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ABSTRACT
The Multi-mode Resource Constrained Project Scheduling
Problem (MRCPSP) is composed of two interacting sub-
problems which are the mode assignment problem and the
scheduling problem. Solving these sub-problems in isola-
tion pose a challenge due to the interaction that exists be-
tween them. We present a unified approach for applying a
combination of algorithms to the sub-problems of the MR-
CPSP. The use of Genetic algorithms and Estimation of
Distribution Algorithms aims to exploit efficiently and syn-
chronously the distinct search spaces presented by the two
sub-problems.

Categories and Subject Descriptors
I.6.5 [SIMULATION AND MODELING]: Model De-
velopment—Modeling methodologies; I.2.8 [ARTIFICIAL
INTELLIGENCE]: Problem Solving, Control Methods,
and Search—Scheduling, Heuristic methods

Keywords
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1. INTRODUCTION
The Multi-mode Resource Constrained Project Schedul-

ing Problem (MRCPSP) entails allocating a mode of exe-
cution, start and finish times to all activities of a project.
This problem combines mode assignment with scheduling.
The most common objective of this problem is to minimise
the total project duration (makespan). Genetic Algorithms
(GAs) have been very widely applied to the MRCPSP and
the experimental review by Van Peteghem and Vanhoucke in
[4] shows that GA produces the best results for larger data
instances of the MRCPSP. Estimation of Distribution Algo-
rithms (EDAs) on the other hand have much fewer applica-
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tions. This may be attributed to the fact that the activity
ordering aspect of the MRCPSP is naturally represented as
permutations. Permutation search spaces are more complex
to model in EDAs [1]. In this work, we respectively apply
EDA and GA to the mode assignment and activity order-
ing sub-problems of the MRCPSP. We explain how these
algorithms are combined to solve the MRCPSP.

2. PROBLEM DEFINITION
In the MRCPSP, there are a set of activities acti, i ∈ [1, n],

a set of renewable resources A and a set of non-renewable
resources B. We denote by αmaxr, the per period availabil-
ity of the renewable resource r, r ∈ [1, |A|] and by βmaxl

the overall availability of the non-renewable resource l, l ∈
[1, |B|]. Activities act1 and actn are dummy activities that
respectively represent the start and end of a project. Every
activity acti with the exception of act1 has a set of prede-
cessor(s) Predi. We denote as predi,j its j-th predecessor,
j ∈ [1, |Predi|]. Finally, acti can be performed in mode
modei,k, k ∈ [1,mi], where mi is the number of possible
modes for acti. Each mode modei,k is composed of an in-
teger vector of renewable resources (αi,k,1, ..., αi,k,|A|), an
integer vector of non-renewable resources (βi,k,1, ..., βi,k,|B|)
and is associated with an execution time ti,k. The objective
of the MRCPSP is to determine for each activity acti, its
start time st(acti), finish time ft(acti) = st(acti) + ti,k and
the mode modei,k in which it is executed, so that the finish
time of the last activity ft(actn) is minimised, subject to:

n∑
acta

βa,ka,l ≤ βmaxl∀ l, l ∈ [1, |B|] (1)

∀ acti

ft(predi,j) ≤ st(acti) ∀ predi,j ∈ Predi (2)

Let Ci be the set of activities that clash with acti such that
Ci = {a ∈ A : (ft(acta) > st(acti) ∧ st(acta) < ft(acti))}, then

αi,k,r +
∑

a∈Ci
αa,ka,r ≤ αmaxr∀r, r ∈ [1, |A|] (3)

We describe the non-renewable resource, precedence and
renewable resource constraints in (1), (2) and (3) respec-
tively. Note that in (1) and (3), βa,ka,l is the amount of
non-renewable resource l required by acti performed in its
allocated mode ka while αa,ka,r is the amount of renewable
resource r required by acti performed in its allocated mode
ka.
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3. PROPOSED METHOD
We divide the MRCPSP into two sub-problems: the“mode

assignment”and“activity ordering”problems as recommended
in [4]. One advantage of dividing the problem this way is
that we are able to use different representations for the sub-
problems. We use the integer representation for the mode
assignment and permutation representation for the activity
ordering sub-problem. This makes it easier for standard ge-
netic operators to be applied. Van Peteghem and Vanhoucke
[4] considers the mode assignment sub-problem as the more
important sub-problem and recommends it as an area for
further research. This is because it determines whether or
not a solution is feasible and contributes significantly to the
overall makespan. For this reason, we concentrate on the
mode assignment aspect of the problem.
The standard GA is not well suited for solving the mode

assignment sub-problem as it is limited in its ability to learn
parameter interactions in the problem. Van Peteghem and
Vanhoucke [3] incorporated a mode improvement local search
method to improve the performance of the GA. EDAs on the
other hand are able to learn the interactions that exists be-
tween the parameters of a problem. We therefore modify
the approach presented in [3] by changing the way modes
are allocated to activities.
The GA presented in [3] is called the bi-population GA

(BPGA). According to the review in [4], the BPGA amongst
other GAs performed best on most of the test problems in
terms of the ability of the algorithm to find solutions with
minimal makespan. The BPGA uses two different popula-
tions of solutions POPL and POPR. Solutions in POPL are
left-justified (i.e the makespan is calculated by scheduling
activities as early as possible based on the ordering of ac-
tivities) while solutions in POPR are right-justified (i.e the
makespan is calculated by scheduling activities as late as
possible). The algorithm begins with POPL and iteratively
alternate between both populations. Solutions produced by
one population are fed into the other. Algorithmic details
of this approach can be found in [3].
In algorithm 1, we specifically describe how new solutions

are produced at each generation after hybridising the GA
from [3] with an EDA. Activity orderings are generated as
suggested in [3] and thus offspring orderings are always fea-
sible. Each solution in POPL consists of an activity ordering
and a mode assignment. The activity ordering of each solu-
tion is selected as one parent p1s while the other parent p2s
is selected using tournament selection. The two solutions
produced by breading those parents are denoted as c1s and
c2s.

3.1 Modeling and Sampling Mode Assignments
The EDA used is the Univariate Marginal Distribution Al-

gorithm which builds a completely new probabilistic model
at each generation [2]. A model is continually sampled for a
whole generation. This will save on the extra effort lost to
the use of local search improvement techniques.
The probabilistic matrix is created from the best sSize

solutions in population P as shown in (Alg. 1, lines 2 - 3).
We create a new mode assignment cm (which can be c1m or
c2m) by sampling MP .
Let µik be the probability of assigning mode k to acti.

Then, µik =

∑sSize
q=1 [modei,k = k]

sSize
(4)

Algorithm 1 Generation of POPR using GA and EDA
mechanisms for the MRCPSP
1: initialise POPR = ∅
2: select best sSize solutions from POPL to form S, where

sSize < |POPL|
3: build probabilistic model Mp from mode assignments of

solutions in S
4: for q = 1 to |POPL| do
5: sample Mp to produce two mode solutions c1m and

c2m
6: define p1s as the activity ordering of the q−th solution

in POPL

7: define p2s as the activity ordering of solution p2 se-
lected from POPL using tournament selection

8: perform crossover on p1s and p2s to produce activity
orderings c1s and c2s

9: perform mode mutation on c1s, c2s and ordering mu-
tation on c1m and c2m

10: combine c1s with c1m and c2s with c2m to produce
c1 and c2

11: evaluate c1 and c2, set c as the best of c1 and c2
12: insert c in POPR

13: end for

4. CONCLUSIONS
This work demonstrates how the MRCPSP may be split

up into two sub-problems so that distinct methods can be
applied to each. This allows algorithms adapted to each
sub-problems to be used in a unified way. In this work, a
GA is used to improve the quality of the activity orderings
while an EDA focuses on generating mode assignments. Fu-
ture work should focus on applying alternative EDAs such
as Population-Based Incremental Learning and multivariate
approaches.
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