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Presentation Outline
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Andries Engelbrecht received the Masters and
PhD degrees in Computer Science from the University
of Stellenbosch, South Africa, in 1994 and 1999
respectively. He is a Professor in Computer Science
at the University of Pretoria, and serves as Head of
the department. He also holds the position of South
African Research Chair in Artificial Intelligence. His
research interests include swarm intelligence,
evolutionary computation, artificial neural networks,
artificial immune systems, and the application of these
Computational Intelligence paradigms to data mining,
games, bioinformatics, finance, and difficult
optimization problems. He is author of two books,
Computational Intelligence: An Introduction and
Fundamentals of Computational Swarm Intelligence. !
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Particle swarm optimization (PSO):
@ developed by Kennedy & Eberhart [11, 22],
@ first published in 1995, and
@ with an exponential increase in the number of publications since
then.
What is PSO?
@ a simple, computationally efficient optimization method
@ population-based, stochastic search

@ individuals follow very simple behaviors:
e emulate the success of neighboring individuals,
@ but also bias towards own experience of success
@ emergent behavior: discovery of optimal regions within a high
dimensional search space Al
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Introduction (cont) L Introduction (cont)

The Origins g 2 The QCrigins

. @ Original PSO is a simplified social model of determining nearest
?
Whar ar: the o:glfn; of P|SO. e neighbors and velocity matching
® In the work of Reynolds on "boids" [36] o Initial objective: to simulate the graceful, unpredictable
o collision avoidance choreography of collision-proof birds in a flock
: Eﬁﬁc?;‘at,(:h'”g o Randomly initializes positions of birds
sl ) o Ateach iteration, each individual determines its nearest neighbor
@ The work of Heppner and Grenander on using a “rooster” as and replaces its velocity with that of its neighbor
attractor of all birds in the flock [18] @ This resulted in synchronous movement of the flock, but flock
settled too quickly on an unanimous, unchanging flying direction
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Introduction (cont) 7 20" Overview of Basic PSO

The Origins 3 Main Components

What are the main components?
@ a swarm of particles

@ Random adjustments to velocities (referred to as craziness) @ each particle represents a candidate solution
prevented individuals to settle too quickly on an unchanging @ elements of a particle represent parameters to be optimized
direction The search process:

@ To further expand the model, roosters were added as attractors:
e personal best
® neighborhood best Xi(t+1) = Xi(t) + Vit + 1), X5(0) ~ U(Xmin;: Xmax,)
— particle swarm optimization

@ Position updates

@ Velocity (step size)
e drives the optimization process
o step size
o reflects experiential knowledge and socially exchanged information
W4
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Overview of Basic PSO & Overview of Basic PSO

Social Network Structures g o Social Network Structures (cont)

Social network structures are used to determine best

positions/attractors
A -
) (a) Von Neumann (b) Pyramid (c) 4 Clusters
() : ()
) \ ()
( R
. Star Topology . Ring Topology ) '
RY (d) Wheel A
[} CIRG
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Overview of Basic PSO .5 Overview of Basic PSO ﬁ &

global best (gbest) PSO - z gbest PSO (cont)

@ y;(t) is the personal best position calculated as (assuming
. minimization)

uses the star social network

velocity update per dimension: yi(t+1) = { yi(f) it f(x;i(t+1)) = f(yi())

x;(t+1) if f(x(t+ 1)) < f(yi(1))
Lk U e Ul cbrzj(f][j/,-(t) - Xﬁ(t}] @ Y(t) is the global best position calculated as

v;i(0) = O (preferred) X ) )

¢4. G, are positive acceleration coefficients V() € {yo(t). ... ¥ ()} F(¥(1)) = min{f(yo(t)). ..., {(yn,())}
nj(t), rzj(t) ~ U(0, 1) or (removing memory of best positions)

note that a random number is sampled for each dimension
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Overview of Basic PSO o0, Overview of Basic PSO

gbest PSO Algorithm v 2 local best (lbest) PSO

Create and initialize an ny,-dimensional swarm, S; o uses the ring social network

repeat
bl i o i Vit +1) = vi(0) + (DY) = x5 (0] + Carai(O175(0) = Xy (1)
X Yi
| Syi=Sx; @ y; is the neighborhood best, defined as
end
if f(S.y;) < f(S.y) then Vi(t+1) € {(Nilf(¥i(t + 1)) = min{f(x)}, VX € Ni}
Sy =S8y . .
and y=o¥ with the neighborhood defined as
:t;'deach particle i = 1 S.ns do Ni = {Yimny, (1) Vicng+1(8): - Yiea (0, Yi0): Yisr (8- Vivny, ()}
= Myaystallsg
update the velocity; where ny; is the neighborhood size
dupdate the position; @ neighborhoods based on particle indices, not spatial information
unt:nsroppfng condition is true: \d @ neighborhoods overlap to facilitate information exchange \!

CIRG
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Aspects of Basic PSO s 20 Aspects of Basic PSO

Velocity Components 3 Geometric lllustration

@ previous velocity, v;(t) : =
e inertia component ¥ e+
e memory of previous flight direction social velocjty x(f +2)
e prevents particle from drastically changing direction S ingria new velocity
@ cognitive component, ¢ry(y; — X;) new velocity §, ysocial velocity *(t+1)
o quantifies performance relative to past performances T cognitive velocity
e memory of previous best position < — .
o nosta|gia xif) = E'“”: sz x(t) .
. 2 ¥y ¥ie+1)
@ social component, cora(Y; — X;)
e quantifies performance relative to neighbors e -
o omvy
(a) Time Step t (b) Time Step t + 1
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Aspects of Basic PSO

Aspects of Basic PSO

Velocity Clamping

@ the problem: velocity quickly explodes to large values
@ solution:

vi(t+1) !f|Vg(f+1}|{ Vinax.j
sgn(v,;.-) Vmax.j if |'|'"'i]'(t+ 1) > Vmax,j

v,;,-(t+1):{

@ controlling the global exploration of particles
@ does not confine the positions, only the step sizes

Particle Swarm Oplimization GECCO'15, 11/7/2015 17/ 107
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Aspects of Basic PSO

Velocity Clamping (cont)

Velocity Clamping (cont)

@ Issues with velocity clamping:
e dimensions with ranges smaller than V. will never be clamped
@ changes search direction — normalized clamping

velocity update ———=
pensition update == ===

: Change in Search Direction Due to Velocity Clamping ’

&
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Aspects of Basic PSO

Inertia Weight

@ problem-dependent
o dynamically changing Vinax when gbest does not improve over +
iterations [38]

Vs (t41) = {

3 decreases from 1.0 to 0.01
e exponentially decaying Viyax [16]

Vinax,j(t + 1) = (1 = (/1)) Vinax j(t)

GECCO15, 11/7/2015
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@ to control exploration and exploitation
@ controls the momentum
@ velocity update changes to

vi(t+1) = wvy(t) + e r(y;(1) — x;(1)] + carzi(D[F(1) — x;(0)]

o forw > 1

o velocities increase over time

e swarm diverges

o particles fail to change direction towards more promising regions
for0<w<1

o particles decelerate, depending on ¢; and ¢;
exploration—exploitation

o large values — favor exploration

o small values — promote exploitation |

@ problem-dependent

GECCO'15, 11/7/2015 20/107
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Aspects of Basic PSO Aspects of Basic PSO

Inertia Weight (cont)
Dynamically changing inertia weights

Constriction Coefficient

e w~ N(0.72,0) @ to ensure convergence to a stable point without the
o linear decreasing [39] need for velocity clamping
W(f) — (W(O) L w(n,))(”' - f} 5 w(n,] Vr]"(f+ 1) = X[V;}'(f) + ¢4 (YI}'“) = X,‘j(f})
it +2(¥i(t) — x(1))]
@ non-linear decreasing [44]
/ where
w(t+1)=aw(t), w(0)=14 i 2k
@ based on relative improvement [6] 12— ¢ — /o(o — 4)|
(t+1) = w(0) + (w(n) — w(0)) g 1 v
wi(t +1) = w(0) + (w(m) — w(0))———
- e b = o1+
where the relative improvement, m;, is estimated as b = Ol
ity — [0 = Fxi(0) \l & =

O D) g
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Aspects of Basic PSO s 20 Aspects of Basic PSO

Constriction Coefficient (cont) 3 Iteration Strategies

o if ¢ > 4 and k € [0, 1], then the swarm is guaranteed to converge @ Synchronous interation strategy
e x €[0.1] @ personal best and neighborhood bests updated separately from
position and velocity vectors

® « controls exploration-exploitation o slower feedback of new best positions

nE ? ;alszvc:::\?;?e::sé e:fl?{;tf:;g:_l @ Asynchronous iteration strategy
R 9 «Oxp @ new best positions updated after each particle position update

o effectively equivalent to inertia weight for specific x: o immediate feedback of new best positions
W =X, 01 = xCif and ¢z = xCar2 o lends itself well to parallel implementation
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Aspects of Basic PSO " o Aspects of Basic PSO

Iteration Strategies (cont) g X Acceleration Coefficients

Synchronous Iteration Strategy

; = =07
Create and initialize the swarm; Asynchronous Iteration Strategy Wi OQ 0_'0_
repeat Create and initialize the swarm; et 02 T i s
for each particle do repeat e particles are independent hill-climbers
Evaluate particle’s fitness; for each particle do : g;;iziz_rg:ﬁypg%ch particle
Update particle’s personal Update the particle’s velocity; © ¢ =00 >0
best position; Update the particle’s position; 1: w i O’n tochastic hill-climber
Update particle's Evaluate particle's fitness; % zogal ﬂi[y ,fs‘cboc sie ?
neighborhood best position; Update the particle’s personal ;
G @ ci=c>0:
end best position; - .
for each pariidle do Update the particle’s o particles are attracted towards the average of y; and y;
Update particle’s velocity; neighborhood best position; * &>l N _
Update particle’s position:; ahd o more beneficial for unimodal problems
end until stopping condition is true; s e . .
until stopping condition is true; Al e more beneficial for multimodal problems
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Aspects of Basic PSO 7 20" Some Basic Applications of PSO

Acceleration Coefficients (cont) 3 Function Optimization

Minimize the 2-D Bird function

o low ¢y and cz: (x) = sin(x;)el! =202 + cos(xp)el! =S 4 (x; — x)?
e smooth particle trajectories

@ high ¢; and c2:
e more acceleration, abrupt movements

@ problem dependent _ i
o adaptive acceleration coefficients [35]

with x; € [-27, 27]

t
ci(t) = (C1,min — f-‘1,rr:.a.w:)?r + €1, max

t
c2(t) = (Cz,max — Q.mﬁn);{ + C2,min
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Some Basic Applications of PSO

Some Basic Applications of PSO

Training A Feedforward Neural Network

@ Objective is to find weight and bias values that minimizes an error
function, e.g. sum-squared error

o Representation: particle represents weight vector and biases

@ Fitness function: Sean-squared error, classification error

@ Initialization:

o Small initial weights to prevent velocity from growing too fast
e Zero initial velocity, to start with as small as possible step sizes
o Small Vi to prevent too fast growth in velocity

Particle Swarm Optimization GECCO'15, 11/7/2015 29/ 107
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Data Clustering

@ Objective is to find centroids such that intra-cluster distances are
minimized and inter-cluster distances maximized

@ Representation of centroid vectors:
X; = (Mg, ... My, M)
@ Fitness function: Quantization error

Y1 [Evzpecy € (o, Mii))/ Mk
Joj = K

Engelbrechl (University of Pratoria) Particle Swarm Optimization GECCO'15, 117772015

PSO Issues

About Convergence
Particles are guaranteed under certain conditions to converge
to an equilibrium [8, 40, 9]:

@ Particles will converge to

D1y + 02y
o1+ 02
@ This is not necessarily even a local minimum
@ It has been proven that standard PSO is not a local minimizer [10]
Potential dangerous property:
o whenx; =Yy, =Y,
@ then the velocity update depends only on wv;
@ if this condition persists for a number of iterations,

wv; =0

GECCO'15, 11/7/2015 31/107
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PSO Issues

Roaming Particles

@ Empirical analysis [15] and theoretical proofs [17] showed that
particles leave search boundaries very early during the
optimization process

@ Potential problems:

o Infeasible solutions: Should better positions be found outside of
boundaries, and no boundary constraint method employed,
personal best and neighborhood best positions are pulled outside
of search boundaries

o Wasted search effort: Should better positions not exist outside of
boundaries, particles are eventually pulled back into feasible space.

o Incorrect swarm diversity calculations: As particles move
outside of search boundaries, diversity increases

Particle Swarm Optimization GECCO'15, 11/7/2015 327107

Engelbrecht (University of Pretorie



PSO Issues

Roaming Particles (cont)

Goal of this experiment: To
illustrate
@ particle roaming
behavior, and
@ infeasible solutions
may be found

Experimental setup:
@ A standard gbest PSO was used
@ 30 particles
w = 0.729844
c1 = Cco = 1.496180
Memory-based global best selection
Synchronous position updates
50 independent runs for each

initialization strategy

1 Oplimization

PSO Issues: Roaming

Percentage Particles that Violate Boundaries

GECCO'15, 11772015
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PSO Issues

Roaming Particles {cont)

. Functions Used for Empirical Analysis to lllustrate Roaming Behavior

Function Definition Domain
AbsValue f(x) =31, x| [-100,100]
Ackley 1) = —200 "2V A T _ ik Sl conenn) g, [-32.768,32.768]
Bukin 6 f(x) = 100,/|x2 — 0.01x?| + 0.01|x; + 10| | [-15,5],[-3.3]
Griewank f() =1+ g g X7 — [TjZ4 cos (—"\/L}) [-600,600]
2

Quadric flaey =30 (}:Jf:, X [-100,100]
Rastrigin | f(x) = 10n, + 37, (%2 — 10c0s(27x)) | [-6.12,5.12]
Rosenbrock | f(x) = ;’_:_;‘ (100(;@+1 — X%+ (% — 1)2) [-2.048,2.048]

- \!
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PSO Issues: Roaming

Percentage Best Position Boundary Violations
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PSO Issues: Roaming : .2 PSO Issues: Roaming

Diversity Profiles Finding Infeasible Solutions
& . e : Functions Used for Empirical Analysis to lllustrate Finding of Infeasible
[ i Solutions
s} Function Domain Function Deﬂnllion
\
,., ey i Ackley [10,32.768] | fix)=— o2/ £ f _ b TP oostzmn)
e e e e q opfiel 2 L3 csienz)
s it Ackley™ [-32.788.0] | f(x)= L | Ty20+e
(a) Ackley (b) Bukin 6 Eggholder [512.512) | fix) = L““." (= xisa + amysing, [y + 272+ 470) + sin 1 — O + 4TD(-%))
I BE e e e 0 0 B Bl Griewank™® | [0,600] 1) =1+ g T, 2F — T}, cos %
- R B P Nowegian® | (1110 | £ =TT, (ws:wz:‘) (99' st ))
o «[ Rosenbrock® | [-30,30] 1x) = 777 (100215 — 29 + (2 1F)
i I Schwetel1.2% | [0,100] fix) = L"',( % 2
i Schwelel226 | [-50,50] fx) = }j_; o (gsin (\/1%1))
P L Spherical® [0,100] fx) = 7%, Z
N T — g { Salomen F1008l hulo) = —cos@r T ) + 0T o +1 {
Seeabors. Sormbors. L}
(c) Griewank (d) Hosenbroi \ vy
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PSO Issues: Roaming

Finding Infeasible Solutions: Ackley

PSO Issues: Roaming

Finding Infeasible Solutions: Eggholder
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PSO |

ssues: Roaming

PSO Issues

Finding Infeasible Solutions: gbest Boundary Violations
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PSO Issues: Velocity Initialization

41/107

Velocity Initialization

Velocties have been initialized using any of the following:

o vi(0)=0

o Critique: Limits exploration ability, therefore extent to which the
search space is initially covered

@ Counter argument: Initial positions are uniformly distributed

e Flocking analogy: Physical objects, in their initial state, do not have
any momentum

@ v;(0) ~ U(—Xmin. Xmax)™, where ny is the problem dimension

@ Argument in favor: Initial random velocities help to improve
exploration abilities of the swarm, therefore believed to obtain better
solutions, faster

o Argument against: large initial step sizes cause particles to leave
search boundaries:

Vi(0) ~ U(—Xenin; Xemax)™ — Xi(1) ~ U(=2Xpmin; 2Ximax)™

@ Initialize to small random values

Engelbrecht (University of Pratoria
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PSO Issues: Velocity Initialization

Fitness Reduction Profiles
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Fitness After 1000 lterations

Zero Init Random Init

Function No Pbest Bound No Pbest Bound
Absolute Value || 3.53E-001+2.87E+000 | 2.46E-001+41.47E+000
Ackley 2.49E+000+1.35E+000 | 2.68E+000+2.67E+000
Bukin 6 6.20E-002+4.50E-002 | 6.65E-002+5.56E-002
Griewank 3.72E-002+5.26E-002 | 3.91E-002+5.57E-002
Quadric 9.04E+001-8.70E+001 | 1.80E+002£3.15E+002
Rastrigin 6.66E+001+1.71E+001 | 7.37E+001+2.16E+001
Rosenbrock 2.65E+001+1.53E+001 | 2.73E+001+1.66E+001

Engelbrechl (University of Pretoria)
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PSO Issues: Velocity Initialization PSO Issues

Observations 2 gbest PSO versus IbestPSO

Current opinions about gbest PSO:

@ Gbest PSO should not be used due to premature convergence to

R o o local optima as observed for a number of optimization problems
@ Small random initialization and zero initialization have similar [19, 24, 27, 32, 37]

behaviors
@ Random initialization

The following general observations are made:

@ Gbest PSO converges fast due to the faster transfer of the best
position throughout the swarm, and therefore the strong attraction

o slower in improving fitness of best solution to one best position [2, 13, 14, 19, 24, 25, 27, 28, 29]

o resulted in larger diversity ) T T -

o had more roaming particles, reaming for longer @ Gbest PSO is more susceptible to being trapped in local minima

o significantly more best positions left boundaries than Ibest PSO [13, 14, 25].

o took longer to reduce number of particle and best position violations @ Gbest PSO is best suited to unimodal problems and should not be
@ very slow in increasing number of converged dimensions

used for multimodal problems [2, 7, 21, 24, 32]

@ Gbest PSO does not perform well for non-separable problems
[25].
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PSO Issues . 20] PSO Issues: gbest vs Ibest
gbest PSO versus IbestPSO (cont) e Fitness Profiles
e b ?.'.E B ; b
: Outcomes of Statistical Analysis Comparing Gbest with Lbest PSO e . - R
L  fpa £ wm
Function Number of A Rate Efficiency Diversity - e i
Class | Funclions = = < > = = > = < = = < :
UM | Seperabl 7 5 [ 0] 210 61017102101 505100[¢2 - . -
Mo £ a 2 1 [4] Z 1 [1] 2 1 1] = 0 1 B e T w— T S S S S S S v - S o — e
Noizy 5 e e e N T O
Shifted 3 2 3 1] 2 3 [ 2 3 0 T [} 4
Rotated T T [0 [ 0 T [0 [0 [0 [T [0 [0 [0 (a) Elliptic (b) Shifted Schaffer 6 (c) Rastrigin
MK Seperable [ 1 2 3 2 2 2 3 1 2 [ [] [1] = . ; i i
M g L) i 7 k] LS =z T ] z 1 T 8 L =% =B
Shifted 10 3 [ 3 5 5 [1] B 1 1 L ] g wel 1 um '
Fotated T T 3 T 1 H 1 z 1 T U [0 | & o
Moisy 1 0 1 [4] [1] 1 [1] [4] 1 [1] [1] [1] 1 - -
Composition 11 T 3 ] ['] 4 i T 5 ] ] ] ikl 1 i -
Gverall Total 55 W7 |2 BB BB 78] B i -
—_ OverallUnimodal |__18 T 43251 0¢85 50° 3 - - Sl
~ Overall Mulimodal 47 8 | 19 | 14 || 11 | 8 | 2 | B |12 [ ] 2 5
M 7 7 [ 4 | & 9 | 5 | 3 12 1 ] 5 [0 [ 12 - bl =
on-seperable iz I3 | 18 @ | 18 | 10 W16 | 9 [ (1] r

S — ) i
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PSO Issues: gbest vs Ibest o PSO Issues: gbest vs Ibest

Diversity Profiles g X Observations
I =\ Y I “l @ None of the star or ring topologies can be considered outright best
8 he M . for any of the main function classes
”( ETeE T e _ --'_' S | @ Very similar performance over 60 functions with respect to solution
Ui o o accuracy
(a)DeJongF4 (o) Rotated Ellptic (‘i) Griewank @ gbest PSO performed slightly better than Ibets PSO with respect
- = ,_I. = l to success rate and efficiency
- """l ] @ |best PSO is slightly more consistent than gbest PSO
I . I -3 ]l @ Which topology is best, is function specific
- s |
ol IS [ E— |
(d) Rastrigin (e) Shifted Hosenbroci s
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PSO Issues

PSO Issues: Iteration Strategies

Accuracy Scores

Iteration Strategies

@ Should a synchronous iteration strategy (SIS) or and

asynchronous iteration strategy (AIS) be used? : Ranks based on Final Fitness Values
@ General opinions: i i e i e B |
o AIS is generally faster and less costly than SIS [4, 26, 20, 33, 38] O _Nﬁgg'_m . c e rprerTrerererrrorrre
o AlS generally provides better results [26, 20, 33, 38] Noisy 7 C | L L L I
o AIS is better suited for Ibest PSO, while SIS is better for gbest PSO . 3 =
[4] MW | Sep [ [] 5 T [1] [] 0 [1] [} 2 [] [ 0
Nor-sep E] U 7 | 20 [ 9 |0 T 177 L
@ Recently, it was shown that SIS generally yields better results than Rotsed LY N N L N - A
AlS, specifically unimodal functions, and equal to AIS or better for oy n ;IQ 7 g__gg 5 é 5 _;2_ _é | . 331 J
i i 1 1 ] 19 14 1
multimodal functions [34] LU ] LI N 020 . 0 AN 2 ML
o It was also recently stated that the choice of iteration strategy is d.,.—-,-ﬂrg.—,,“’"' — il LN B0 O 0 LA 0 0
Gverall Non-sep 2 T = - I - T - - B < I3

very function dependent [45]

ticle Swarm Optimization
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PSO Issues: lteration Strategies Particle Trajectories

Observation v Theoretical Results

@ Unimodal functions: AIS better accuracy for most functions Simplified particle trajectories [41, 9]
@ Multimodal functions:

S : ) @ no stochastic component
o No significant difference for most of the functions

@ For the remainder of the functions, no clear winner @ single, one-dimensional particle
e For Ibest PSO not significant difference over all functions — @ using w
insensitive 1o iteration strategy @ personal best and global best are fixed:
@ Separable functions: SIS not the preferred strategy for most of the y=1.0,y=00
functions

K 5 Example trajectories:

@ Non-separable: = ilibri :

o AIS bad for BBPSO Con\fergencel to aTn equilibrium (figure 9)
o For Ibest PSO AIS slightly better than SIS @ Cyclic behavior (figure 10)

o For gbest PSO, GCPSO, SIS slightly better @ Divergent behavior (figure 11)
o However, for most functions no significant difference
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Particle Trajectories R 5 Particle Trajectories

Convergent Trajectory 3 Cyclic Trajectory

gy |
" E L (]
7S ) N
= e
(a) Time domain (b) Phase space (a) Time domain (b) Phase space
w=05and @ =¢dp=14 cw=1.0and ¢ = ¢ = 1.999

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO'15, 11/7/2015 {107 Engelbrech! (University of Pretoria Particle Swarm Optimization GECCO'15, 11/7/2015

78

54/107

56 /107



Particle Trajectories

Particle Trajectories
Convergence Conditions

Divergent Trajectory

el 14 Bl
o Rl
-
(a) Time domain (b) Phase space

cw=07and ¢ =dp=1.9

q{

Y
& i CIRG
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@ What do we mean by the term convergence?
@ Convergence map for values of w and ¢ = ¢ + ¢2, where

01 = CiM. g2 = Cal2

: Convergence Map for Values of w and

O =01+ 2

Convergence conditions on
values of w, ¢y and co:

1>W>%{051+¢2)—120
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Particle Trajectories

Stochastic Trajectories

Particle Trajectories

Stochastic Trajectories (cont)

w=1.0and¢ =c =20

& @ violates the convergence

™ condition

A e forw=1.0,c1 +c <40
e o bl snmmammant A Attt to validate the condition

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO'15, 11/7/2015
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w=09and¢ =c =20

Engelbrech! (University of Pretoria

ticle Swarm Optimization

@ violates the convergence
condition

o forw=09,¢+c, <38
to validate the condition

What is happening here?
@ since 0 < ¢ + o2 < 4,
@ and ry,rp ~ U(0,1),

@ prob(cy + ¢ < 3.8) =
38 =095

607107
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Particle Trajectories

Good Convergent Parameter Choices

PSO as Universal Optimizer

w=07andci=c=14

of o validates the convergence
condition

Engelbrecht (University of Pretoria)
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PSO as Universal Optimizer (cont)

@ Many different classes of optimization problems exist, for example,

Discrete-valued versus continuous-valued
Boundary constrained versus constrained
Single versus multi-objective

Static versus dynamic and noisy

Large scale

Unimodal versus multimodal

@ Original PSO was developed to solve boundary constrained,
single-objective, static, continuous-valued optimization problems

@ Can PSO be used to solve optimization problems of these different
problem classes, without changing the main principles of PSO?

i o)

GECCO'5, 11772015 62/107
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Discrete-Valued Optimization Problems

Exploration vs Exploitation

@ For each problem type, what are the issues, and how can PSO be
adapted to address these issues, while still maintaining the
behavioral principles of PSO?

@ An issue that relates to all of these problems:
Exploration—exploitation tradeoff

o exploration
@ ability to explore the search space
@ need to maintain swarm diversity
o exploitation
@ ability to concentrate the search around a promising area to refine a
candidate solution
o need ways to ensure that all particles converge on the same point

Engelbrecht (University of Pretoria)
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Binary PSO

@ What is the problem?
o PSO originally developed for optimizing continuous-valued variables
o Uses vector algebra on floating-point vectors
@ How to adapt PSO for binary-valued variables?
@ Binary PSO (binPSO) of Kennedy and Eberhart [23]
o Velocity remains a floating-point vector, but meaning changes
@ Velocity is no longer a step size, but is used to determine a
probability of selecting bit 0 or bit 1
o Position is a bit vector, i.e. x; € {0,1}
e How to interpret velocity as a probability?

py(t)
o Then, position update changes to

{3 AR Y

GECCOD'5, 11/7/2015
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Discrete-Valued Optimization Problems

Binary PSO (cont)

Issues:

@ Interpretation of control
parameters changes

o w: small values facilitate longer

exploration
o Vpax: smaller values promote 4
exploration i
@ Initial velocities should be zero e
@ Velocities should never move to
zero, but to oo sl—ss

@ Curse of dimensionality

@ What happens if binary
representations of consecutive
numbers have a large Hamming
distance?

Engelbrecht (Unkversity of Pretoria)
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Discrete-Valued Optimization Problems
Angle Modulated PSO

@ Velocities and positions remain floating-point vectors
@ Find a bitstring generating function to generate bitstring solution

@ The generating function:
g(x) = sin(27(x — a) x b x cos(2r(x —

sampled at evenly spaced positions, x

a)xc))+d

The coefficients determine the shape of the e
generating function: ul |

@ a: horizontal shift of generating function ol
@ b: maximum frequency of the sin

function il

@ c: frequency of the cos function | |

@ d: vertical shift of generating function

albrech! (University of Pretoria) article Swarm Opfimization
J y of P Particla S Op !

GECCO'15, 117772015
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Discrete-Valued Optimization Problems

Angle Modulated PSO (cont)

Use a standard PSO to find the best values for these coefficients

Generate a swarm of 4-dimensional particles;
repeat

Apply any PSO for one iteration;

for each particle do

function;

bit-valued space;
end
until a convergence criterion is satisfied;

Engelbrecht (University of Pratoria) Particle Swarm Optimization

Produce ny bit-values to form a bit-vector solution;
Calculate the fitness of the bit-vector solution in the original

GECCO'15, 11772015

Substitute values for coefficients a, b, ¢ and d into generating

Large Scale Optimization Problems
Cooperative PSO

@ Each particle is split into K separate parts of smaller dimension

[41, 42, 43]

@ Each part is then optimized using a separate sub-swarm
@ If K = ny, each dimension is optimized by a separate sub-swarm

@ What are the issues?

o Problem if there are strong dependencies among variables

e How should the fitness of sub-swarm particles be evaluated?

5.3

AT VS

)

echt {University of Pretoria Particle Swarm Optimization
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Large Scale Optimization Problems L Multiple Solutions to Multimodal Problems

Cooperative PSO (cont)

Ki; = ny mod K and K, = K — (nx mod K);

Initialize Ki [ny/K|-dimensional and Kz | ny/K|-dimensional swarms; Niching capability of PSO:

repeat o Can the gbest PSO find more than one solution?
for each sub-swarm S,k = 1,.... K do o Formal proofs showed that all particles converge to a weighted
for each particlei =1, ..., S.ns do average of their personal best and global best positions
if f(b(k. Sk.x;)) < f(b(k. Sk.y;)) then o Therefore, only one solution can be found
Sk.Yi = Sk-Xi; o What if we re-run the algorithm? No guarantee to find different
end solutions
if f(b(k, Sk.yi)) < f(b(k. Sk.¥)) then @ What about /best PSO?
Sk.¥ = Sk.Yi; @ Neighborhoods may converge to different solutions
end o However, due to overlapping neighborhoods, particles are still
end attracted to one solution
Apply velocity and position updates;
end

until stopping condition is true;
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Multiple Solutions to Multimodal Problems . 0] Multiple Solutions to Multimodal Problems
Objective Function Stretching b NichePSO
Sequential niching, stretching the function to remove found Parallel niching PSO (3]
minima [30, 31] Create and initialize a ny-dimensional main swarm, S;
Create and initialize a n,-dimensional swarm, S, and X' = 0); repeat
repeat Train main swarm, S, for one iteration using cognition-only model;
Perform a single PSO iteration; Update the fitness of each main swarm particle, S.x;;
if /(S.y) < e then for each sub-swarm S do
Isolate S.y; Train sub-swarm particles, Sk.x;, using a full model PSO;
Perform a local search around S.y; Update each particle's fitness;
if a minimizer X, is found by the local search then Update the swarm radius S¢.R;
X xu{xi}h endFor
Let f(x) + H(x); If possible, merge sub-swarms;
end Allow sub-swarms to absorb any particles from the main swarm
end that moved into the sub-swarm;
Reinitialize the swarm S; If possible, create new sub-swarms;

until stopping condition is true;

until stopping condition is true;
Return X' as the set of multiple solutions;

Return Sk.y for each sub-swarm Sy as a solution;
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Dynamic Environments

@ Objective: To find and track solutions in dynamically changing
search spaces

x*(f) = min f(x, (1))

where x*(t) is the optimum found at time step ¢, and =(f) is a
vector of time-dependent objective function control parameters

@ Environment types:
o Location of optima may change
e Value of optima may change
o Optima may disappear and new
ones appear
o Change frequencey
e Change severity

ial Severity

Spa

Temporal Severity

Engelbrecht (University of Pretoria) Particle Swarm Opltimization GECCO'15, 1172015

Dynamic Environments

Consequences for PSO

PSO can not be applied to dynamic environments without any
changes to maintain swarm diversity

Recall that particles converge to a weighted average of their
personal best and global best positions

At the point of convergence, v; = 0, and the contributions of the
cognitive and social components are approximately zero

New velocities are zero, therefore no change in position

When the environment changes, personal best positions becomes
stale, and will cause particles to be attrackted to old best positions

Small inertia weight values limit exploration
Velocity clamping limits exploration

Engelbrechl (University of Pratoria) Particle Swarm Optimization GECCO'15, 117772015

Dynamic Environments

Consequences for PSO (cont)

Dynamic Environments

Conseqguences for PSO (cont)

@ Environment change detection:
o Optimization algorithm needs to react when a change is detected in
order to increase diversity
o Use sentry particles [5]
e Gbest versus pbest versus arbitrary positions as sentries
@ How to respond to environment changes?
@ Change the inertia update
@ w~ N(0.72,) [12], using no velocity clamping
@ If decreasing inertia is used, reset w to larger value

GECCO1S5, 11/7/2

Particle Swarm Optimization

Engelbrecht (Univers

@ Reinitialize particle positions [12]:
o Reinitialize the entire swarm
o Reinitialize parts of the swarm
o Total reinitialization versus keeping previous personal best positions
@ Limit memory
o Reinitialize the personal best position to the particle’s current
position — only effective if swarm has not yet converged
o Reset personal best positions only if significant change in fitness is
observed
o Recalculate global best after resetting personal best positions

@ Do a local search around the previous optimum [46]

GECCOD'5, 11/7/2015
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Dynamic Environments I 20 Dynamic Environments

Charged PSO g 2 Charged PSO (cont)

@ Some particles attract one another, and others repell one another

o Velocity changes to o dj = ||x;(t) — x(t)]|
- Q; is the particle’s charged magnitude
where a; is the particle acceleration, determining the magnitude of RAp is the perception limit of each particle
inter-particle repulsion [1] @ If Q; = 0, particles are neutral and there is no repelling
ns e If Q; # 0, particles are charged, and repel from each other
a(t) = Z a;(t) @ Inter-particle repulsion occurs only when the separation between
I=1,i#l two particles is within the range [Ro, Rp)]

@ The repulsion force between particles / and / is @ The smaller the separation, the larger the repulsion between the

Qa ; corresponding particles
=z ) (xi(t) = x(t fR.<dy<R g B .
( i ) (xl}=xi0)) ¢ =Hi="p @ Acceleration is fixed at the core radius to prevent too severe

a;(t) = (%"—’%id;&‘m) if dy < Re 3 repelling ‘
0 if diy > H*i W 'Y
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Dynamic Environments 7 20" Constrained Optimization Problems

Quantum PSO b Definition

@ Based on quantum model of an atom, where orbiting electrons are
replaced by a quantum cloud which is a probability distribution Constrained optimization problem:
governing the position of the electron

@ Developed as a simplified and less expensive version of the il f(x), x=(x,...,%,)
charged PSO subject to gm(x) <0. m=1,....ng

@ Swarm contains hm(X) =0, m=ng+1,...,n0g+ np

o neutral particles following standard PSO updates Xj € dom(x;)

e charged, or quantum particles, randomly placed within a

multi-dimensional sphere where ng and nj, are the number of inequality and equality constraints
xs(f+1)={ Xt)+vi(t+1) 11Q=0 respactively
B?(rdguﬂ) ifQ+#0

& semm
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Constrained Optimization Problems

Penalty Methods
@ Optimization problem is reformulated as
minimize F(x.t) = f(x.t) + Ap(x. )

A is the penalty coefficient

p(x. t) is the (possibly) time-dependent penalty function
@ How to find the best penalty coefficients?
@ And the penalty?

Ng+Ny
p(x;.t) = Z Am(t)pm(X;)
m=1
where
[ max{0.gm(x;)*} fme[l....,ng]
p"’(*")_{ (k) me g+t ngt

a is a positive constant, representing the power of the penalty 'C"] ﬁG

y of Pretoria) Particle Sw GECCO'15, 11/7/2015 B81/107
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Constrained Optimization Problems

Lagrangian Methods (cont)

@ A coevolutionary PSO approach to solve the above min-max
problem uses two swarms

@ Swarm S; uses fitness function

f(x) = L(x. Ag.
(x) /\garaesz (X. Ag. An)

@ Swarm S; uses fitness function

f(Ag: An) = min L(x. Ag. \n)

Engelbrecht (University of Pretoria)

Constrained Optimization Problems

Lagrangian Methods

@ Define the Lagrangian for the constrained problem
@ The Lagrangian:

ng Ng+ny
L(X, Ag, An) = f(X) + D Agm@m(X) + > Apmhm(X)
m=1 m=ng+1

Ag € R and A\, € R are the Lagrangian multipliers
@ The new optimization problem (the primal problem):

maximizey, n, L(X, Ag, Ap)
subject to Agm =0, m=1,....ng+ Ny

@ The vector x* that solves the primal problem, as well as the

Lagrange multiplier vectors, A; and A, can be found by solving

the min-max problem,

nlm &1:&1): L(x, Ag, An)

GECCO'5, 1177720
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Constrained Optimization Problems

Lagrangian Methods (cont)

Create and initialize two swarms, S; and S;, where S is
nx-dimensional and S; is ng + nj, dimensional;
repeat
Run a PSO algorithm on swarm S; for S;.n; iterations;
Re-evaluate So.y;(1).Vi=1,...,Sz.ns;
Run a PSO algorithm on swarm S, for S;. 1 iterations;
Re-evaluate S;.y;(t).vi=1,....8;.ng;

until stopping condition is true;

Engelbrecht (Universi Particle Swarm Opftimization GECCO'S, 11/7/2015
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Constrained Optimization Problems Multi-Objective Optimization

Formulate as a MOP g 2 Definition

Multi-objective problem:

minimize  f(x)
subjectto gm(x) <0, m=1,....ng

@ Reformulate constraints as additional sub-objective(s) hm(X) =0, m=ng+1....,ng+ Ny
@ Solve using a multi-objective PSO X € [Xmin, Xmax]™
where £(X) = (£(X), (X), ..., fo (X)) € O CR™

O is referred to as the objective space
The search space, S, is also referred to as the decision space

é:
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Multi-Objective Optimization Multi-Objective Optimization

Issues Aggregation-based Methods

@ Can PSO be used to simultaneously optimize more than one,

possibly conflicting objective? % Tha ohischve s iedeiined ss

@ How can PSO be used to find a set of solutions which optimally minimize 3% | wicfi(X)

balances the trade-offs among these conflicting objectives? subjectto gm(x) <0, m=1...., Ng
@ The task is to find a set of non-dominating solutions hm(x) =0. m=ng+1.....ng+ np
@ Formal definition of domination: X € [Ximin: Xmax]™

A decision vector, x; dominates a decision vector, X, (denoted by we 20,k =1,....n

X4 < Xo), if and only if i
o X, is not worse than X, in all objectives, i.e. where 3 )%, wy =1
fe(%1) < fe(X2). Wk =1,..., Ny, and @ Problem with getting the best values for wy

o x; is strictly better than x; in at least one objective, i.e. @ Has to be applied repeatedly to get more than one solution
Fk=1.....n: fk(11) < fk[xg)
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Multi-Objective Optimization

Vector Evaluated PSO

Multi-Objective Optimization
Vector Evaluated PSO

A multi-swarm approach:

@ Assume K sub-objectives

@ K sub-swarms are used, where each optimizes one of the
objectives

@ Need a knowledge transfer strategy (KTS) to transfer information
about best positions between sub-swarms

@ Exchanged information are via selection of global guides,
replacing the global best positions in the velocity updates

@ Standard KTS: the ring KTS

e Sub-swarms are arranged in a ring topology
o Global guide of swarm Sk is swarm Sik 1) mod K

@ Assume two objectives

Sy.vi(t+1) = wSy.v(t) + crj(H)(S1.y(t) — Sp.x(t))
+ cangi(t)(S2-¥i(t) — Si-xii(1))

wS;.v;i(t) + ¢1r(1)(Sa.y(t) — Sz.x;(1))

+ Car(t)(Sy.y(t) — S.x(t))

where sub-swarm S; evaluates individuals on the basis of
objective f;(x), and sub-swarm S; uses objective f(x)
@ Local guide selection:

o Local guide replaces the personal best
o Update personal best position only if the new particle position
dominates the previous personal best position

@ Alternative KTS: random

So.vi(t+1)

Particle Swarm Oplimization GECCO'15, 11/7/2015
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Multi-Objective Optimization

Using Archives

Engelbrechl (University of Pratoria) Particle Swarm Optimization GECCO'15, 11/7/2015 20 /107

More Complex Problems

Lett = 0;
Initialize the swarm, S(t), and
archive, A(t);
repeat
Evaluate (S(1));

@ Objective of archive is to keep
track of all non-dominated
solutions

@ Non-dominated solutions
added to archive after each

iteration Sit+1)«
@ Fixed-sized archives versus Generate(S(t). A(t));
unlimited sizes t=1t41;

@ Local versus global guides until stopping condition is true;

Engelbrecht (University of Pretoria) Particle Swarm Optimization

A(t + 1) « Update(S(t). A(1));
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@ Dynamically changing constraints, in
o static and dynamic environments
o single- and multi-objectives

@ Tracking multiple optima in dynamic environments
@ Dynamic multi-objective optimization problems

Particle Swarm Optimization GECCO'15, 11/7/2015 8927107
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