
locoGP: Improving Performance by
Genetic Programming Java Source Code

Brendan Cody-Kenny, Edgar Galván-López, Stephen Barrett
School of Computer Science & Statistics, Trinity College Dublin

{codykenb, edgar.galvan, stephen.barrett}@scss.tcd.ie

ABSTRACT
We present locoGP, a Genetic Programming (GP) system
written in Java for evolving Java source code. locoGP was
designed to improve the performance of programs as mea-
sured in the number of operations executed. Variable test
cases are used to maintain functional correctness during evo-
lution. The operation of locoGP is demonstrated on a num-
ber of typically constructed “off-the-shelf” hand-written im-
plementations of sort and prefix-code programs. locoGP was
able to find improvement opportunities in all test problems.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

Keywords
Genetic Programming; Execution Cost; Implementation;
Performance Improvement; Java

1. INTRODUCTION
This paper introduces locoGP1, a Genetic Programming

(GP) [14] system written in Java for improving program
performance using a Java source code representation2. As
Java is a widely used general purpose language, the ability
to automatically improve existing Java programs is of wide
interest. In this context, GP is a good approach for exploring
the implicit effects of source code changes on performance
[17,42].

Evolving code in a general language is a challenge due to
the broad range of constructs that form such languages. A
self-contained GP system, such as tinyGP [29], includes its

1The name locoGP originated from early experimentation
with lines of code and objects but is of little significance in
the context of the current locoGP implementation.
2Source code of locoGP and problem set are available from
the first author.
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own language (as defined by the primitives chosen), parser
and interpreter. Interpretation and evaluation of programs
can be achieved in a small amount of code by choosing a
set of primitive functions specifically for a problem. Fortu-
nately, there exist comprehensive libraries for parsing, com-
piling and interpreting more general Java programs upon
which locoGP relies heavily.

In locoGP, the primitive set is defined by Java language
elements which exist in the program to be improved and
may include statements, expressions, variable names or op-
erators. Source code is modified in an Abstract Syntax Tree
(AST) representation which specifies the typing of nodes and
structure of a program in the Java language.

Performance is measured by counting the number of in-
structions taken to execute a program. Program results are
measured for correctness with a problem-specific function by
counting functionality errors. Fitness is measured by nor-
malising and combining performance and functionality error
measures in a weighted sum. Selection favours minimising
the execution count and functionality error in a program.

This paper extends previous work [6] by discussing locoGP
in detail and presenting results of its operation on a number
of sort and prefix code problems. A performance improve-
ment was found in all problems. locoGP can be readily
extended to further Java improvement problems or used as
a comparison point with other code improvement systems.

This paper is organised as follows. In the following section
we present related work. The mechanisms and configuration
used in locoGP are covered in Section 3. The amount and
type of improvement found in a number of test problems is
shown in Section 4. The paper is concluded in Section 5
with future work.

2. RELATED WORK
Various languages have been used to evolve programs with

GP. The choice of programming language and the goal of
evolution (improvement in this case) impacts how GP can
be applied.

2.1 Programming Languages
GP has generally been used to evolve S-expressions and

programs in specialised languages [35]. Programs are fre-
quently restricted to domain specific language primitives (for
example, the use of a swap function in sort [12,24] or subsets
of primitives from general purpose languages [41]. Many GP
systems include their own parsers and interpreters. How-
ever, a wide range of programs are written in general-purpose
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imperative languages such as Java and so recent work has
turned to improving such programs [2,3, 26,37].

As the language used becomes more complex, so too does
the infrastructure needed to modify and evaluate programs.
As general purpose languages have non-trivial syntax and
semantics, code may be translated or compiled to a differ-
ent representation for various purposes. To mitigate the
cost of program evaluation, programs can be compiled [9].
Additionally, an intermediate representation has been used
for modification before a program is compiled where the se-
mantics of a language are particularly nuanced, as is the
case with C [22]. Java bytecode is a relatively high-level
representation which can be translated into more readable
Java code after evolution [25].

Although programs can be modified in a range of lan-
guages, there is a further representation choice that can be
made when considering how code is to be modified. Code
can be modified with single edits to language-level elements.
Multiple elements can be changed where a single modifica-
tion changes a line of code [38], a statement as defined by
the language [18] or as prescribed by a design pattern [23].

2.2 Improving Code
When improving existing programs, the language, primi-

tives, representation and modification mechanisms are cho-
sen in response to available code. As we are dealing with
existing code, GP is “seeded” with a program which is mod-
ified to produce variants [2]. Improving existing programs
infers a large amount of code reuse where primitives and ge-
netic material are generally gleaned from the seed program
under improvement. Primitives are still hand-crafted and
domain specific in some sense as the original program was
constructed for a particular purpose. Primitives are not,
however, created by the GP practitioner specifically to aid
evolution.

During GP, the majority of modifications to a seed pro-
gram are highly likely to produce degraded variants. It may
not be possible to evaluate a large percentage of the pro-
grams created during random modification as they may not
compile or may contain infinite loops [32]. When programs
do not compile, they are typically discarded [27,37]. Among
program variants that do compile, the seed is likely to have
relatively high fitness and represents a local optima in the
population.

To ensure the best fitness in each generation does not
drop, elitism promotes the best programs from the previous
generation to the next. A percentage of the worst programs
in the next generation can be replaced by the best of the pre-
vious. As program modification is highly destructive, elitism
rates used for program improvement tend to be high. Up to
50% of programs may be removed [8], though this approach
uses “crossing back” between each remaining program and
the original program to create the next generation instead
of using more standard elitism.

In GP, it is important to capture the characteristics of a
desired solution to ensure evolutionary pressure is towards
the desired goals. Designing a fitness function which gives a
scale for how good a program is, can be non-trivial particu-
larly when the scale relates to functionality [12]. The issue
lies in measuring program functionality in order of increas-
ing utility. In a sorting example, a program which swaps two
identical values in a list would be considered better than a
program which does not change the list at all even though

the fitness remains the same. If a desired trait cannot be
measured, or receives a value lower than it should, then GP
will not promote its use in the population.

To maintain correctness, a graduated functionality metric
can be created by summing the results of binary test cases
as part of the fitness function [2,21]. The seed program can
be used as an oracle [19] when given various test input data.
Binary test cases as used in Software Engineering (SE) are
distinct from the traditional use of a fitness functions in GP.
In SE, each test case returns a Boolean value. In GP the
correctness of a single result is calculated along a variable
scale.

Measuring performance introduces parsimony pressure to
the search process resulting in less costly programs, mitigat-
ing the issue of bloat somewhat [34]. How performance is
measured focuses evolutionary pressure toward finding dif-
ferent improvements. Performance and even functionality
gains can be achieved by specialising code for a particular
input data type [19] or distribution [2]. A more general rep-
resentative set of input data can be expected to find only
general algorithmic improvement.

Program execution performance can be measured as wall
clock time, number of CPU cycles taken, number of method
calls, number of lines executed or even as the energy con-
sumption of the application.

Wall clock time may be the most far reaching as it mea-
sures the length of time a program takes to complete regard-
less of how much memory, network, CPU or energy is used
during execution. Therefore a code improvement in any of
these areas can be detected and promoted. Measuring all
of these traits in one metric introduces wide variability ev-
ery time the same program is executed with the same input
data as the execution environment is difficult to control.
Network, CPU or virtual machine scheduling can add vari-
ability [16]. Evaluation can be repeated to reduce the mea-
surement noise but is expensive. Where the measurement
signal is larger than any noise, wall clock time is particularly
useful [4]. Estimates of execution cost can also be used to
evolve programs with respect to power consumption [42].

Ignoring environment specific measures gives a determin-
istic measure. Such measures include counting the number
of lines of code [18] and instructions executed [15].

3. LOCOGP
locoGP utilises many of the mechanisms from the related

work such as seeding and modification at the language level.
The main distinction between the related work and locoGP
is the use of Java source code. locoGP is seeded with com-
pilable and fully functional source code which is modified at
the Java language level. A summary comparison between
locoGP and other notable improvement systems can be seen
in Table 13.

An initial population of individuals is generated by taking
the program to be evolved as the seed individual and mutat-
ing it. As the seed program represents a local optima, and is
likely to be the most fit program for a number of the initial
generations during GP, we seek to encourage diversity in the
population. If we do not encourage diversity, we may end
up with a population where the majority of programs are
very similar to the seed. New generations of individuals are

3Systems specifically for bug-fixing are not included.
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Approach Representation Improvement Fitness Metric
locoGP Java (AST) Performance Bytecode Operations
Langdon [17], Petke [28] C++ (Statement) Performance, Specialisation Line Count
Arcuri [2], White [41] Java-like (AST) Performance Simulated CPU Cycle
Walsh & Ryan (Paragen) [30,31], Parallelisation Instructions Parallel Programs Functionality
Chennupati (MCGE) [4]
Orlov (FINCH) [25] Java (Byecode) Functionality Error Count
Castle [3] Java-like (AST) Functionality Error Count
O’Cinnéide [5], Simons [33] Java (Refactoring Patterns) Quality (e.g. elegance) Software Metrics

Table 1: Feature Comparison of Improvement Approaches.

created by the application of mutation (30%) and crossover
(90%) operators as described in Section 3.2.

A gentle selection pressure (tournament of two) and ag-
gressive mutation rate (30%) is chosen. Modifying programs
in Java is highly likely to produce disfunctional or even non-
compilable programs. Programs are in competition with an
already functioning seed program. We end up with many
programs which are close to the seed due to selection, and
many programs which have very poor fitness due to destruc-
tive modifications. To balance out the distribution of pro-
grams along the fitness scale, we use elitism which selects a
small number of programs at each fitness value and replaces
the worst 30% of programs with these.

3.1 Working with Java Source Code
locoGP performs the cycle of parsing, compilation, instru-

mentation and execution of programs in memory with results
written to disk periodically. locoGP relies on the freely avail-
able and widely popular Eclipse Java Development Tools
(JDT) for parsing programs to an AST representation. The
JDT provides methods for cloning, traversing and modify-
ing program trees and is also used to gather statements,
expressions and variables from a program which can then
be modified as per the GP operators.

Primitives are drawn from those that exist within the pro-
gram to be improved. Node selection is not uniform in an
AST as each node is not represented in the same way within
an AST. For example, operators do not exist as nodes in an
AST but are attributes of expression nodes. An AST gives
us a representation devoid of source code artifacts such as
parentheses and line terminators. Depending on the node
type chosen, the operation performed may be different.

When creating a new individual, a parent program is cho-
sen using tournament selection. A clone is made of the se-
lected program using the JDT and the new program is then
modified using mutation, or crossover with another parent
program (requiring an additional tournament). For each
crossover or mutation operator application, only one off-
spring individual program is generated.

The Java language syntax is enforced by the AST and is
used to restrict node compatibility. Where a node such as
an expression is chosen, it is possible that the node can be
replaced with another expression or a variable name. Where
a statement is selected, it may be replaced by another state-
ment, or statement sub-type such as an IF or WHILE state-
ment. A replacement node can be a whole sub-tree, e.g.
in the case of a statement replacement. In this case, the
node which is the root of the sub-tree is of concern. If we

pick a block, we clone some other random line of code as an
addition to the block.

While typing prevents some invalid code replacement,
such as replacing an operator with a variable, the AST can
nonetheless be modified to produce syntactically incorrect
programs which do not compile. Due to this, the number
of discarded programs created due to compilation errors is
relatively high.

3.2 Operators
Crossover and mutation operators are used to modify code

as per AST typing. We pick a node and then decide what
to do with it depending on what is possible. Once a node
is selected, it and the whole AST sub-tree is subject to re-
placement, deletion or cloning, depending on node and GP
operator. It is also possible for two code edits to be made
where crossover and mutation are both applied in creating
a new program.

Two parent programs are required for crossover to be ap-
plied. The subtree at a randomly selected node in the first
program is replaced with the clone of a subtree of an al-
lowed type from the second program. Crossover only allows
the exchange of statement and expression node types (both
infer sub-tree replacement) between two programs. Leaf
nodes may not be involved in this process as the modifi-
cation of a single element in a program is handled by muta-
tion. Crossover is repeatedly attempted until a compilable
program is produced, or a maximum of 100 attempts have
been made. After 100 attempts, a different pair of parent
programs are selected using tournaments.

Mutation involves applying change to a single individual
program in the form of cloning, deletion or replacement of
randomly selected nodes. It is used exclusively to generate
the initial population of programs and in conjunction with
crossover for subsequent generations. How mutation is per-
formed is dependent on the node that is selected within an
individual. If the node is a block statement, then a state-
ment is inserted, with no choice for deletion or modifica-
tion of the contents of the block. If the node is a particu-
lar expression, such as infix or postfix, then the operator is
changed for a different one. If the node is a statement, its
contents may be modified or the statement can be deleted.
If the node is of another type, such as variable, then it can
only be replaced and deletion is not an option due to syntax
constraints.

3.3 Fitness Function
After modification, the modified AST representation is

converted back to source code text and compiled to byte-
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Parameter Value
Representation Java AST
Operators Crossover, Mutation
Crossover Rate 0.9
Mutation Rate 0.3
Individual Selection Tournament (2) (read text)
Initialisation Method Mutated Seed
Max Operator Application 100
Population Size 250
Generations 100
Elitism 30% of unique fittest

Table 2: Baseline GP Configuration.

code. The resulting bytecode is instrumented using a byte-
code counting library [15]. Instrumentation adds extra code
to the program to count the number of bytecodes that are
executed when the code is run.

We measure code operations executed specifically by
counting bytecode executed in Java [15]4.

The evaluation mechanism, and how performance is mea-
sured affects the type of program improvement that is likely
to be found. Measuring operations performed ignores plat-
form specific differences in performance, and means the GP
algorithm differentiates programs only on their ability to re-
duce execution count. This is expected to promote search
for general code improvements. Counting bytecodes exe-
cuted gives a measure which does not vary between runs,
and can be expected to be portable.

When executed, bytecode may contain infinite loops and
so execution is restricted by a timeout period [39], after
which programs are halted.

The bytecode is executed numerous times with a range
of input data and the returned values are compared with
known correct values. Results are tested for correctness er-
ror against the results obtained from executing the seed pro-
gram. Our measure of correctness error is not binary, but
graduated. A problem-specific fitness function is used in
conjunction with the seed program acting as oracle. While
we can use a general measure for performance, functional-
ity measures are problem specific and are discussed further
alongside the problems we use in Section 4.1.

Assuming a program halts within the timeout period,
counting and test case results can be collected. Programs
which compile and execute, but exhibit runtime errors or do
not finish within the time bounds are given the worst fitness
values possible so that elitism or selection can discard them.

Both performance and functionality measures are nor-
malised against the seed program. Execution count of a
variant program is divided by the execution count of the
seed program. If the performance is the same as the seed, a
normalised performance value of one results. The summed
error count from all test cases is subtracted from the error
count value for the seed program and divided by the seed
error count (Eq. 1). If a program is considered correct, eval-
uation will give a value of zero for functionality error.

FuncScore =
Errorseed − Errorindividual

Errorseed
(1)

The fitness function is a weighted sum of performance and
100 times the functionality error as shown in Eq. 2.

4Source code is available from the authors of bycounter
which is a dependency of locoGP.

The weighting of 100 allows semi-functional programs to
be “binned” or grouped roughly by their functionality. Two
correct programs (or programs which score the same func-
tionality error) are then distinguished by performance values
only. A correct program having the same performance as the
seed will receive a fitness of one. Programs which use fewer
operations will receive a value less than 1.

As selection favours smaller fitness values, we are minimis-
ing the number of operations executed when a program is
run as well as the functionality error. Thus, there is a built-
in parsimony pressure [34] towards programs which are no
longer than they need to be to provide the desired function-
ality. Where a program is functionally correct, any addi-
tional code executed reduces the fitness value. This parsi-
mony pressure means that programs do not grow too long in
size as superfluous code is removed and bloat is not a major
issue in locoGP.

F =
ExecutionCountind

ExecutionCountseed
+ 100 ∗ FuncScore (2)

3.3.1 Elitism
We use a form of elitism at the rate of 30% which we

term “diverse elitism”. When gathering the elite programs
from the previous generation, we truncate the decimal part
of fitness values. We then take a program from the top 30%
unique fitness values. Ignoring the decimal place means we
are largely ignoring performance, and only distinguishing
on functionality for the most part. For each whole number
fitness value, we select only one program. The effect of this
is that we do not select similar programs which have the
same functionality. The worst 30% of the new generation
is selected (ignoring diversity) and is replaced by these elite
programs.

4. EXPERIMENTS
We experiment with locoGP on a number of sort algo-

rithms and a Huffman codebook generating algorithm.

4.1 Problem Set
The sort implementations were taken mostly unmodified

or “off-the-shelf” from online sources [36]. An implementa-
tion of prefix codebook generation as used during Huffman
coding [11] was written to include one of our sort algorithms
as a sub-function. Our “prefix codebook” problem entails
finding the set of shortest codewords where no code forms a
prefix of another. The algorithm is passed an array of char-
acters where each character is represented by a fixed num-
ber of bits. The algorithm is expected to return a codebook
of character to codeword mappings, where frequently used
characters are represented by codewords of fewer bits. The
bubblesort algorithm is embedded in the candidate solution
as we are familiar with the improvements which exist. The
Huffman codebook problem, although incorporating bubble-
sort (and in turn the same improvement opportunities), has
a different fitness function, larger seed program size, and is
broken into a number of classes.

These programs consist of common algorithms that are
well studied, have many versions with reasonable interest in
their improvement. The problems are relatively small, but
their size is large enough that we can assume GP is unlikely
to generate these programs from scratch without being given
domain specific primitives [1]. They are big enough to pose
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as difficult problems for GP to improve, but small enough
that any improvements may be understood.

4.1.1 Problem-specific Functionality Measures
Measuring functionality at a detailed level is not trivial

and requires careful consideration to get functionality im-
provements in order of importance [12].

For a sort algorithm, we construct a measure for how
“sorted” a list of numbers is by counting how far each num-
ber is away from where it should be in a correctly sorted list.
This is calculated by summing up “errors” in placement of
values in a list. If a value is in the right location, the error
count is incremented by one. If the value is not in its correct
place but has been moved then error count is incremented
by two. If the value has not moved at all, then error count is
incremented by three. This approach measures when a value
does not move and allocates the highest error value. At least
when a value has been moved, albeit to the wrong place, the
program is exhibiting functionality which is more desirable
than not moving the value at all. A number of fixed test
arrays are used to inspect variant sort programs. Each test
array consists of a list of integers. The sort algorithm in the
Java library is used as an oracle to check correct answers.

For the prefix codebook problem, we have written a func-
tion which checks if the result returned is a valid set of prefix
codes. Test arrays of characters are used. A prefix codebook
should have the same number of codes as there are different
characters in the input data. If the number of codewords re-
turned is incorrect, we count the number of extra or missing
codes and add them to the error. We count the number of
prefix violations and add them to the error count. A prefix
violation occurs when a codeword forms the prefix of any
other codeword. As the goal of prefix code algorithms is to
reduce the overall length of valid codewords for a particular
input, we sum the length of each codeword and add this to
the error.

If either a codebook length or prefix violation error is
found, the error count is further penalised by the extra ad-
dition of the length of all codewords in the oracle codebook
answer. As codebook length and prefix violations may be
small, we must ensure that a program which has either of
these errors does not get a better score than the oracle an-
swer. If a single prefix error is detected, the value of one
may be added to the error, even though the codeword length
is smaller than the oracle answer. Without penalising such
cases, a program with prefix errors would appear better than
a correct oracle answer. Multiple test values are used in both
cases of sort and prefix codes. The error count from each
test is summed as overall functionality error count.

4.2 Results
To introduce locoGP and characterise its operation, we

initially focus on a single run on a bubblesort implementa-
tion and then show results across a number of sort and prefix
code programs.

4.2.1 Bubblesort
Figure 1 shows a scatter plot of fitness values for all indi-

viduals in each generation and the average fitness per gen-
eration of a typical GP run on bubblesort. Each dot in the
graph is the fitness of a single individual program. The line
shows the average fitness of each generation.

The fittest individuals from each generation can be seen as

the lowest dots in Figure 1. By following the lowest values,
we can see a single distinct improvement to 0.6 at generation
57. This represents a saving of 40% of the execution cost
of this algorithm in terms of bytecode’s executed (note this
does not necessarily equate to 40% wall-clock time saving).

As indicated in Section 3, the first generation is created
with mutation only. When starting GP from a correct seed
program, fitness improvements are rare. Due to the repre-
sentation and operators, it is highly unlikely that the seed
program will be improved upon when initially modified. The
assumption being that the seed is some local optima which
must be escaped before an improvement can be made. Most
changes to the seed will degrade the fitness, especially when
using programming languages which have complicated syn-
tax and semantics. Thus the program must in some sense
be “broken” before it can be improved.

In generations subsequent to the first, programs are cre-
ated with crossover and mutation. The average fitness line
in 1 shows the average population fitness deteriorates (moves
higher in the graph) in initial generations. Elitism favours
better programs which become more numerous in subse-
quent generations. In later generations, there is a greater
chance that a new individual will have a better fitness, which
can be seen as the dots lower than fitness one in the graph.

Of note is the modality of the distribution of fitness values
in each generation. Fitness distribution in each generation
is multi-modal due to the weighted sum fitness function and
semantics of the particular implementation under improve-
ment. Even though the actual fitness values of variant pro-
grams are somewhat arbitrary under random modification,
it is curious to consider that the language semantics, pro-
gram code and operations of GP result in some program
variants being created in abundance which cluster at cer-
tain fitness values. Few individuals evaluate to some regions
of the fitness gradient. This can be seen in the grouping of
indvidual fitness values into rows on the graph. This may be
because our multiplication of 100 of the functionality pro-
vides spacing between functionality levels which the perfor-
mance variability is not large enough to fill in the gap be-
tween functionality “levels”. Although the tournament size
of 2 we use is a light pressure on the population fitness, the
elitism rate of 30% is more aggressive and this can be seen
as the algorithm progresses where the worst individuals are
being replaced faster than they are being created.

Applying GP to software improvement provides a graph
showing few fitness improvements to the seed. More trad-
tional applications of GP, which are used to “grow” a solu-
tion program outright, are more likely to show a graph with
a smoother curve of many improvements in fitness. GP on
existing fully-functional programs is starting from a local
optima and is attempting to find one of very few improve-
ments. The overall shape of the graph shows the scale of
the problem, and the jaggedness of the search space, where
a smooth gradient of program improvement is not likely. Vi-
sually, the best individual programs (i.e. the lowest dots in
each generation) in 1 show a straight line at value one, until
generation 57 where fitness improves to 0.6.

Considering that improvements in fitness are rare, it may
unfortunately appear that improved programs are found
more or less at random, and the genetic nature of the GP al-
gorithm does not give it much advantage over random search
for the problem of program improvement. Although there is
the temptation to classify this search process as being more
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Figure 1: Fitness Scatter and Average for GP on Bubblesort (lower is better).

“random” than it is “genetic”, GP on subsequent problems
shows that genetic operators are advantageous for deliver-
ing even a single fitness improvement. Even though there
may be no fitness improvement on the seed observed, the
search process is busy exploring lineages of programs which
are necessary to reach an improved variant.

4.2.2 Sort and Prefix Codes
An improved version of each program was found for all of

the programs tested as can be seen in Table 3. We can say
that for these common algorithm implementations, GP can
find a modification which reduces execution count.

A count of the AST nodes available for modification
in each program shows the number of modification points
which can be chosen during the application of GP. Lines
of code are counted including those containing braces [40].
The number of discarded programs is a ratio of the num-
ber of programs which do not make it into each generation
over the total number of programs produced. Discarded
programs include those which do not compile and interme-
diate programs generated where mutation and crossover are
applied together. This is different to software mutational
robustness [32] which measures the number of modifications
which leave a program’s behaviour unchanged. In our ex-
periments, a minuscule number of programs, certainly less
than 1%, show no behavioural change when modified. This
may be due to programs likely containing only code which
has some function.

The improvements found are in some cases reduction in
number of iterations through a loop. The number of nodes
which must change to produce an improved variant of the

program is relatively small. In improved programs across
these problems we see both the reuse of existing code and
the modification of code at a fine level, justifying the use
of the “genetic” as well as mutational approach of GP. To
improve some programs, only a small number of edits are
required. On others, it is necessary for a “block” of code to
be reused and subsequently modified to produce a variant
program. In either case, a strict or rigid definition of a
building block may be overly restrictive. If a building block
preserving GP extension were to be used, it would have to
allow the modification of the contents of a building block
after it has been defined.

5. CONCLUSION
There is an opportunity for improvement in existing code

as our results have shown. If improvements can be found in
such relatively small algorithms, we may speculate that it
is likely that there is a greater number of improvement op-
portunities in larger programs. We feel improvement oppor-
tunities exists in the wider body of existing code, especially
considering that performance is not frequently recommended
as of primary importance when developing software [13].

Depending on the language that programs are to be
evolved in, the tools for manipulating the language may not
be readily available. One example is C which, due to the
historical variety of versions implemented, can be difficult
to parse in all instances [22]. As such, we feel it is impor-
tant to currently focus on infrastructure to enable program
improvement. locoGP can be used as a proof-of-concept in
this regard.

Though relatively expensive, compiling Java source code
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Problem Name AST Nodes Improvement Nodes LOC Best Fitness % Discarded
Insertion Sort 60 3 13 0.91 73.3
Bubblesort 62 5 13 0.55 71.4
BubbleLoops 72 8 14 0.29 71.8
Selection Sort 2 72 1 16 0.99 70.9
Selection Sort 73 1 18 0.98 71.2
Shell Sort 85 3 23 0.95 71.4
Radix Sort 100 3 23 0.99 80.5
Quick Sort 116 2 31 0.46 72.7
Cocktail Sort 126 1 30 0.85 73.7
Merge Sort 216 1 51 0.95 73.2
Heap Sort 246 2 62 0.59 71.1
Huffman Codebook 411 5 115 0.57 83.8

Table 3: Problem Improvement Overview.

for evaluation during evolution is manageable on modern
hardware. There is ample room for improvement of locoGP
itself both in terms of implementation5 and in terms of the
GP configuration used. Bytecodes could be weigthed differ-
ently as they are being counted as per their type or by their
execution context. Performance could also be measured as
wall-clock time to capture overhead introduced during I/O
operations. Code exists in locoGP for measuring wall-clock
time though was only used in early experiments as gather-
ing consistent measures required repeat program execution
which slowed the GP algorithm. The GP configuration used
could be extended with tabu-search-like improvements [7]
such as restricting the generation of equivalent programs [18]
or caching previous evaluation results would reduce the cost
of the system. A steady-state GP algorithm with different
elitism or distribution models may also improve the opera-
tion of locoGP.

Additional sort and prefix code problems can be added
to locoGP with minimal effort. Improving additional prob-
lems (other than sort and prefix codebook) requires writing a
functionality measure and adding relevant test data. locoGP
can be used as a comparison point between other systems
which evolve programs at different represenations such as
bytecode [25], statement [28,41] and/or patch [8, 18].

locoGP may be also used to observe issues in scaling au-
tomated software improvement to larger problems. A major
theme in program improvement is the reuse of code, more
specifically finding where [6, 18, 39]6 and with what [10, 20]
a program should be modified with.
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