantics
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Fitness as Distance

• Aim: we want to find a function that scores
perfectly on a given set of input-output examples
(test cases)

• Error of a program: number of mismatches on the
test cases

• Fitness as distance: the error of a program can be
interpreted as the distance of the output vector of
the program to the target output vector

• Distance functions: Hamming distance for Boolean
outputs, Euclidean distance for continuous outputs

26GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Semantic Distance & Operators

• The semantic distance between two functions is
the distance of their output vectors measured
with the distance function used in the definition of
the fitness function

• Semantic geometric operators are geometric
operators defined on the metric space of
functions endowed with the semantic distance

27GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Semantic Fitness Landscape

• The fitness landscape seen by GP with semantic
geometric operators is always a cone landscape
by definition (unimodal with a linear gradient)
which GP can easily optimise!

28GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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III. Approximating
Geometric Semantic GP
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Trial-and-Error Geometric Crossover (KLX)

Krawiec and Lichocki Crossover, KLX (Krawiec and Lichocki 2009)

• Goal: Minimize offspring’s total semantic distance from the parents under some
assumed metric || ||.

• Technical realization: Mate the parents (x,y) repetitively using a ‘regular’
crossover operator CX

• Calculate parent semantics s(p1), s(p2)

• Repeat:

– Apply CX to (p1,p2) n times, creating a pool of candidates C

– Calculate the semantics s(z) of each candidate z  C

• Return the candidate z that minimises the total distance:

argmin ||s(z) - s(p1)|| + ||s(z) - s(p2)||

• A form of brood selection
July 9th, 2015
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Trial-and-Error Geometric Crossover (KLX)

Motivation: Given a globally convex
fitness landscape (one global
optimum), solutions on a segment
connecting solutions x and y cannot
be worse than the worse of them.
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Promotion of Equidistance

• All candidate offspring on the segment [s(p1);s(p2)] minimize total distance equally well, no
matter how different from the parents they are.

– An offspring z that is a ‘semantic clone’ of p1 (s(z) = s(p1)) also minimises the total
distance.

– The likelihood of crossover producing a semantic clone of one of the parents is
high in GP (see remarks on neutrality later)

• KLX promotes similarity to parents. This may hamper exploration.

• Idea: Extend total distance by a term that promotes balanced distance from both parents
(KLX+)

argmin ||s(z) - s(p1)|| + ||s(z) - s(p2)|| + | ||s(z) - s(p1)|| - ||s(z) - s(p2)|| |

July 9th, 2015
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Locally Geometric Crossover

(Krawiec & Pawlak 2012)

• Motivations: Finding an ‘almost geometric’ offspring can be difficult for entire
parent programs,

– … but should be easier for subprograms.

– This may make sense if ‘geometricity’ can propagate through a tree.

• The algorithm:

– Find the syntactic common region of the parents (where the trees overlap)

– Select two homogenous nodes (subprograms) p1 and p2 in the common regions

– Calculate the midpoint sm between s(p1) and s(p2)

– Find two programs p’1 and p’2 in a library that have the closest semantic distance from sm

– Replace p1 and p2 with p’1 and p’2, respectively.

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 34July 9th, 2015
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Semantic Backpropagation

• Motivation: many instructions used in GP are invertible or partially
invertible.

• Example: symbolic regression:

– Fully invertible: e.g., addition: y = x + c x = y - c

– Partially invertible: e.g., square: y = x2  x = sqrt(x)

• The desired output t of a program (target) is known.

• Given a program and t, this allows deriving desired semantics at any
point in a program tree.

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 36

Semantic Backpropagation

SBP can be used to back propagate any semantics.

July 9th, 2015
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Semantic Backpropagation

• Note: desired semantics is not a vector of scalar values.

• Desired semantics is a tuple of sets of desired outputs, because not all
instructions are bijective. Examples:

– D = ({2}, {3}, {2,-4}, {0, 1})

– D = ({T}, {F}, {T,F})

• Special case: non-realizable desired semantics, e.g., D = ({T},, {T,F})

– Or: non-realizable under assumed constraints (e.g., size of subprogram).

• Algorithms have to account for that.

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 38

Propagation of Desired Semantics

• Two fitness cases, 2D semantic space

• Desired outputs: (0,0)

• Program: cos(sin(x))

• Visualization:

– semantic distance as a function of inputs (x1, x2)

– red = smaller semantic distance (greater fitness)

July 9th, 2015
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Propagation of Desired Semantics

• Top: desired semantics of cos(#)

– target achieved for x1,x2 =  +k, kZ

• Bottom: desired semantics of cos(sin(#))

– Target cannot be achieved, because
sin  [-1,1], and thus no x causes
cos(sin(x)) = 0

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 40

Operators Based on SBP

• Approximately Geometric Crossover, AGX (Krawiec & Pawlak 2013)
– A crossover operator

– Uses SBP to match the midpoint on the segment connecting the parents’ semantics

– Starting point of SBP: the midpoint on the segment

• Random Desired Operator, RDO (Wieloch & Krawiec 2013)
– A mutation operator

– Uses SBP to match the target of the search process

– Starting point of SBP: the target semantics of the

July 9th, 2015

612



11

GECCO Tutorial on Semantic Genetic Programming 41

Operators Based on SBP

• Common part of workflow:
–Pick a node p’ in a parent p

–Perform semantic backpropagation of desired semantics from the root of p to
p’, obtaining desired semantics D

–Replace p’ with a (sub)program from a library that best matches D

• Other differences:
–RDO is agnostic about geometric considerations

–RDO and AGX may use various libraries

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 42

AGX: Some Results

(Pawlak, Wieloch, Krawiec, 2014)
July 9th, 2015
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Library of Subprograms

• The source of subprograms for SBP

– Static: Generated prior to run

– Dynamic: Other programs in the current population

• Example of static library: All programs built upon given set of instructions.

– Instructions {+, −,, /, sin, cos, exp, log, x}, max tree height h

– Semantic duplicates eliminated

• Total number of programs: 212 (for h = 3), 108520 (for h = 4)

– Depends on the instruction set and tests (in general the fewer tests,
the fewer unique semantics)

– Impact of floating-point precision

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming 44

Semantic Diversity of Libraries

Exemplary library:

• All programs composed of {+,−,×,/,sin,exp,x},
max tree depth: 4.

• Semantics: 20 points distributed equidistantly
in [−5, 5] 20-dimensional semantic space

• Semantic duplicates removed.

Visualization:

• Reduction to 2D by PCA,

• Red: the smallest (i.e. single node) programs,

• Blue: the longest (i.e. 15 nodes) programs.

Observation: strongly non-uniform distribution of
semantics.

• Expected: see (Langdon & Poli 2002)

July 9th, 2015
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Technical Challenges of SBP

• Limited semantic diversity
– Using a mutation operator in parallel recommended (to provide constant influx of new

code)

• Computational overhead of library search
– Can be tackled with appropriate algorithms (nearest-neighbor search, e.g., kd-trees)
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SBP: Remarks and Extensions

• Requirements of SBP-based operators
– AGX requires a means of constructing a midpoint on a segment.

• Possible in vector spaces, but in general not in metric spaces

– RDO can work with any metric (vector space not required)

• The node/subtree p to be replaced can be selected deterministically:
– E.g., the node where the divergence of the actual semantics s(p) and the desired

semantics D is the greatest (Wieloch 2012)

July 9th, 2015
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IV. Geometric Semantic GP (GSGP)

July 9th, 2015

Geometric Semantic Operators Construction

• By approximation:
– Trial & Error is wasteful
– Offspring do not conform exactly to the semantic requirement

• By direct construction: Is it possible to find search operators that
operate on syntax but that are guaranteed to respect geometric
semantic criteria by direct construction?

• Due to the complexity of genotype-phenotype map in GP
(Krawiec & Lichocki 2009) hypothesized that designing a
crossover operator with such a guarantee is in general
impossible. A pessimist? No, the established view until then...

48GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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Geometric Semantic Crossover
for Boolean Expressions

49

T1, T2: parent trees
TR: random tree

T3   =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Theorem

The output vector of the offspring T3 is in the
Hamming segment between the output
vectors of its parent  trees T1 and T2 for any
tree TR

50GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Example: parity problem

• 3-parity problem: we want to find a function
P(X1,X2,X3) that returns 1 when an odd number
of input variables is 1, 0 otherwise.

51

0 1 0 1 0 1 1 1O=

Error = HD(Y,O) = 5
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Example: tree crossover

52

T1 =

TR =

T2 =

T3 =

substitution  &
simplification

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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Example: output vector crossover

53

• The output vector of TR acts as a crossover mask to
recombine the output vectors of T1 and T2 to produce the
output vector T3.

• This is a geometric crossover on the semantic distance:
output  vector of T3 is in the Hamming segment between the
output vectors of T1 and T2.

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Geometric Semantic Crossover
for Arithmetic Expressions

54

Function co-domain: real
Output vectors: real vectors

Semantic distance = Euclidean
CR = random real in [0,1]

Semantic distance = Manhattan
CR = random function with co-
domain [0,1]

T3 =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Geometric Semantic Crossover for Classifiers

55

Function co-domain: symbol
Output vectors: symbol string

Semantic distance = Hamming
RC = random function with
boolean co-domain
(i.e., random condition function
of the inputs)

T3  =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Remark 1: Domain-Specific

• Unlike traditional syntactic operators which
are of general applicability, semantic
operators are domain-specific

• But there is a systematic way to derive
them for any domain

56GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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Remark 2: Quick Growth

• Offspring grows in size very quickly, as the
size of the offspring is larger than the sum
of the sizes of its parents!

• To keep the size manageable we need to
simplify the offspring without changing the
computed function:
– Boolean expressions: Boolean simplification
– Math Formulas: algebraic simplification
– Programs: simplification by formal methods

57GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Remark 3: Syntax Does Not Matter!

• The offspring is defined purely functionally,
independently from how the parent functions and
itself are actually represented (e.g., trees)

• The genotype representation does not matter:
solution can be represented using any genotype
structure (trees, graphs, sequences)/language
(Java, Lisp, Prolog) as long as the semantic
operators can be described in that language

58GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Semantic Mutations

• It is possible to derive geometric semantic
mutation operators.

• They also have very simple forms for
Boolean, Arithmetic and Program domains.

59GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

EXPERIMENTS
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Boolean Problems

61GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Polynomial Regression Problems

62GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Classification Problems

63GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

DEALING WITH GROWTH

64GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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Geometric Semantic Crossover
for Boolean Expressions (Growth)

65

T1, T2: parent trees
TR: random tree

T3   =

size(T3)  =  4 + 2 * size(TR) + size(T1) + size(T2)
average size at generation n + 1  >  2 * average size at generation  n

PROBLEM: size grows exponentially in the number of generation!
GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Geometric Semantic Mutation
for Boolean Expressions (Growth)

66

T:  parent tree
M:  random minterm tree
TM:  mutant tree

size(TM)  =  2 + size(M) + size(T)
average size at generation n + 1  =  constant + average size at generation  n

NO PROBLEM: size grows linearly in the number of generation
GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Three Solutions

1. Algebraic simplification of offspring
- Can be computationally expensive
- Not all domains can be simplified algebraically
- Understandable final solutions

2. Not using crossover
- Semantic Hill-Climber finds optimum efficiently
- Linear growth is acceptable

3. Compactification of offspring (Vanneschi et al, 2013)
- Linear growth even with crossover
- Applicable to any domain
- Complicated Implementation (pointers structure)
- Final solution is black box

GECCO Tutorial on Semantic Genetic Programming 67July 9th, 2015

Compactification Method
(Vanneschi et al, 2013)

- Individuals are represented as explicit shared linked data structure to their
parents, and recursively to all their ancestry.

- At each generation, each new offspring of crossover requires only a new
triplet of references Linear growth in the number of generations.

GECCO Tutorial on Semantic Genetic Programming 68July 9th, 2015
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Compactification Method
- Output vector of offspring can be computed using the explicitly stored output
vectors of the parent and mask trees. This turns fitness computation from
exponential in the number of generations to constant time.

GECCO Tutorial on Semantic Genetic Programming 69July 9th, 2015

Compactification Method

- Explicit garbage collection of unreferenced past
individuals in the data structure.

- Final solution is extracted from data structure but this
takes exponentially long in the number of generation.

- Extracted solution is queried on non-training inputs to
make predictions. This takes exponential time since done
on extracted solution.

Good idea, but can be improved and beautified!
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Functional Compactification (Moraglio, 2014)

• Individuals are represented directly as
anonymous Python functions:

P1 = lambda x1, x2, x3: x1 or (x2 and not x3)
P2 = lambda x1, x2, x3: x1 and x2
RF = lambda x1, x2, x3: not (x2 and x3)

GECCO Tutorial on Semantic Genetic Programming 71July 9th, 2015

Functional Compactification

• Offspring call parents rather than pointing
to them:

OX = lambda x1, x2, x3:
((P1() and RF()) or (P2() and not RF())

• The size of offspring is constant in the number of
generations

GECCO Tutorial on Semantic Genetic Programming 72July 9th, 2015
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Functional Compactification

• Mutation and Crossover are higher order
functions that take functions in inputs (parents)
and return functions as output (offspring):

Crossover: (B^3 B) x (B^3 B) (B^3 B)

• The function calls structure keeps implicitly trace
of all ancestry of an individual

GECCO Tutorial on Semantic Genetic Programming 73July 9th, 2015

Functional Compactification

• All individuals are momoized functions:
- The output of previously seen inputs is retrieved from

an implicit storage, not recalculated
- The first time the fitness of an individual is calculated,

its output vector is implicitly stored
- As the output vectors of parents are stored, the fitness

of the offspring takes constant time in num generations
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Functional Compactification

- Garbage collection of unreferenced past functions done
automatically by the Python compiler.

- Final solution is a Python compiled function (but can be
extracted by keeping track of its source code). The
extracted solution would be exponentially long.

- The compiled final solution can be queried on non-
training inputs to make predictions. Thanks to the
memoization obtaining the output takes only linear time.
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Functional Compactification

• The functional interpretation of the
compactification method delegates implicitly
all book-keeping of the original
compactification method to the Python
compiler.

• The resulting code is elegant, much shorter
and clear as it has only minimal clutter
(< 100 lines including extensive comments vs
original compactification > 2000 lines of C++).

GECCO Tutorial on Semantic Genetic Programming 76July 9th, 2015
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GSGP Implementations

• Original Mathematica implementation with algebraic
simplification (see https://github.com/amoraglio/GSGP)

• Compactification method in C++ (see
http://gsgp.sourceforge.net/)

• Functional compactification aka Tiny GSGP in Python (see
https://github.com/amoraglio/GSGP)

• Scala implementation using the ScaPS library (see
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.Scaps)

July 9th, 2015

RUNTIME ANALYSIS OF
MUTATION-BASED GSGP

78GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

• Rigorous analytical formula of the
expected optimisation time of the search
algorithm A on the problem class P (on
the worst instance) for increasing size n
of the problem

Runtime Analysis

GECCO Tutorial on Semantic Genetic Programming 79July 9th, 2015

• Algorithm: stochastic hill-climber i.e., flip a bit of the current
solution and accept new solution if it is better than current

• Problem class: one-max i.e., sum of ones in the bit string to
maximise; the problem size is the string size

• Expected optimisation time: O(n log n) by coupon collector
argument

• This result generalises to onemax with an unknown target
string, i.e., to any cone landscape on binary strings

Runtime Analysis (example)
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Semantic Mutation
(syntactic search & semantic effect)

81

Semantic
Mutation

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1

Induced
Mutation

Semantics

Semantics

GECCO Tutorial on Semantic Genetic Programming
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Search Equivalence

82

Semantic GP search at a
syntax level on any problem

Traditional GA search on
output vectors on onemax

Semantics

The search outputs a tree (i.e., a function),
but the runtime analysis can be done on the GA!
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Forcing Point Mutation (not Bit Flip)

83

X1 X2 X3 Output
0 0 0 0
0 0 1 1
0 1 0 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

X = ((X1  ̂X2)  ̂!X3) v X3
M = !X1  ̂X2  ̂!X3
X’ = X v M

GECCO Tutorial on Semantic Genetic Programming

July 9th, 2015

Issue 1: Exponential Chromosome Size

• Problem size n: number of input variables

• Output vector size N: 2^n
(exponentially long in the number of variables!)

• (1+1)-EA on OneMax has runtime N log N = n 2^n
(exponential!)
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Issue 2: Exponential Amount of Neutrality

• Training set size t: must be polynomial in n for the
fitness to be computable in poly time

• The output vectors of size 2^n have only poly(n)
active bits, all other bits are inactive: sparse
OneMax with very rare active bits

• Black-box model: we do not know which bits are
active and which are inactive

• (1+1)-EA takes exponential time to optimise
sparse OneMax

85GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Solution: Block Mutation

• Use incomplete minterm as a basis for forcing mutation.
This has the effect of forcing at once blocks of entries to
the same random value.

86

X1 X2 X3 Output
0 0 0 0 1
0 0 1 1 1
0 1 0 0 1
0 1 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

X = ((X1  ̂X2)  ̂!X3) v X3
M = !X1
X’ = X v M

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015

Fixed Block Mutation

87

X1 X2 X3 Output
0 0 0 0
0 0 1 1
0 1 0 0  0
0 1 1 1  0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Fix Variables  = {X1,X2}
Possible M =
{!X1  ̂!X2, !X1  ̂X2, X1  ̂!X2, X1  ̂X2}

X = ((X1  ̂X2)  ̂!X3) v X3
M = !X1  ̂X2
X’ = X  ̂!M
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Polynomial Runtime with High Probability of
Success on All Boolean Problems!

88

Proof idea: choose v such that the number of partitions of the
output vector is polynomial in n (so that the runtime is
polynomial), and larger enough than the training set, so that
each training example is in a single block w.h.p. (which
guarantees that the optimum can be reached).

GECCO Tutorial on Semantic Genetic ProgrammingJuly 9th, 2015
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Lesson from Theory

• Rigorous runtime analysis of GSGP on general classes of
non-toy problems is possible as the landscape is always a
cone

• There are issues with GSGP which require careful design
of semantic mutations to obtain efficient search. Theory
can guide the design of provably good semantic operators
in terms of runtime

• Runtime analysis of GSGP with several other mutation
operators for Boolean, arithmetic and classification
domains have been done producing refined provably good
semantic search operators
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V. Other developments &
current research directions

July 9th, 2015
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SGP and Neutrality

• Similarly to non-semantic operators, SGP operators can be ineffective (in the semantic sense).

– The offspring is a semantic clone of a parent.

– Slows down the search process.

• Percentage of neutral mutations:

• Can be tackled by testing potential offspring for semantic neutrality.

Operator Symbolic regression Boolean function
synthesis

SGX (Moraglio et al.) 0.679 0.719

AGX (Pawlak et al.) 0.131 0.935

LGX (Krawiec et al.) 0.067 0.724

KLX (Krawiec et al.) 0.866 0.895

SAC (Uy et al.) 0.067 0.649

GPX (Koza et al.) 0.103 0.518
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GP as a Test-Based Problem

• Test based problem (S, T, G, Q) (Popovici et al. 2012):
– S – set of candidate solutions (in GP: programs)

– T – set of tests (in GP: tests, fitness cases)

– G – interaction matrix

– Q – quality measure

• Examples: Games (strategies vs. opponents), control problems (controllers vs. initial
conditions), machine learning from examples (hypotheses vs. examples)
– Generally: co-optimization and co-search

July 9th, 2015
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Discovery of Underlying Objectives via
Clustering

(Krawiec & Liskowski 2013)
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Behavioral GP

• Generalizes program behavior to the entire course of program execution, not only
program output

• Program behavior = list of execution traces

(Krawiec & Swan 2013, Krawiec & O’Reilly 2014)

July 9th, 2015
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Behavioral GP: Example
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Recent Developments

• New approaches based on semantic back propagation
(Ffrancon & Schoenauer, 2015)

• Lexicase selection (Helmuth et al. 2012)
• Relationship to novelty search (program semantics =

behavioral descriptor)

July 9th, 2015
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• Application to other types of GP
– Geometric Sematic Grammatical Evolution

• Many Real-World Applications (Vanneschi et al, 2013)

• Generalisation Studies
– PAC learning for provably good generalisation of GSGP

• Derivation of semantic operators for more complex domain
(e.g., recursive programs) on more complex data structures
(e.g., lists)

Other Lines of Investigation in GSGP
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Thank you!

Questions?

Credits: The authors thank Bartosz Wieloch and Tomasz Pawlak for their
feedback on the slides of the tutorial. Other credits: Wikipedia
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