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ABSTRACT
A portfolio of parameter-less evolutionary algorithms called
Parameter-less Evolutionary Portfolio is proposed. This
portfolio implements a heuristic that performs adaptive se-
lection of parameter-less evolutionary algorithms in accor-
dance with performance criteria that are measured during
running time. Initial experiments show that the parame-
ter-less portfolio can solve various classes of problems with-
out the need for any prior parameter setting technique and
with an increase in computational effort that can be consid-
ered acceptable.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

Keywords
Algorithm Portfolios, Black-box Optimization

1. INTRODUCTION
The key idea of algorithm portfolios is to devise new heuris-

tics that combine known individual algorithms in ways that
allow to tackle broad classes of problems with the most suit-
able technique. In recent years, the development of algo-
rithm portfolios has gained significant traction in many fields
of search and optimization techniques. This progress can be
explained in part by the vast and increasing number of var-
ious types of algorithms that are currently available to be
aggregated into portfolios and by the mounting pressure to
lessen the need of (costly) specialized knowledge to operate
those same individual algorithms.

The portfolio approach to optimization explicitly trades
efficiency for applicability and it is naturally related to the
black-box optimization paradigm and to the design of pa-
rameter-less algorithms in particular.

In this paper we present a portfolio of parameter-less evo-
lutionary algorithms (P-EAs) called the Parameter-less Evo-
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lutionary Portfolio (P-EP). This portfolio performs adaptive
selection of P-EAs as suggested in [5] using a heuristic in-
spired by the parameter-less genetic algorithm [4].

2. PARAMETER-LESS EVOLUTIONARY
PORTFOLIO

The Parameter-less Evolutionary Portfolio implements a
heuristic for adaptive selection of P-EAs first proposed by
Lobo and Lima in [5]. We direct the interested reader to
their paper for a more general and detailed description of
the heuristic itself.

Initial experiments were done with a portfolio consisting of
three parameter-less Estimation of Distribution Algorithms
(EDAs): Parameter-less Univariate Marginal Distribution
Algorithm (P-UMDA) [6], Parameter-less Extended Com-
pact Genetic Algorithm (P-ECGA) [3], and Parameter-less
Hierarchical Bayesian Optimization Algorithm (P-HBOA)
[8]. This three P-EAs can be informally, but quantifiably, or-
dered by their increasing“complexity”: P-UMDA, P-ECGA,
and P-HBOA, with the more complex ones capable of tack-
ling more difficult problems at the expense of using an in-
creased cost in model building. Following this order, P-EP
alternates between each algorithm on a continuous loop, giv-
ing the same amount of CPU time to all three P-EAs in each
iteration. Starting with a chosen initial time, T0, the allowed
CPU time is updated at each loop iteration to at least match
the maximum time spent in one generation by any of the P-
EAs. At the same time, because they are able to advance
further in the search due to faster model building, simpler
P-EAs are eliminated from the loop as soon as their current
best average fitness is lower than the best average fitness of
a more complex P-EA. The use of parameter-less algorithms
allows P-EP to work as a black-box algorithm, without the
need for any prior parameter settings.

3. EXPERIMENTAL RESULTS
The results of our initial experiments with P-EP are pre-

sented in Table 1 where all shown values are averaged over
30 independent runs of P-EP. Three well known problems
with increasing “difficulty” (see, for instance, [7]) were used:
Onemax, Concatenated Trap-5 (TRAP-5), and Hierarchical
Trap One (H-TRAP). The dimensions (n) of the problems
are, respectively, 500, 150, and 243. These dimensions were
chosen such that the problems at hand can be considered as
good representatives of significant sets of theoretical prob-
lems commonly used to gauge the behaviour of EAs.
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P-EA P-UMDA P-ECGA P-HBOA P-EP

Problem Best Fit. Calls Time Best Fit. Calls Time Best Fit. Calls Time Best Fit. Calls Time

ONEMAX
500

18 1
293

0.2 0.7
291

0.2 3
500

19 5
(n = 500) (98.1%) (18.7%) (0.9%) (13.7%) (0.9%) (67.6%) (100.0%) (100.0%)

TRAP-5
121

4786 176
150

880 2241
135

1084 1905
150

6750 4322
(n = 150) (70.9%) (4.1%) (13.0%) (51.9%) (16.1%) (44.0%) (100.0%) (100.0%)

H-TRAP
1191

7455 414
1191

1890 15903
1215

3110 14466
1215

12455 30783
(n = 243) (59.9%) (1.3%) (15.2%) (51.7%) (24.9%) (47.0%) (100.0%) (100.0%)

Table 1: Results for P-EP initial experiments. ’Best’ denotes the fitness of the best individual found by each
P-EA. The number of fitness calls is measured in thousands (×1000). The CPU time is rounded to seconds.

P-EP was run until the global optimum was found. P-EP
performed as expected, being able to eventually reach the
global optimum with the most adequate P-EA (see the re-
sults highlighted in blue in Table 1). In the TRAP-5 and
H-TRAP problems the time spent running the adequate P-
EA and running the sub-optimal P-EAs is about the same.
This is an acceptable increase in computational effort if we
consider that P-EP was able to automatically select the best
P-EA and find the optimal solution without any prior knowl-
edge of the given problem. On the other hand, P-EP was
able to solve the ONEMAX problem using exclusively the
P-UMDA in 23 of the 30 runs performed, but the time spent
by the P-ECGA and the P-HBOA in the remaining 7 runs
was sufficient to significantly inflate the corresponding re-
sults. However, had the initial time allowed to each P-EA
been slightly higher (we set T0 = 1s in the reported exper-
iments), the exclusive use of the P-UMDA would become
more prevalent and this inflation would vanish. We are cur-
rently working in the design of an empirical rule that adapts
T0 relative to the dimension of the problem at hand.

4. CONCLUSIONS
The initial experiments presented in this paper show that

P-EP can solve various classes of problems without the need
for any prior parameter setting technique and with an in-
crease in computational effort that can be considered ac-
ceptable. Naturally, there are improvements that can be
made, such as the adaptation of the initial time allowed to
each P-EA, relative to the dimension of the problem at hand.
More importantly, the portfolio P-EAs can easily be changed
to integrate other algorithms such as hillclimbers, the self-
adaptive (1 + (λ, λ)) [1] and a parameter-less version of the
Linkage Tree Genetic Algorithm [9, 10] which will enhance
significantly the applicability and the effectiveness

Finally, we could not end this paper without due reference
to the recently proposed Parameter-less Population Pyramid
(P3) [2] which delivered excellent results in a black-box op-
timization context. The P3 algorithm “[...] unlike other pa-
rameter-less techniques [...] appears to be at least a constant
factor improvement over comparable, optimally configured,
optimization methods.” [2]. This improvement directly chal-
lenges the trade-off between efficiency and applicability that
is (was) one of the defining characteristics of black-box op-
timization techniques. We are currently studying what new
possibilities the P3 method opens to our research with P-EP.
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