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ABSTRACT

We present a novel approach to the study of cognitive abilities by

using evolutionary computation. To this end we use a spatial, devel-

opmental, neuroevolution system presented here for the first time.

We use our system to evolve ANNs to perform simple abstractions

of cognitive tasks such as size perception, counting color identifi-

cation and reading. We define these tasks to explore hypotheses

about the evolution of counting and the the nature of the Stroop ef-

fect. Our results show the versatility of our evolutionary system.

We show that we can evolve it to perform a variety of cognitive

tasks, and also that evolved networks exhibit interference behavior

when dealing with multiple tasks and incongruent data.

Categories and Subject Descriptors

I.2.0 [Artificial Intelligence]: General—cognitive simulation; I.2.6

[Artificial Intelligence]: Learning—connectionism and neural nets
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Evolutionary Algorithm; Developmental EA; Neuroevolution; Cog-

nitive Simulation

1. INTRODUCTION
A major goal of cognitive science research is understanding how

the brain works to create the human mind. To this end researchers

use a variety of methods and tools. These include experiments on

human subjects, the use of neuroimaging to directly observe hu-

man brain activity while performing cognitive tasks, and creation

of computer models to explain cognitive phenomena [2].

In this work we present a new approach to the study of cognitive

phenomena. We employ an Evolutionary Algorithm (EA) on pop-

ulations of randomly generated Artificial Neural Networks (ANNs)

in order to evolve them to perform cognitive tasks without directly

designing them to fit a given theory. This allows us to explore the

specific conditions under which certain phenomena may occur.

In this work we focus on Stroop Effect [4]. It describes the de-

lay identifying the color of a word in the presence of conflicting

information (e.g. it takes longer to identify blue color of the word
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GREEN written in blue than it does if with either BLUE in blue or

XXXX in blue). This effect has been one of the most thoroughly

researched effects in the field of Psychology for decades and no

list of citations can do it justice. Since we just touch on it in this

research we will not attempt to do it justice. A comprehensive, if

somewhat outdated, review of this the research into this effect was

presented by MacLeod [3].

2. THE SYSTEM
We design our evolutionary system with an eye towards nature.

We focus on three important traits which we integrate as design fea-

tures. Our system is ANN based, developmental, and spatial. We

chose neuroevolution because the artificial neuron is an abstraction

of the biological neuron (though the two are by no means identi-

cal). A individual’s gene does not map directly to a specific simple

element in the final network. Rather, it acts as an instruction to be

performed by the neurons in the developing network during its de-

velopment. Every artificial neuron in our system is located in some

point in a virtual space and all actions are location based.

The ANNs in our system consist of three distinct layers: input,

output, and hidden. Each one of the layers exists in its own space

defined by the user. The user defines the number of dimensions

each layer has and the size of each dimension. Our genome is en-

coded as a linear array of genome atoms (or genes). Each gene is a

set of numbers that specify a developmental step. The user controls

the attributes of the ANN and the evolutionary algorithm with run

parameters.

We used single-point crossover that allows genome size to change

by picking crossover location to each parent separately. Mutation

is uniform. When a spot in the genome then either the atom itself is

randomly changed or a small genome segment beginning with the

chosen atom is copied to another random location in the genome.

In our runs below we used a mutation rate of 0.02, and a crossover

rate of 0.8. Our system uses standard tournament selection that we

used with tournament size of 3.

We used a diversity maintenance measure that limits the number

of individuals with similar behavior profiles (for brevity we will

not explain these profiles here). Our diversity maintenance system

allows an individual to be selected only if the number of its neigh-

bors already selected is lower than a 20 (this parameter is tunable

by the user). In the runs below the input grid was of size 4× 5× 5

the output grid was of size 4 × 5 and the hidden network grid was

of size 8× 10× 10. We set the limit on the number of hidden layer

neurons and of network links to 400 and 4000, respectively.

Our system supports multiple encoding schemes. There are sev-

eral different types of actions that a gene can cause. The probability

of a gene encoding a certain action is controlled by the user, who

chooses how much weight to assign to each of the possible gene
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types. Gene types include genes for adding new neurons, genes for

splitting existing neurons, genes connecting neurons with links etc.

The tasks we examine here are classification tasks where the

ANN is expected to tell a number of different classes apart. The

output is 2-dimensional, and each row stands for one of the possi-

ble classes. Decision is made by plurality rule. Our convention is

that the first row stand for red, the second stands for green, the third

stands for blue and the forth is reserved future use.

We see the 3-dimensional input grid as made up of 4 2-dimensional

grids: 3 colored “visual field” boards (red, green and blue) and 1

“task definition” grid which is used to differentiate between dif-

ferent tasks. In order to evaluate evolved individuals we tested

their performance on test-cases after the runs, and return the rate in

which they return correct outputs (we call this a benchmark score

and we normalize it to the [0,1000] range).

Our first task is the Color Perception task (or CP). In the CP task

we expect the forth grid of the input to contain all -1. Our second

task is the Color Reading task (or CR). In this task the ANNs are

required to read a colored symbol in the input. In the CR task we

expect the forth grid of the input to contain all 1. Notice that a

symbol can be written in the color it stands for. The kind of inputs

where the symbol and color match are called Congruent and kind

of inputs where they do not are called Incongruent.

3. EXPERIMENTS
We present three experiments. In each experiment we ran the

same simulation 50 times in order to get sufficient data. Each 50

simulation experiment set took at most about a day.

In Experiment 1 we tested our system on the CP task. We used

a population of 300 individuals, running for 400 generations. We

calculated the fitness score and the benchmark score with 4 sym-

bols in all 3 base colors (a total of 12 inputs). In this experiment

we tested the best individual every 100 generations and not just at

the end. After 100 generations the best benchmark score in 48 out

of the 50 simulations was already a perfect 1000. Though further

analysis of this run may seem redundant at this point by turning to

another datum we find that the runs keep improving in a meaning-

ful way. We wish to focus on is the margin by which the correct

answer wins over the incorrect answer that is second in the plurality

vote. After 100 generations the mean value of this margin is 2.1375

(SD 0.5268), after 200 generations it is 4.1861 (SD 0.8335), after

300 generations it is 4.416 (SD 0.7512) and after 400 generations

it is 4.5193 (SD 0.7094).

In Experiment 2 we tested our system on the CR task. We used

a population of 500 individuals, running for 750 generations. We

calculated the fitness score and the benchmark score with 3 sym-

bols in that stand for the three base colors in the 3 base colors as

well as the 4 possible combination colors (a total of 21 inputs).

In this experiment we tested the best individual every 250 genera-

tions. After 250 generations the best solution in a simulation had a

mean benchmark score of 850.4732 (SD 98.0602). After 500 gen-

erations the best solution in a simulation had a mean benchmark

score of 877.1404 (SD 97.1681). After 750 generations the best

solution in a simulation had a mean benchmark score of 885.712

(SD 97.5919591). We look again at the margin by which the cor-

rect answer wins the plurality vote. After 250 generations the mean

value of this margin is 2.3164 (SD 0.4376), after 500 generations

it is 2.6382 (SD 0.4761) and after 750 generations it is 2.7482 (SD

0.5987).

In Experiment 3 we try to create an effect analogous to the Stroop

effect. We focus on a striking characteristics of the Stroop effect,

namely the difference between and Congruent (e.g. the word RED

in red) and Incongruent (e.g. the word RED written in blue color)

trials. Typically, congruent trials are easier for people, and they

perform them more quickly and (when manipulated to answer fast)

more accurately. We used a population of 300 individuals, running

for 300 generations. We calculated the fitness score and the bench-

mark score using the 33 test inputs from the previous experiments.

After the runs terminated, we checked the best individuals on con-

gruent and incongruent inputs separately in both tasks.

Looking at congruent inputs the best solution in a simulation had

a mean benchmark score of 853.331 (SD 201.7724) in the CP task.

Looking at incongruent inputs the best solution in a simulation had

a mean benchmark score of 699.9968 (SD 191.4858) in the CP task.

The difference is significant (p < 0.001). Looking at congruent in-

puts the best solution in a simulation had a mean benchmark score

of 826.6642 (SD 223.5097) in the CR task. Looking at incongru-

ent inputs the best solution in a simulation had a mean benchmark

score of 453.3306 (SD 133.4997) in the CR task. The difference is

significant (p < 10
−15).

4. CONCLUSIONS
We presented a new developmental spatial neuroevolution sys-

tem for cognitive science research. Our system employs various

measures to make developmental process more like natural devel-

opment. We tested our system in the domains of Color Perception

and Color Reading. We explored the Stroop effect, and we success-

fully replicated, in our evolved networks, the phenomenon interfer-

ence due to conflict between information from two aspects. We

also succeeded in establishing that this conflict can be directional.

There is still some work required to create a better approximation

of the Stroop effect, and we expect that exploring the conditions

that will lead to such an approximation may give us better insight

into the way such an effect comes to be.

We plan to expand our system further and try to use it to find

a way of evolving a pattern more similar to the Stroop effect as it

manifests in humans. Later, following work by Dadon et. al [1] we

plan to test in more depth the effect of short exposure times on the

Stroop effect.

Our system itself is still a work in progress, and we want to ex-

pand it and use it to look into some new areas and add more func-

tionality in order to explore more complex behavior. An obvious

extension would be to allow for the evolution of recurrent networks

for domains with multiple where the network must react according

to new input as well as its own output (e.g. navigation tasks).
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