Malware Obfuscation through Evolutionary Packers

Marco Gaudesi
Politecnico di Torino
marco.gaudesi@polito.it

Ernesto Sanchez
Politecnico di Torino

Andrea Marcelli
Politecnico di Torino

andrea.marcelli@studenti.polito.it

Giovanni Squillero
Politecnico di Torino

Alberto Tonda
INRA UMR 782, MALICES

ernesto.sanchez@polito.it giovanni.squillero@polito.it alberto.tonda@grignon.inra.fr

ABSTRACT

A malicious botnet is a collection of compromised hosts co-
ordinated by an external entity. The malicious software, or
malware, that infect the systems are its basic units and they
are responsible for its global behavior. Anti Virus software
and Intrusion Detection Systems detect botnets by analyz-
ing network and files, looking for signature and known be-
havioral patterns. Thus, the malware hiding capability is
a crucial aspect. This paper describes a new obfuscation
mechanism based on evolutionary algorithms: an evolution-
ary core is embedded in the malware to generate a different,
optimized hiding strategy for every single infection. Such
always-changing, hard-to-detect malware can be used by se-
curity industries to stress the analysis methodologies and to
test the ability to react to malware mutations. This research
is the first step in a more ambitious research project, where a
whole botnet, composed of different malware and Anti Virus
software, is analyzed as a prey-predator ecosystem.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—invasive software; D.3.4
[Programming Languages]|: Processors—code generation,
optimization

Keywords

Malware, Evolutionary Packer, Computational Intelligence

1. INTRODUCTION

The analysis of the malware in the last 20 years shows a
clear growth in the complexity of the hiding mechanisms.
Nowadays, in order to evade signature-based detection, sev-
eral malware authors exploit packers to change the binary
file without affecting its semantics [2]. A packer is usually
a standalone software that encodes and compresses an exe-
cutable program, common encoding techniques include Cae-
sar chiper, XOR and Base6). Initially, packers were used to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’15 July 11-15, 2015, Madrid, Spain

(© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3488-4/15/07.

DOL: http://dx.doi.org/10.1145/2739482.2764940

757

mitigate reverse engineering and protect intellectual prop-
erty (e.g. ASPack', Molebox® and Themida?), but eventu-
ally they have been introduced into the world of malicious
software [4].

While the underlying idea is general and it may be ap-
plied to different scenarios and operating systems, including
mobile OS, this abstract tackles packers for the portable ex-
ecutable (PE) used in Microsoft Windows operating systems
since Windows NT 3.1. The PE format essentially defines
the data structure containing the information necessary to
manage executable code [1].

Usually, packers perform complex operations to modify a
PE structure, including section reordering and header alter-
ations. The entry point is set to an unpacking stub that,
at run time, restores the original data in memory. In some
cases the sensitive code is partially unpacked in a buffer, so
that only a small portion of the protected code is exposed
to the analysis at any given time. The stub routine is also
responsible of resolving the import table of the original exe-
cutable and of relocating memory address according to the
base relocation address. Finally, it returns the control to the
original entry point of the program [3].

Anti Virus (AV) software analyzes portions of code inside
a PE both statically and dynamically: in the static analysis,
file sections are checked against a database of signatures of
known malicious software; in the dynamic analysis, the pro-
gram operations are tracked while a heuristic mechanism
tries to recognize behavioral patterns typical of malware.

The hiding mechanism proposed in this paper is based
on evolutionary computation and embeds an evolutionary
core directly in the malware. New candidate packers will be
generated through genetic operators and checked internally
to assess their efficacy. Such approach differentiates from the
well-known Polimorphic and Metamorphic malware [5]: the
set of possible obfuscation schemes are so vast that cannot
be precomputed; moreover, the evolutionary core could be
able to learn and to be trained.

2. EVOLUTIONARY PACKER

In the proposed approach, it is the malware responsibility
to create a new hiding mechanism strong enough to ensure
the survival of future generations. The core for creating
the encoding routine is a Turing-complete evolutionary al-
gorithm able to generate completely new algorithms.

"http:/ /www.aspack.com/
http://www.molebox.com/
3http://www.oreans.com/themida.php

http://dx.doi.org/10.1145/2739482.2764940
http://www.aspack.com/
http://www.molebox.com/
http://www.oreans.com/themida.php

In more details, both the encoding and the decoding func-
tions are randomly-generated, variable-length sequence of
x86 assembler instructions. Instructions are directly han-
dled as binary opcodes, so there is no need of a compilation
and linking phases. The generation process requires to find
reversible assembly instructions (e.g., INC, ROR, BSWAP,
XCHG) and small blocks of code that have a complementary
one. Since even few bytes may represent a signature, it is
also necessary to partially shuffle the instructions, although
this has the drawback of potentially disrupting the encod-
ing/decoding routines. It should be noted that, while the
encoding and the decoding functions are created in parallel,
only the latter is included in the generated malware.

In order to efficiently evaluate a candidate packer, the en-
coding and the decoding routines are applied subsequently
to randomly generated sequence of bytes: if the final result is
different from the original sequence, the candidate is simply
discarded. Then, the packer is used to obfuscate the mal-
ware and the Jaccard Similarity is evaluated to assess can-
didate fitness values. Aiming to achieve invisibility through
diversity, the process is iterated for a given number of gener-
ations, or until the Jaccard Index distribution is lower than
an experimentally-defined threshold. Figure 2 shows an ex-
ample of the Jaccard distribution of a malware variant that
maximise the dissimilarity from the original code.

o _ -
<

o |
®

Frequency
20
I

i .

T T T T T 1
0.0 0.2 04 0.6 0.8 1.0

Jaccard

Figure 1: Histogram of the Jacquard Index distri-
bution of a Malware Sample.

As the decoding routine is embedded in the PE, once the
new malware is executed, it will restore each part of the pro-
gram in memory ready for execution. Finally, the same code
generation engine is used at run-time to mitigate heuristic-
based research on malicious pattern.

3. EXPERIMENTAL EVALUATION

Preliminary experiments have been performed on a Win-
dows based Operating System, with an Intel x86 architec-
ture. The choice is dictated by the huge availability of AV
software for the platform.

As a testbed, two well-known online malware scanner have
been used: they make use of tens of different AV prod-
ucts, allowing a direct and simple comparison of the results.
Moreover, in order to confirm the outcome precision, the five
most effective AV software have been installed on different
hosts.

The executable program to be tested executes a well-
known TCP bind shellcode. The high initial detection rate
and an executable behavior susceptible to heuristic evalua-
tion, made this program well suited for the experiment. Ta-
ble 1 summarizes the number of AV programs that detected
the threat over the total. The item subjected to evalua-

758

tion is an automatically generated malware variant in three
different stages of the evolution of the packing mechanism.
Other experiments show comparable distributions.

Table 1: Detection rate of the evolutionary variants
of a packed malware.

Uncoded | Evo1 | Evo 2 | Evo 3
Virus
Total 35/57 2/57 2/57 1/57
Metascan
Online 25/44 4/44 3/44 1/44

More than half of the AV programs do detect the uncoded
version of the executable as a threat. However, although
Evo 1 uses a quite simple encrypting technique, the detec-
tion rate is unbelievably low: most of the AV software does
not employ a proper heuristic engine and packing an exe-
cutable file makes the static signature-based search to fail,
as it requires a specific signature for each packing routine.
Evo 2 implements a more sophisticated encoding mechanism
with shuffled instructions; finally Fvo & represents a fairly
complex version of packed malware that makes use of sev-
eral computational intensive operations that aim to confuse
heuristic engines. The result is quite scary: among all the
tested scanning products, experiments denote the effective-
ness of only one heuristic engine.

4. CONCLUSIONS

A malware program able to evolve its own packer, cre-
ating a brand new encoding routine in each infection, may
still represent a challenge for the security community. Ex-
perimental results demonstrated that even though the static
signature-based analysis is the most effective one in detect-
ing threats, it could not be efficient with such an evolution-
ary mechanism. We strongly believe that the future of the
malware research must focus on the identification of behav-
ioral patterns.

While this research is far from being concluded, future
work would also need to include anti-debug, anti-disassembly
and other techniques that until now have only been used in
few static methods [6].

S. REFERENCES

[1] Goppit. Portable executable file format - a reverse
engineer view. CodeBreakers Magazine, Jan 2006.

[2] F. Guo, P. Ferrie, and T. Chiueh. A study of the packer
problem and its solutions. pages 98115, 2008.

[3] S. Michael and H. Andrew. Practical Malware Analysis

- The HandsOn Guide to Dissecting Malicious

Software. No Starch Press, 2012.

K. A. Roundy and B. P. Miller. Binary-code

obfuscations in prevalent packer tools. ACM Computing

Surveys (CSUR), 46(1):4, 2013.

[5] P. Szor and P. Ferrie. Hunting for metamorphic. In
Virus Bulletin Conference, 2001.

[6] M. V. Yason. The art of unpacking. BlackHat, Feb 2007.

(4]

	Introduction
	Evolutionary Packer
	Experimental Evaluation
	Conclusions
	References

