

(McPhee, Ohs, Hutchison 2007/2008)

- Studied the impact of subtree crossover in terms of semantic building blocks.
- · Describe the semantic action of crossover.
- · Provide insight into what does (or doesn't) make crossover effective.
- Define semantics of subtrees and semantics of contexts, where context = a tree with one branch missing.
- Definition of program semantics inspired by Poli's and Page's work on sub-machine code GP

July 9th, 2015

GECCO Tutorial on Semantic Genetic Programming

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Semantic-Aware Initialization

- Behavioral Initialization (Jackson 2010)
- Set $P \leftarrow \emptyset$
- · To generate a new program:
- Repeat:

July 9th, 2015

- Create a random program *p* using conventional methods (e.g., Grow or Full)
- Until the semantic of p is sufficiently distant from semantics of all programs in P
- Add p to P and return p
- Observation: Semantic diversity decreases rapidly with run progress (as opposed to syntactic/structural which increases and then levels-off)

GECCO Tutorial on Semantic Genetic Programming

Metric Space

$$d(x, y) \ge 0$$

$$d(x, y) = 0 \Leftrightarrow x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, z) + d(z, y) \ge d(x, y)$$

- The semantic distance between two functions is the distance of their output vectors measured with the distance function used in the definition of the fitness function
- Semantic geometric operators are geometric operators defined on the metric space of functions endowed with the semantic distance

GECCO Tutorial on Semantic Genetic Programming

July 9th, 2015

Semantic Fitness Landscape

	X1	X2	ХЗ	1	Y	I.	T1	1	T2	L	TR	I	T3
	0	0	0	1	0	1	0	1	0	I	1	1	0
	0	0	1	1	1	1	0	1	1	I	0	1	1
	0	1	0	1	1	1	0	1	1	I	1	1	0
	0	1	1	1	0	1	0	1	1	1	0	1	1
	1	0	0	1	1	1	0	1	0	I	1	1	0
	1	0	1	1	0	1	0	1	1	L	0	1	1
	1	1	0	1	0	I.	1	1	1	1	1	1	1
	1	1	1	1	1	-1	1	1	1	1	0	1	1
The outprecombine output ver	out v e the ctor	ecte ou T3.	or of tput	f TF ve	R a ctc	cts ors	as of 1	а Г1	cros and	sso I T	over 2 to	ma pro	ask to oduce the
The outprecombined output version output versi	out v e the ctor u geo ector ctors	ecto ou T3. ome of	or of tput tric T3 is T1 a	f TF ve cro in	R a cto sso the T2	ors	as of 1 er ol lam	a F1 n t	cros and the s	sso I T: sen	over 2 to nant gme	ma pro tic nt	ask to oduce the distance: between t

Г

Remark 2: Quick Growth

- Offspring grows in size very quickly, as the size of the offspring is larger than the sum of the sizes of its parents!
- To keep the size manageable we need to simplify the offspring without changing the computed function:
 - Boolean expressions: Boolean simplification
 - Math Formulas: algebraic simplification
- Programs: simplification by formal methods July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming

```
Remark 3: Syntax Does Not Matter!
```

- The offspring is defined purely functionally, independently from how the parent functions and itself are actually represented (e.g., trees)
- The genotype representation does not matter: solution can be represented using any genotype structure (trees, graphs, sequences)/language (Java, Lisp, Prolog) as long as the semantic operators can be described in that language

July 9th, 2015

57

GECCO Tutorial on Semantic Genetic Programming

Duchlom	Hite %								Longth			
Problem	GP		I GP	t	SSH	C	I SG	р	Length			
	avg	sd	avg	sd	avg	sd	avg	sd	GP	GPt	SSHC	SGF
Comparator6	80.2 3	3.8	90.9	3.5	99.8	0.5	99.5	0.7	1.0	2.0	2.9	2.8
Comparator8	80.3 2	2.8	94.9	2.4	100.0	0.0	99.9	0.2	1.0	2.3	2.9	3.0
Comparator10	82.3 4	1.3	95.3	0.9	100.0	0.0	100.0	0.1	1.6	2.4	2.7	3.0
Multiplexer6	70.8 3	3.3	94.7	5.8	99.8	0.5	99.5	0.8	1.1	2.2	2.7	2.9
Multiplexer11	76.4	7.9	88.8	3.4	100.0	0.0	99.9	0.1	2.2	2.4	2.9	2.6
Parity5	52.9 2	2.4	56.3	4.9	99.7	0.9	98.1	2.1	1.4	1.7	2.9	2.9
Parity6	50.5 0).7	55.4	5.1	99.7	0.6	98.8	1.7	1.0	1.9	3.0	3.0
Parity7	50.1 0).2	51.7	2.8	99.9	0.2	99.5	0.6	1.0	1.7	3.0	3.1
Parity8	50.1 0).2	50.6	0.9	100.0	0.0	99.7	0.3	1.0	1.6	3.4	3.4
Parity9	50.0 0	0.0	50.2	0.1	100.0	0.0	99.5	0.3	1.0	1.3	3.8	3.8
Parity10	50.0 0	0.0	50.0	0.0	100.0	0.0	99.4	0.2	0.9	1.2	4.1	4.1
Random5	82.2 6	5.6	90.9	6.0	99.5	1.2	98.8	2.1	0.9	1.6	2.7	2.8
Random6	83.6 6	6.6	93.0	4.1	99.9	0.4	99.2	1.3	1.2	1.9	2.9	2.8
Random7	85.1 8	5.3	92.9	3.8	99.9	0.2	99.8	0.4	1.1	2.0	2.8	2.9
Random8	89.6	5.3	93.7	2.4	100.0	0.1	99.9	0.2	1.4	2.0	3.0	2.9
Random9	93.1 3	3.7	95.4	2.3	100.0	0.1	100.0	0.1	1.5	1.8	2.9	2.9
Random10	95.3	2.3	96.2	2.0	100.0	0.0	100.0	0.0	1.5	1.8	2.8	3.0
Random11	96.6	1.6	97.3	1.5	100.0	0.0	100.0	0.0	1.6	1.7	2.7	3.1
True5	100.0	0.0	100.0	0.0	99.9	0.6	100.0	0.0	1.1	1.3	2.0	2.4
True6	100.0	0.0	100.0	0.0	99.8	0.6	100.0	0.0	1.2	1.2	2.6	2.5
True7	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	1.2	1.2	2.9	2.6
True8	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.1	1.2	1.4	3.3	2.9

-)		9.00		10	bien	10
Problem	ç		Hits	%		
	G	Р	SSH	C	SG	\mathbf{P}
	avg	sd	avg	sd	avg	sd
olynomial3	79.9	23.1	100.0	0.0	99.5	1.5
Polynomial4	60.5	27.6	99.9	0.9	99.9	0.9
Polynomial5	40.7	21.6	100.0	0.0	99.5	2.0
Polynomial6	37.5	23.4	100.0	0.0	98.9	3.1
Polynomial7	30.7	18.5	100.0	0.0	99.9	0.9
Polynomial8	34.7	16.0	99.5	2.0	99.7	1.3
Polynomial9	20.7	13.2	100.0	0.0	98.5	4.9
Polynomial10	25.7	16.7	99.4	1.7	99.9	0.9

Pr	obl	em				Hit	ts %				-	Le	ngth		
			G	Р	G	Pt	SSH	C	SG	GP					
n_v	$ n_c $	nel	avg	sd	avg	sd	avg	sd	avg	sd	\mathbf{GP}	GPt	SSHC	SGF	
3	3	2	80.00	8.41	97.30	4.78	99.74	0.93	99.89	0.67	1.6	1.9	2.3	2.3	
3	3	4	49.15	9.96	78.89	8.93	99.89	0.67	99.00	1.63	1.6	2.1	2.3	2.3	
3	3	8	37.04	5.07	59.52	14.26	99.74	0.93	96.04	2.85	1.2	1.9	2.3	2.3	
3	4	2	67.92	7.05	93.80	5.41	99.95	0.28	99.58	0.80	1.8	2.3	2.7	2.7	
3	4	4	39.11	7.02	68.48	8.66	99.84	0.47	98.08	1.64	1.7	2.3	2.7	2.7	
3	4	8	28.02	3.73	46.98	14.48	99.73	0.58	94.22	1.72	1.1	2.0	2.7	2.7	
4	3	2	88.31	6.98	98.89	2.89	99.96	0.22	100.00	0.00	1.6	1.9	2.9	2.9	
4	3	4	48.85	6.54	88.15	10.10	100.00	0.00	99.54	0.68	1.4	2.2	2.9	2.9	
4	3	8	36.54	9,01	60.37	17.14	100.00	0.00	96.63	1.23	1.0	1.9	2.9	2.9	
4	4	2	82.75	8.21	99.79	1.12	100.00	0.00	99.86	0.23	2.2	2.3	3.3	3.3	
4	4	4	44.13	8.75	77.55	6.30	100.00	0.00	99.68	0.29	2.0	2.4	3.3	3.3	
4	4	8	30.63	5.33	50.21	15.08	99.96	0.12	98.84	0.58	1.4	2.1	3.3	3.3	

Functional Compactification

- **Garbage collection** of unreferenced past functions done automatically by the Python compiler.

- **Final solution is a Python compiled function** (but can be extracted by keeping track of its source code). The extracted solution would be exponentially long.

- The compiled final solution can be queried on nontraining inputs to make predictions. Thanks to the memoization obtaining the output takes only **linear time**.

July 9th, 2015

GECCO Tutorial on Semantic Genetic Programming

- The functional interpretation of the compactification method delegates implicitly all book-keeping of the original compactification method to the Python compiler.
- The resulting code is elegant, much shorter and clear as it has only minimal clutter (< 100 lines including extensive comments vs original compactification > 2000 lines of C++).

 Rigorous analytical formula of the expected optimisation time of the search algorithm A on the problem class P (on the worst instance) for increasing size n of the problem

GECCO Tutorial on Semantic Genetic Programming

July 9th, 2015

Forcing Point Mutation (not Bit Flip) DEFINITION 3. Forcing point mutation: Given a parent function $\mathcal{X}: \{0,1\}^n \to \{0,1\}$, the mutation returns the offspring boolean function $\mathcal{X}' = \mathcal{X} \vee M$ with probability 0.5. and $\mathcal{X}' = \mathcal{X} \wedge \overline{M}$ with probability 0.5, where M is a random minterm of all input variables. OR Ω AND X3 $0 \rightarrow 1$ AND NOT 1 1 X1 X2 X3 $X = ((X1 ^ X2) ^ !X3) v X3$ M = !X1 ^ X2 ^ !X3 1 1 July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming

Solution: Block Mutation

• Use incomplete minterm as a basis for forcing mutation. This has the effect of forcing at once blocks of entries to the same random value.

Fixed Block Mutation

DEFINITION 6. Fixed Block Mutation (FBM): Let us consider a fixed set of v < n variables (fixed in some arbitrary way at the initialisation of the algorithm). FBM draws uniformly at random an incomplete minterm M comprising all fixed variables as a base for the forcing mutation.

Polynomial Runtime with High Probability of Success on All Boolean Problems!

THEOREM 4. Let us assume that the size of the training set τ is a polynomial n^c in the number of input variables n, with c a positive constant. Let us choose the number of fixed variables v logarithmic in n such that $v > 2c \log_2(n)$. Then, semantic GP with FBM finds a function satisfying the training set in polynomial time with high probability of success, on any problem P, and training set T uniformly sampled from P.

Proof idea: choose v such that the number of partitions of the output vector is polynomial in n (so that the runtime is polynomial), and larger enough than the training set, so that each training example is in a single block w.h.p. (which guarantees that the optimum can be reached).

88

July 9th, 2015 GECCO Tutorial on Semantic Genetic Programming

Lesson from Theory

- Rigorous runtime analysis of GSGP on general classes of non-toy problems is possible as the landscape is always a cone
- There are issues with GSGP which require careful design of semantic mutations to obtain efficient search. Theory can guide the design of provably good semantic operators in terms of runtime
- Runtime analysis of GSGP with several other mutation operators for Boolean, arithmetic and classification domains have been done producing refined provably good semantic search operators

July	9th,	2015
------	------	------

GECCO Tutorial on Semantic Genetic Programming

