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1. EXTENDED ABSTRACT
The promise of Evolutionary Robotics (ER) [7] to com-

pletely automatize the design of robot controllers and/or
morphologies is an idea with great appeal not only to re-
searchers, but also to students. Recently [1], we introduced
the RoboGenTM open-source software and hardware plat-
form for Evolutionary Robotics1, and described its success as
an educational tool in a masters level course at EPFL. There
it was shown that RoboGen could provide students with
valuable hands on experience with Evolutionary Robotics,
neural networks, physical simulation, 3D printing, mechan-
ical assembly, and embedded processing.

However, when attempting to grab and hold student in-
terest, the large requirements of time and computational re-
sources required to achieve good results in ER systems may
be discouraging. In fact, after two years of using RoboGen
for class projects, the biggest student complaints all con-
cerned the slow speed of evolutionary progress. In order to
overcome these limitations, we present here a simple and ef-
fective technique for rapidly evolving robot gaits in a manner
of seconds or minutes rather than hours or days. Moreover,
through a previously executed, iterative procedure of tun-
ing the simulator and the embedded processing of RoboGen
robots, many of these evolved gaits can transfer to real
robots with reasonable fidelity without requiring hardware-
in-the-loop fitness evaluations [4,12] or online simulator up-
dates [2].

While there are several existing techniques for evolving
natural looking and successful robot gaits [3, 6, 10], most

1http://www.robogen.org
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Figure 1: One of the RoboGen robots experimented
with in this work. Left: In simulation. Right: In
reality.

existing approaches require upwards of hundreds of thou-
sands of fitness evaluations to achieve good results. Even
assuming a modest 1s of compute time per fitness evalua-
tion and a reasonable degree of parallelism achievable on a
modern personal computer (e.g. 8 concurrent evaluations)
most methods may still require many hours to see successful
gaits emerge.

Here, we forgo the use of the aforementioned algorithms
and the use of complex neural network architectures, and
instead rely on two basic techniques: Compositional Pat-
tern Producing Network (CPPN) encodings [9] and simple
parameterized oscillator neurons. More specifically, each
motor of a given robot is driven by an oscillator neuron
parametrized by three values: period, amplitude, and phase
offset from a central clock. The genome of each controller
is a CPPN, which is queried with the physical position of
each motor relative to the “core component” of the robot2

and produces the three parameters of each oscillator (each
on a dedicated CPPN output unit). The current version of
RoboGen enforces robots to be in an initially planar con-
figuration, and therefore only a two dimensional vector is
required to represent the position of each motor. There-
fore the CPPNs have three input units (two for the motor
position and one for the bias) and three output units.

By endowing robots with oscillator neurons they are able
to produce rhythmic gait patterns for free. By encoding the
parameters of the oscillator neurons with CPPNs, evolution
is able to capitalize on the geometric regularities present
in most robot morphologies in order to produce success-
ful gaits. Here we evolve CPPNs for a simple maximum

2The“core component” in RoboGen robots is the component
that houses the onboard microcontroller and battery. It is
the one required element of a RoboGen robot.
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Figure 2: Comparison between evolving with stan-
dard HyperNEAT, HyperNEAT for oscillator neu-
rons, and directly encoded oscillator neurons.

displacement task using the RoboGen simulator and Hy-
perNEAT [8]3. The controllers evolved using a population
size of 100 for 20 generations yielding 2000 fitness evalua-
tions, which can run in a few minutes time. As compared
to using either a simple direct encoding of oscillator pa-
rameters or evolving standard neural networks with Hyper-
NEAT, the ultra rapid approach used here is able to find
significantly more fit solutions (see Fig. 2) for a variety
of robots (such as the one depicted in Fig. 1). Addition-
ally several of the gaits evolved using this technique were
transfered onto a real robot (see 1 bottom) and showed a
strong correspondence between simulated and evolved be-
haviors. Videos of this robot behavior both in simulation
and reality can be seen at http://youtu.be/cIUlCMEtly0
and http://youtu.be/gaibm3RazXA, respectively.

While the robot behaviors evolved here clearly lack the
complexity of some state-of-the-art ER results, and will not
be directly usable in more complex tasks requiring reactive
control or memory, the ability to rapidly evolve successful
robot gaits will be instrumental in attracting students, hob-
byists and others to Evolutionary Robotics. This ability will
also be crucial if one wants to bring Evolutionary Robotics
to the web [5] to attract a wider and more diverse audience
to the field, and to incorporate real-time user feedback in
the optimization process [11]. Work towards building a web
based platform for RoboGen is currently underway.

Additionally, it is possible to extend the neural system to
allow for more complex control by allowing oscillator neu-
rons to be modulated by sensors or other neurons. In do-
ing so, one can first rapidly evolve an open loop controller
as is done here, so that users see real-time progress, and
then gradually increase the controller sophistication for more
complex tasks. Future work will extend the current system
in this direction.

3Using a modified version of Peter Chervenski’s open-source
MultiNEAT implementation: http://multineat.com/.
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