
A Comparative Study of Synchronization of Parallel ACO
on Multi-core Processor

Shigeyoshi Tsutsui
Hannan University

5-4-33, Amami-higashi, Matsubara
Osaka 580-8502, Japan
tsutsui@hannan-u.ac.jp

Noriyuki Fujimoto
Osaka Prefecture University

1-1 Gakuen-cho, Nakaku, Sakai
Osaka 599-8531, Japan

fujimoto@mi.s.osakafu-u.ac.jp

ABSTRACT

This paper proposes parallelization methods of ACO algorithms
on a multi-core processor aiming at fast execution to find
acceptable solutions. As an ACO algorithm, we use the cAS
(cunning Ant System) and test on several sizes of Quadratic
Assignment Problem (QAP) instances. As the parallelization
method, we use agent level parallelization in one colony.
According to the synchronization and exclusive control modes
among threads, we propose three types of parallel ACO
algorithms. Among them, that which we call the rough
asynchronous parallel model shows the most promising results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search Heuristic Methods

General Terms
Algorithms

Keywords
Evolutionary Computation; Parallel Computation; Multicore
processor; Ant Colony Optimization; Quadratic Assignment
Problems

1. INTRODUCTION
Recently, microprocessor vendors supply processors which have
multiple cores of 2, 4, or more, and PCs which use such
processors are available at a reasonable cost. Since the main
memory is shared among cores, parallel processing can be
performed efficiently in multi-core processor.

In this paper, we describe the parallelization of cAS [1], a
variant of ACO algorithm, on a multi-core processor and discuss
the experimental results of the parallelized cAS when we apply
the algorithms to solving QAP, a typical NP-hard problem in
permutation domains.

Many parallel ACO algorithms have been studied. A Brief
summaries can be found in [2]. In many of the previous studies,
attention is mainly focused on the parallelization using multiple

colonies. In contrast to these studies, in this study parallelization
is performed at the agent (or individual) level in one colony
aiming at speedup of the ACO algorithm on a computing platform
with a multi-core processor.

2. PARALLELIZATION OF cAS ON A
MULTI-CORE PROCESSOR
In this study, parallelization is performed at the agent level in one
colony. Operations for each agent are performed in parallel in one
colony. In our study, a set of operations for an agent is assigned to
a thread in OpenMP. Usually, the number of agents m may be
larger than or equal to the core number of the platform, we
generate ncore threads, where ncore is number of cores to be used.
These threads execute operations for m agents of the cAS.

Fig. 1 shows the configuration of the parallel cAS. The
Agant_Pool maintains agents of cAS. The Thread_Assignor
assigns agents to Cas_Thread_1, Cas_Thread_2, …, and
Cas_Thread_ncore. We implemented three types of parallel models
as described in the following.

Figure 1. Parallel cAS on a multi-core machine.

2.1 SP-cAS (The synchronous parallel cAS)
In this model, all agents are performed in each thread,
independently as shown in Fig. 2. However, in the SP-cAS,
pheromone density updating is performed after all members finish
their process in each iteration, the same way as is done in the
sequential cAS. Thus, we call this parallel model synchronous.
Here, pheromone density (ij) updating is performed as follows:

otherwise, :0 ,agent),(pair if /1)(

)()()1(

,

1

ktk
k
ij

m

k

k
ijijij

jiCt

ttt

 (1)

where the parameter (0 <1) is the trail persistence, k
ij(t) is

the amount of pheromone agentk emits at iteration t, and Ck,t is the
functional value agentk.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).
GECCO'15 Companion, July 11-15, 2015, Madrid, Spain
ACM 978-1-4503-3488-4/15/07.
DOI: http://dx.doi.org/10.1145/2739482.2764895

777

Figure 2. SP-cAS (The synchronous parallel cAS).

AP-cAS (The asynchronous parallel cAS): In SP-cAS, the
pheromone density updating is performed after the processing of
Step 3 of Fig. 2 is completed, as in usual ACO algorithms. It may
cause some waiting time in the iteration in Fig 1 when there is no
agent to be processed. AP-cAS is intended to remove this waiting
time. To attain this feature, all steps of cAS is performed
asynchronously as shown in Fig. 3. Note that the update of the
iteration counter t in applies to each agent (each agent has its own
iteration counter).

Figure 3. AP-cAS (The asynchronous parallel cAS).

Here, one problem arises in the updating pheromone density
of ACO. Strictly saying, pheromone update procedure requires all
agent members to be fixed. But this will undermine an
asynchronous execution. To perform the pheromone update
asynchronously, we modified the pheromone density updating as
follows. We allow each agent to emit pheromone and increase k

ij
by k

ij. As for whole updating of pheromone density by
multiplying the ij by , only one agent among m agents is
allowed to perform. Although the above mentioned pheromone
density updating is not strictly equivalent to Eq. (1), we can say
that it emulates the pheromone updating process of Eq. (1).

RAP-cAS (The rough asynchronous parallel cAS): RAP-cAS is
basically the same as AP-cAS. The difference is only in the
pheromone density updating methods. In AP-cAS, the pheromone
density updating is treated as a critical section. However, this
causes some waiting time in accessing ij. In RAP-cAS, we do not
treat the pheromone density updating procedure as a critical
section. We allow the process run without any exclusive control
accepting access conflict to ij. Please note here, allowing access
conflict to ij never causes any fatal troubles like in a banking
system.

3. EXPERIMENTAL RESULTS
We used Xeon E5-2670v2 (Ivy Bridge), 2.5GHz, 10-core with
80GB main memory. The code was written in GNU GCC with
OpenMP. We measured the performance by the average time to
find acceptable solutions in successful runs in seconds (Tavg). 25
runs were performed in each experiment. We used the following 5
QAP instances in QAPLIB [3]; tai50b, tai60b, tai80b, tai100b,
and tai150b. The numbers in the instance names show their
problem size. Except for tai150b, we set their acceptable solution
to known optimal solutions. We set tai150b to be within 0.2% of
the known optimal solution. As for the local search, we used Tabu
Search (TS). The values of the control parameter for cAS and TS
are the same as were used in [4]. Table 1 summarizes the results.
The values indicates the ratios of parallel execution time and
single-core execution time．

Table 1. Results of three parallel models.

As seen in this table, there is no significant differences
between SP-cAS and AP-cAS. For example, in parallel runs with
8 cores, SP-cAS wins AP-cAS on tai50b and tai100b and AP-cAS
wins SP-cAS on tai60b, tai80b, and tai150b. In parallel runs with
4-core, SP-cAS wins AP-cAS on tai50b, tai100b. On the other
hand, RAP-cAS wins both SP-cAS and AP-cAS on all instances,
though with small core number (ncore=2), the difference is not so
prominent.

4. CONCLUSION
In this paper, we described three types of parallelization for cAS
on a multi-core processor and discussed the experimental results
of the parallelized cAS when we applied the algorithms to solving
QAP. The results showed that the rough asynchronous parallel
cAS (RAP-cAS), which uses an asynchronous parallel model
without applying any critical section in access the pheromone
density ij, showed the most promising results. The results
coincides with previous research in [5].

5. REFERENCES
[1] S. Tsutsui. cAS: Ant Colony Optimization with Cunning

Ants, PPSN IX, 2006.

[2] M. Manfrin, M. Birattari, T. Stűtzle, and M. Dorigo. Parallel
ant colony optimization for the traveling salesman problems,
ANTS-2006, pp. 224-234, 2006.

[3] R.E. Burkard, E. Cela, S. Karisch, and F. Rendl. QAPLIB
ww.seas.upenn.edu/qaplib, 2009.

[4] S. Tsutsui. ACO on Multiple GPUs with CUDA for Faster
Solution of QAPs, PPSN 2012, Part II, pp. 174-184, 2012.

[5] S. Tsutsui and N. Fujimoto. Parallel Ant Colony
Optimization Algorithm on a Multi-core Processor, ANTS-
2010 pp. 488-495, 2010.

Core Model tai50b tai60b tai80b tai100b tai150b
SP 2.4 2.4 2.1 1.9 1.9
AP 2.1 2.8 2.0 1.7 2.3

RAP 2.6 3.2 2.1 1.9 2.3
SP 3.9 4.5 4.3 4.0 3.8
AP 4.1 4.7 4.6 3.6 3.9

RAP 4.4 5.2 4.9 4.6 4.5
SP 7.7 7.8 7.7 7.4 7.7
AP 5.7 9.4 7.8 5.9 8.7

RAP 8.6 11.5 8.6 8.0 9.5
8

2

4

778

