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ABSTRACT 

This paper proposes parallelization methods of ACO algorithms 
on a multi-core processor aiming at fast execution to find 
acceptable solutions. As an ACO algorithm, we use the cAS 
(cunning Ant System) and test on several sizes of Quadratic 
Assignment Problem (QAP) instances. As the parallelization 
method, we use agent level parallelization in one colony. 
According to the synchronization and exclusive control modes 
among threads, we propose three types of parallel ACO 
algorithms. Among them, that which we call the rough 
asynchronous parallel model shows the most promising results. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search Heuristic Methods 

General Terms 
Algorithms 

Keywords 
Evolutionary Computation; Parallel Computation; Multicore 
processor; Ant Colony Optimization; Quadratic Assignment 
Problems 

1. INTRODUCTION 
Recently, microprocessor vendors supply processors which have 
multiple cores of 2, 4, or more, and PCs which use such 
processors are available at a reasonable cost. Since the main 
memory is shared among cores, parallel processing can be 
performed efficiently in multi-core processor. 

In this paper, we describe the parallelization of cAS [1], a 
variant of ACO algorithm, on a multi-core processor and discuss 
the experimental results of the parallelized cAS when we apply 
the algorithms to solving QAP, a typical NP-hard problem in 
permutation domains. 

Many parallel ACO algorithms have been studied. A Brief 
summaries can be found in [2]. In many of the previous studies, 
attention is mainly focused on the parallelization using multiple 

colonies. In contrast to these studies, in this study parallelization 
is performed at the agent (or individual) level in one colony 
aiming at speedup of the ACO algorithm on a computing platform 
with a multi-core processor. 

2. PARALLELIZATION OF cAS ON A 
MULTI-CORE PROCESSOR 
In this study, parallelization is performed at the agent level in one 
colony. Operations for each agent are performed in parallel in one 
colony. In our study, a set of operations for an agent is assigned to 
a thread in OpenMP. Usually, the number of agents m may be 
larger than or equal to the core number of the platform, we 
generate ncore threads, where ncore is number of cores to be used. 
These threads execute operations for m agents of the cAS. 

Fig. 1 shows the configuration of the parallel cAS. The 
Agant_Pool maintains agents of cAS. The Thread_Assignor 
assigns agents to Cas_Thread_1, Cas_Thread_2, …, and 
Cas_Thread_ncore. We implemented three types of parallel models 
as described in the following.  

 

Figure 1. Parallel cAS on a multi-core machine. 

2.1 SP-cAS (The synchronous parallel cAS) 
In this model, all agents are performed in each thread, 
independently as shown in Fig. 2. However, in the SP-cAS, 
pheromone density updating is performed after all members finish 
their process in each iteration, the same way as is done in the 
sequential cAS. Thus, we call this parallel model synchronous. 
Here, pheromone density (ij) updating is performed as follows: 
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where the parameter   (0  <1) is the trail persistence, k
ij(t) is 

the amount of pheromone agentk emits at iteration t, and Ck,t is the 
functional value agentk. 
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Figure 2. SP-cAS (The synchronous parallel cAS). 

AP-cAS (The asynchronous parallel cAS): In SP-cAS, the 
pheromone density updating is performed after the processing of 
Step 3 of Fig. 2 is completed, as in usual ACO algorithms. It may 
cause some waiting time in the iteration in Fig 1 when there is no 
agent to be processed. AP-cAS is intended to remove this waiting 
time. To attain this feature, all steps of cAS is performed 
asynchronously as shown in Fig. 3. Note that the update of the 
iteration counter t in applies to each agent (each agent has its own 
iteration counter). 

 

Figure 3. AP-cAS (The asynchronous parallel cAS). 

Here, one problem arises in the updating pheromone density 
of ACO. Strictly saying, pheromone update procedure requires all 
agent members to be fixed. But this will undermine an 
asynchronous execution. To perform the pheromone update 
asynchronously, we modified the pheromone density updating as 
follows. We allow each agent to emit pheromone and increase k

ij 
by k

ij. As for whole updating of pheromone density by 
multiplying the ij by , only one agent among m agents is 
allowed to perform. Although the above mentioned pheromone 
density updating is not strictly equivalent to Eq. (1), we can say 
that it emulates the pheromone updating process of Eq. (1). 

RAP-cAS (The rough asynchronous parallel cAS): RAP-cAS is 
basically the same as AP-cAS. The difference is only in the 
pheromone density updating methods. In AP-cAS, the pheromone 
density updating is treated as a critical section. However, this 
causes some waiting time in accessing ij. In RAP-cAS, we do not 
treat the pheromone density updating procedure as a critical 
section. We allow the process run without any exclusive control 
accepting access conflict to ij. Please note here, allowing access 
conflict to ij never causes any fatal troubles like in a banking 
system. 

3. EXPERIMENTAL RESULTS 
We used Xeon E5-2670v2 (Ivy Bridge), 2.5GHz, 10-core with 
80GB main memory. The code was written in GNU GCC with 
OpenMP. We measured the performance by the average time to 
find acceptable solutions in successful runs in seconds (Tavg). 25 
runs were performed in each experiment. We used the following 5 
QAP instances in QAPLIB [3]; tai50b, tai60b, tai80b, tai100b, 
and tai150b. The numbers in the instance names show their 
problem size. Except for tai150b, we set their acceptable solution 
to known optimal solutions. We set tai150b to be within 0.2% of 
the known optimal solution. As for the local search, we used Tabu 
Search (TS). The values of the control parameter for cAS and TS 
are the same as were used in [4]. Table 1 summarizes the results.  
The values indicates the ratios of parallel execution time and 
single-core execution time． 

Table 1. Results of three parallel models. 

 

As seen in this table, there is no significant differences 
between SP-cAS and AP-cAS. For example, in parallel runs with 
8 cores, SP-cAS wins AP-cAS on tai50b and tai100b and AP-cAS 
wins SP-cAS on tai60b, tai80b, and tai150b.  In parallel runs with 
4-core, SP-cAS wins AP-cAS on tai50b, tai100b. On the other 
hand, RAP-cAS wins both SP-cAS and AP-cAS on all instances, 
though with small core number (ncore=2), the difference is not so 
prominent. 

4. CONCLUSION 
In this paper, we described three types of parallelization for cAS 
on a multi-core processor and discussed the experimental results 
of the parallelized cAS when we applied the algorithms to solving 
QAP. The results showed that the rough asynchronous parallel 
cAS (RAP-cAS), which uses an asynchronous parallel model 
without applying any critical section in access the pheromone 
density ij, showed the most promising results. The results 
coincides with previous research in [5]. 
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Core Model tai50b tai60b tai80b tai100b tai150b
SP 2.4 2.4 2.1 1.9 1.9
AP 2.1 2.8 2.0 1.7 2.3

RAP 2.6 3.2 2.1 1.9 2.3
SP 3.9 4.5 4.3 4.0 3.8
AP 4.1 4.7 4.6 3.6 3.9

RAP 4.4 5.2 4.9 4.6 4.5
SP 7.7 7.8 7.7 7.4 7.7
AP 5.7 9.4 7.8 5.9 8.7

RAP 8.6 11.5 8.6 8.0 9.5
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