
Energy Optimisation via Genetic Improvement

A SBSE technique for a new era in Software Development

Bobby R. Bruce
University College London

London
United Kingdom

r.bruce@cs.ucl.ac.uk

ABSTRACT
The discipline of Software Engineering has arisen during a
time in which developers rarely concerned themselves with
the energy efficiency of their software. Due to the growth
in both mobile devices and large server clusters this period
is undoubtedly coming to an end and, as such, new tools
for creating energy-efficient software are required. This pa-
per takes the position that Genetic Improvement, a Search-
Based Software Engineering technique, has the potential to
aid developers in refactoring their software to a more energy-
efficient state; allowing focus to remain on functional re-
quirements while leaving concerns over energy consumption
to an automated process.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
Genetic Improvement, GI, SBSE, Search Based Software En-
gineering, energy efficiency, energy consumption, energy op-
timisation

1. INTRODUCTION
The well-known fairy tale of Goldilocks and the three bears
is familiar to many and as such been used in science to popu-
larise instances where circumstances are “just right”, not too
big or too small; not too hot or too cold. The Goldilocks
zone is an area between the minimum and maximum diam-
eter from a given sun where scientists believe life is possible;
a Goldilocks economy is one which grows moderately, avoid-
ing both recession and excessive growth rates indicative of
a boom with a coming bust. This paper believes the ma-
jority of developers, almost entirely unwittingly, have been
living through a Goldilocks period of software development
where focus has been primarily on desktop machines; a pe-
riod rapidly drawing to a close.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768420

The reason this paper refers to this time as a “Goldilocks
period” is desktops, due to their size and limited mobility,
did not require developers to consider the energy consumed
by their applications. Instead they were able to focus solely
on other, better understood, non-functional attributes such
as execution time or memory consumption. Desktops are
simply too small for their energy consumption to be noticed
by users. At the same time they are are large enough for
their mobility to be low and thus be powered by mains elec-
tricity so that power is not limited in the same way as with
smaller battery-powered devices.

2. THE PROBLEM
Unfortunately we are moving away from this Goldilocks

period of development. On one side we can observe the
growth in the smartphone and tablet market where develop-
ers are restricted to a limited power supply between charges.
The forthcoming “Internet of Things” is likely to constrain
developers even further with small circuits containing bat-
teries expected to last a considerable length of time before
being replaced or recharged. On the other side we have
servers. Though the energy is not constrained in the same
way as with smaller computing devices, those in charge of
managing these systems are influenced to a greater extent
by economic pressures (and in some case ecological concern)
over how much energy is being consumed. Servers were es-
timated to have consumed between 1.1 and 1.5% of global
electricity production in 2010 [3] and thus it is easy to see
why those in the server industry are eager to cut the amount
they use.

The market for both very small and very large comput-
ing systems is likely to increase in future, with the familiar
middle-ground left to stagnate. As developers are gradually
forced out of their cosy Goldilocks zone where energy is a
non-issue, and into one where it is a central concern, a ques-
tion arises: how exactly do we minimise software’s energy
consumption?

The main issue for the developer who wishes to develop
energy efficient software is the gulf of execution between the
developer and the energy consumed by the software they de-
liver. Source-code rarely gives any indication of the amount
of energy it shall consume when compiled and run. The
Goldilocks period of software development did not require
such a relationship to be obvious and therefore few tools ex-
ist to map it. Evidence suggests that subtle changes at the
source-code level have an impact on the total energy con-
sumed by a compiled product [2, 6, 9] though in ways that

819

are difficult, if not impossible, to determine outside a trial
and error basis.

It seems unlikely there exists a simple set of rules which
a developer may follow to make their software more energy
efficient. Even if such rules could be formulated, would we
trust developers to follow them and would it be cost effec-
tive in terms of education cost and additional development
time? The most logical path is to develop an automated
process capable of finding changes within code that improve
energy efficiency while maintaining functional correctness.
Though there have been some initial investigations into pos-
sible techniques [6, 8] the area remains largely unexplored.
It is the position of this paper that Genetic Improvement,
GI, a Search-Based Software Engineering (SBSE) technique
is the most promising candidate for this role.

3. THE SOLUTION: GI
Genetic Improvement is a technique that treats software

code as if it were genetic material which is then evolved
to produce more optimal solutions. When implemented to
preserve functional qualities it can be viewed as a system
for the automatic refactoring of source-code to improve non-
functional attributes. Unlike alternative approaches, GI spe-
cialises is taking existing human-written code and optimis-
ing it. When applied to the source-code level it can produce
human readable changes which can then be verified both by
developers and modern testing tools.

Like natural evolution, GI is capable of optimising for spe-
cific environmental conditions such as hardware configura-
tions [4] and input data [7]. This property is advantageous in
the current development environment which has seen signif-
icant growth in the number hardware configurations and op-
erating systems available for development. While the model
up to this point has been, at best, one of “code once, de-
ploy everywhere”, GI has the potential for the automation
of bespoke solutions for specific cases; a new model of “code
once, optimise everywhere” is feasible.

GI has already been shown capable of decreasing software
execution time [4, 5, 7, 10] and, in most cases, doing so by
making small changes to the source-code that would be dif-
ficult for a human developer to find. The question therefore
arrises, if GI has been shown effective for execution time,
can the same techniques be applied to reduce software en-
ergy consumption?

In 2015 an investigation into using GI to optimise energy
efficiency was carried out [1]. The aim of the investigation
was to find how much energy reduction could be achieved
when specialising MiniSAT for a particular problem domain.
The results showed that GI was capable of reducing energy
consumption by as much as 25%. When taking into consid-
eration MiniSAT’s reputation for being difficult to optimise,
it is an encouraging first-step into the area of energy reduc-
tion via Genetic Improvement.

Though these initial successes are promising more research
is required. Optimising Energy consumption using GI has
yet to be carried out on a sufficiently large application (the
investigations into MiniSAT only optimised 478 lines of code).
As software size increases the necessity of profiling software
to direct GI to the most costly areas of code becomes nec-
essary though research into tools for profiling software’s en-
ergy consumption has largely been ignored until recently.
Ultimately new methods for measuring or estimating soft-

ware’s energy consumption at a finer granularity is required
for better optimisation to take place.

Some readers may also point out the irony in stressing
the end of the“Goldilocks period” of software development
then subsequently touting an investigation into MiniSAT
running on a Macbook Pro. This irony has not gone unno-
ticed and next stages of research must move to optimising
software on other devices. Academics, like real-world devel-
opers, also have difficulty moving from the comfortable and
well-supported Goldilocks development zone.

4. CONCLUSION
Within this paper we have advocated the position that GI,

a SBSE technique, has the potential to offer software devel-
opers a method of automatically optimising their software
to reduce energy consumption while maintaining functional
properties. As developers shift from an environment primar-
ily focused on desktop application development towards one
centred on development for the small and mobile to the large
and stationary, techniques such as GI are needed more than
ever. Therefore future investigations into improving energy
efficiency using GI are necessary.

5. REFERENCES
[1] B. R. Bruce, J. Petke, and M. Harman. Reducing

Energy Consumption Using Genetic Improvement. In
GECCO 2015, 2015. To appear.

[2] C. Bunse, H. Höpfner, S. Roychoudhury, and
E. Mansour. Choosing the “best” sorting algorithm for
optimal energy consumption. ICSOFT, 2009.

[3] J. Koomey. Growth in data center electricity use from
2005 to 2010, Aug. 2011.

[4] W. B. Langdon and M. Harman. Evolving a CUDA
kernel from an nVidia template. In IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE, July
2010.

[5] W. B. Langdon and M. Harman. Optimising Existing
Software with Genetic Programming. IEEE
Transactions on Evolutionary Computation, 2013.

[6] I. Manotas, L. Pollock, and J. Clause. SEEDS: a
software engineer’s energy-optimization decision
support framework. In Proceedings of ICSE 2014,
pages 503–514, New York, New York, USA, May 2014.
ACM Press.

[7] J. Petke, W. B. Langdon, M. Harman, and
W. Weimer. Using genetic improvement & code
transplants to specialise a C++ program to a problem
class. In Proceedings of EuroGP 2014, Granada,
Spain, 2014.

[8] E. Schulte, J. Dorn, S. Harding, S. Forrest, and
W. Weimer. Post-compiler software optimization for
reducing energy. In Proceedings of ASPLOS 2014,
pages 639–652. ACM, 2014.

[9] W. G. P. Silva, L. Brisolara, U. B. Corrêa, and
L. Carro. Evaluation of the impact of code refactoring
on embedded software efficiency. In Proceedings of the
1st Workshop de Sistemas Embarcados, pages 145–150,
2010.

[10] D. R. White, A. Arcuri, and J. A. Clark. Evolutionary
improvement of programs. IEEE Transactions on
Evolutionary Computation, 15(4):515–538, Aug. 2011.

820

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150508105642
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150508105642
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

