
A Parallel MOEA/D Generating Solutions in
Minimum Overlapped Update Ranges of Solutions

Hiroyuki Sato
The University of

Electro-Communications
1-5-1 Chofugaoka,

Chofu,Tokyo, 182-8585 Japan
sato@hc.uec.ac.jp

Minami Miyakawa
The University of

Electro-Communications
1-5-1 Chofugaoka,

Chofu,Tokyo, 182-8585 Japan
miyakawa@hs.hc.uec.ac.jp

Elizabeth Pérez-Cortés
Universidad Autónoma
Metropolitana Iztapalapa

San Rafael Atlixco No. 186,
Col. Vicentina, 09340, México

D.F., MEXICO
pece@xanum.uam.mx

ABSTRACT
This paper proposes a parallel MOEA/D which assigns the compu-
tational resources to generate solutions in the minimum overlapped
update ranges of solutions. The search performance is verifie on
DTLZ2 problem and a car design optimization using TORCS.

Categories and Subject Descriptors
I.2.8 [Artificia Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic methods
Keywords
multi-objective optimization, MOEA/D, parallelization

1. INTRODUCTION
Multi-objective EAs (MOEAs) have been intensively studied and

successfully applied for a number of real-world multi-objective op-
timization problems so far. Especially in engineering optimization
problems, complicated simulations are needed to evaluate solu-
tions, and it is often time-consuming. To evolve solutions, MOEAs
generally need a huge number of solution evaluations. For solving
problems involving time-consuming solution evaluations, we need
to optimize solutions with a small number of solution evaluations
or efficientl evaluate the generated solutions in parallel.
In this work, we focus on representative MOEA/D [1] and pro-

pose a method to efficientl evaluate solutions in parallel. The
proposed parallel MOEA/D assigns the computational resources to
generate solutions in the minimum overlapped update ranges of so-
lutions. Also, the proposed parallel MOEA/D uses a tournament
selection based on the scalarizing function value to strengthen the
selection pressure of parents.

2. SERIAL MOEA/D
In the conventional serial MOEA/D [1], a multi-objective prob-

lem is solved by optimizing a number of single-objective prob-
lems define by scalarizing functions g using uniformly distributed
weight vectors λi (i = 1, 2, . . . , N). Since one solution is as-
signed to each weight index i, the population size becomes N .
Each weight index i has T -nearest neighbor indices Bi = {i1, i2,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi or commercial advantage and that copies bear this notice and the full citation
on the firs page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’15 July 11-15, 2015, Madrid, Spain
c⃝ 2015 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-3488-4/15/07.
DOI: http://dx.doi.org/10.1145/2739482.2764889

Algorithm 1 Find Focus Index with the Minimum Overlap of Neighbors
Output: Focused index Fidx to select parents
Note: o = (o1, o2, . . . , oN ) is overlap value vector, so = (so1, so2, . . . ,

soN ) is the vector with the sum of overlaps, and c = (c1, c2, . . . , cN )
is counter vector to be selected as the focused index.

1: o = (o1, o2, . . . , oN )← (0, 0, . . . , 0)
2: so = (so1, so2, . . . , soN )← (0, 0, . . . , 0)
3: for all i ∈ {1, 2, . . . , NCPU} do
4: if CPUi is in use for a solution evaluation then
5: j ← Focused index of CPUi
6: for all k ∈ Bj do
7: ok ← ok + 1
8: end for
9: end if
10: end for
11: for all i ∈ {1, 2, . . . , N} do
12: for all k ∈ Bi do
13: soi ← soi + ok

14: end for
15: end for
16: C1 ← Find indices with the minimum so from {1, 2, . . . N}
17: C2 ← Find indices with the minimum counter c from C1
18: Fidx ← Find the minimum index from C2
19: cFidx ← cFidx + 1
20: return Fidx

. . . , iT }, and these indices become the selection range of parents
and the update range of solutions for weight index i.
To generate one offspring, MOEA/D focuses on a weight index

(focused index), selects parents from neighbors of the focused in-
dex, generates offspring, and updates solutions in neighbors of the
focused index by the generated offspring. This process is repeated
during the solutions search. Therefore, a good offspring showing
better g than current solutions can become a parent immediately af-
ter it is generated. NSGA based algorithms do not have this mech-
anism, it contributes to enhancing the solution search of MOEA/D
in several problems because good solutions are actively utilized
as parents. To efficientl parallelize the evaluation of solutions in
MOEA/D, it is important to maintain this advantage of MOEA/D.

3. PROPOSED PARALLEL MOEA/D
We propose a parallel MOEA/D to effectively parallelize the

evaluation of solutions. When we have NCPU CPUs, the proposed
algorithm focusesNCPU different weight indices with the minimum
overlap of neighbors, generates and evaluates offspring in parallel.

3.1 MinimumOverlap Focused Index Selection
The conventional serial MOEA/D sequentially changes the fo-

cused index in the order of 1, 2, . . . , N . If the focused index is
sequentially changed also in the parallel MOEA/D, several focused
indices having overlapped neighbors (update range of solutions) are
selected for a parallel evaluation of solutions. In this case, if good

775



Simple Parallel-RS
Proposed Parallel-RS
Proposed Parallel-gTS

H
yp
er
vo
lu
m
e

Parallel degree NCPU

Serial MOEA/D

0 10 20 30

0.37

0.38

0.39

0.4

Simple Parallel-RS
Proposed Parallel-RS
Proposed Parallel-gTS

H
yp
er
vo
lu
m
e

Parallel degree NCPU

Serial MOEA/D

0 10 20 30

0.62

0.64

0.66

0.68

Simple Parallel-RS
Proposed Parallel-RS
Proposed Parallel-gTS

H
yp
er
vo
lu
m
e

Parallel degree NCPU

Serial MOEA/D

0 10 20 30

0.92

0.94

0.96

0.98
Initial population
Simple Parallel-RS
Proposed Parallel-RS
Proposed Parallel-gTS

Time [seconds]

F
u

e
l 

c
o

n
su

m
p

ti
o

n
 [

li
te

rs
]

500 1000 1500 2000

2

4

6

8

(a)m = 2 objectives (b)m = 3 objectives (c)m = 4 objectives
Figure 1: Results ofHV by varying the parallel degreeNCPU on DTLZ2 problems Figure 2: Obtained sets of car designs

Table 1: Three algorithms
Focused index selection Parent selection

Simple Parallel-RS Sequential [1] Random [1]
Proposed Parallel-RS Minimum Overlap Random [1]
Proposed Parallel-gTS Minimum Overlap g-Tournament

offspring are obtained around each focused index, these offspring
cannot be utilized as parents at the parallel offspring generation.
Thus, in the parallel evaluation of solutions, the sequential selection
of the focused index cannot take the aforementioned advantage of
MOEA/D. To avoid this problem, the proposed parallel MOEA/D
selects focused indices with the minimum overlap of neighbors.
Algorithm 1 is used to fin such indices.

3.2 Two Options to Select Parents
After a focused index is determined, the conventional MOEA/D

randomly selects two parents from neighbors of the focused index
[1]. To improve the selection pressure for the search direction given
by the weight vector of the focused index, we use the g-tournament
selection as another option to select parents. In this method, firs
two candidate solutions are randomly chosen from the neighbors
of the focused index. Then, the scalarizing function values g of
the two solutions for the weight vector of the focused index are
compared, and the solution showing better g becomes a parent. The
other parent is selected in the same way.

4. RESULTS AND DISCUSSION
In this work, we compare the three algorithms shown in Table 1.

4.1 Results on DTLZ2 Function Optimization
First we use DTLZ2 problems with m = {2, 3, 4} objectives

and n = 30 variables. DTLZ2 is a function optimization problem
and each solution evaluation is not time-consuming. The purpose to
use DTLZ2 is only to verify the search performances of the paral-
lel MOEA/Ds. The population size is set to N = {200, 210, 455}
for m = {2, 3, 4} objectives, respectively. The neighbors’ size
is set to T = 20. To generate offspring, SBX (ηc = 20 and the
ratio 0.8) and PBM (ηm = 20 and the ratio 1/n) are used. The
termination criterion is set to 50N solution evaluations. We use
the Hypervolume (HV ) with the reference point r = (1.1, . . .
, 1.1) as the metric. The plotted values of HV are the average of
300 independent runs. As usual, higher HV values denote bet-
ter performance. In this experiment, we use a computer with Intel
Xeon E7-4870 (80 cores) operated by RedHat Enterprise Linux 6.
Fig. 1 shows results of HV obtained by the three algorithms

as the parallel degree NCPU is increased. The error bars indicate
95% confidenc intervals. From the results of the simple paral-
lel MOEA/D, we can see that HV is deteriorated as the parallel
degree NCPU increases. That is, the sequential selection of the fo-
cused index is less efficien in the parallel MOEA/D framework.
In Fig. 1 (a), although values of HV obtained by the two pro-

posed parallel MOEA/Ds are slightly decreased in m = 2 ob-
jective problem, these algorithms maintain high HV even when
the parallel degree NCPU is increased. In Fig. 1 (b) and (c), we
can see that the proposed parallel MOEA/D-RS with parallelization
(NCPU > 1) achieves higher HV than the one without paralleliza-
tion (NCPU = 1). These results reveal that the proposed minimum
overlap selection is an efficien way to select the focused index in
the parallel MOEA/D framework. Next, we compare the two pro-
posed parallel MOEA/Ds-RS and -gTS. Although their values of
HV are close in m = 2 objective problem, HV is increased by
using gTS in problems with m = {3, 4} objectives. These results
reveal that the g-tournament parent selection improves the search
performance of the parallel MOEA/D in problems with largem.

4.2 Results on Car Design Optimization
We also address a racing car design optimization using the car

simulator TORCS [2]. We optimize 22 kinds of design variables in-
cluding the gear ratio, the strength of suspension, etc. to minimize
the total time of a race and the fuel consumption. TORCS generates
a car based on given design variables. The computer drives the car
on Alpine 2 course build in TORCS f ve times, and we obtain the
total time of the race [seconds] and the fuel consumption [liters] as
the evaluation values. In this experiment, we use a computer with
Intel Core i7-3770 (8 threads) operated by Windows 7. We use the
same parameters specifie in the previous section.
Fig. 2 shows sets of non-dominated solutions obtained by the

three algorithms with NCPU = 8. From the result, we can see that
the convergence of solutions obtained by the two proposed parallel
MOEA/Ds in the central area of Pareto front is higher than the sim-
ple parallel one. Also, the proposed parallel MOEA/D-gTS shows
higher convergence in the central area of Pareto front than the one
with RS. This results also show the effectiveness of the proposed
minimum overlap selection and the tournament selection in the par-
allel MOEA/D.

5. CONCLUSIONS
This work proposed an efficien parallel MOEA/D using the min-

imum overlap selection of focused index and the tournament parent
selection based on the scalarizing value g. The experiments using
DTLZ2 function optimization problem and the car design optimiza-
tion using TORCS showed the effectiveness of the minimum over-
lap selection of focused index and the g-tournament selection.
As future work, we will address to design the automatic control

of the parallel degree during the solution search.

6. REFERENCES
[1] Q. Zhang and H. Li, “MOEA/D: A Multi-objective

Evolutionary Algorithm Based on Decomposition," IEEE
Trans. on EC, Vol.11, No. 6, pp.712–731, 2007.

[2] TORCS - The Open Racing Car Simulator, http://torcs.org/.

776




