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ABSTRACT
Energy has recently become an objective for Genetic Im-
provement. Measuring software energy use is complicated
which might tempt us to use simpler measurements. How-
ever if we base the GI on inaccurate measurements we can
not expect improvements. This paper seeks to highlight im-
portant issues when evaluating energy use of programs.

Categories and Subject Descriptors: I.2.2 [Automatic
Programming]:Program modification

Keywords: Genetic Improvement (GI), Search Based Soft-
ware Engineering (SBSE), Genetic Programming (GP), En-
ergy Optimization

1. INTRODUCTION
“If you can not measure it, you can not improve it.”– Lord
Kelvin

Recent awareness of climate change and the importance of
conserving energy has not been lost on the computer science
community. Efforts have mainly been focused on large scale
computing and hardware in data centres [3] and on a smaller
scale, i.e. in embedded, low resource systems [10]. Energy
consumption of hardware can however only be optimized to
a certain degree. Energy consumption of deleting a single
bit has been shown to have a lower bound [1]. Therefore,
hardware and consequently general computer optimization
pertaining to energy will also have a lower bound. No matter
how energy efficient the hardware we produce, if we do not
develop software to follow suit, we can never hope to get
close to reaching the limit of Landauer’s principle [4]. Like
a car is only as energy efficient as the person driving it, the
same applies to computers; the hardware can only be as
efficient as the software running on it.

The issue of energy optimisation is to know which changes
to the software will lower the energy usage. Most developers
are not aware of how to optimize for energy, although they
would want to [9]. Despite willingness, developers can only
be expected to tackle a limited number of objectives while

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768421

coding. Many can probably code functionality while opti-
mizing for one or two non-functional features, such as mem-
ory and speed. This is assuming those properties are simple
to manually configure, e.g. shortening iterations where pos-
sible or allocating sufficient but minimal memory. However,
what configurations reduce energy consumption? In all like-
lihood, that is a question few developers could answer confi-
dently [9]. Recent developments in automatic programming
[2] could however provide the answer. Genetic Improvement
(GI), a general method of automatically improving software
through modifications of source code, has the potential to
handle complicated, multi-objective optimizations [10, 5].
GI opens up the possibilities for clever, subtle or unintuitive
adjustments that most developers would not have thought
of. However with added flexibility come additional pitfalls
that developers need to be aware of. Of particular inter-
est are the fitness evaluations for energy objectives, as poor
measurements do not imply actual improvements.

Physically measuring the actual energy used would be
ideal for accuracy but for programs it is complicated since
they do not have a direct source of energy. Instead they
control multiple hardware components that share an energy
source among themselves. Is there a way we can estimate
the energy usage of an application with a surrogate evalua-
tion? As it turns out, that could be even more complicated
and unpredictable, with inconsistency across platforms, en-
vironments [6] and refactorings [8]. Furthermore a surrogate
evaluation might give inconsistent fitness readings from one
generation to another while evolving a program, having in-
convenient consequences for practical use and research con-
clusions. When applying GI to optimize for energy use, we
must be careful when constructing the fitness evaluations.

2. ENERGY IN COMPUTATION
To measure the energy used by a computer we have to

sample the electrical connection for current drawn and volt-
age over a specific time period. Then we can estimate the
energy used by the computer for that time period.

One could argue that there are four levels to improving
energy usage in computing. 1) Hardware optimisation, de-
signing and producing hardware that conserves energy. 2)
Optimizing the OS or kernel. 3) Minimizing the amount of
computing used for a particular task. 4) End user specific
energy conservations like turning off features that are not
in use at all times such as network devices and positioning
system.

In GI we are concerned with the second and third levels
where we can directly apply it to improve certain parts of
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the OS or specific software. Although we can specialize soft-
ware to be energy efficient in isolation, we cannot prevent
other applications from interacting with it. However, GI
gives developers the flexibility to specialize software between
platforms, computers and hardware but caution should be
taken when measuring the energy used.

Physically measuring the electrical consumption of the
computer and each of its physical components such as hard
disk drives and graphics processing units requires direct ac-
cess to the hardware. Software, however does not have a
physical connection that can be measured as it operates on
a system of multiple hardware components. In theory, we
could measure the energy use for each component in isola-
tion, but in practice the components interact, further com-
plicating the measurements. Also the application itself has
no control over the native scheduling algorithm, so when
should the sampling of current and voltage start and finish
for each component? Apart from energy use varying for dif-
ferent type of memory (flash, cache, HDD) and where the
data is stored [7], how one program uses memory or the
graphics card might also have consequences for other pro-
grams, and vice versa. Two questions then arise: Do we
need to measure the energy consumption of the system after
the application has terminated? How does the state of the
system before execution affect the measurements?

Knowing how complicated physical measurements of pro-
gram’s energy use are, how can we possibly come up with a
function that estimates this property? It has to be accurate
enough, but also simple enough so that it is useful in prac-
tice. It must take into account the whole system; hardware,
firmware, and OS while also considering the changes of the
energy profile of the program being improved.

Measuring the total energy consumption of a system while
a program is executing makes it only possible to draw con-
clusions about the program on that particular system.

3. OPEN ISSUES FOR ENERGY IMPROVE-
MENTS WITH GI

GI is a young field within computer science and software
engineering and it faces numerous challenges in general. Re-
cent incentives towards “green computing” have added to
those challenges. Some of the general issues for energy effi-
cient computing are related to measuring the energy usage.
Measuring energy usage accurately however is nearly an im-
possible task. Not only are physical measurements estimates
through multiple sampling but they also take human effort
and apply only to the systems being measured. Moreover,
physical measurements are presently not viable for dynam-
ically optimizing software after it has been launched. Until
now the only reliable way to measure how much energy a
software consumes has been through highly specialized or
customized system. Similarly to cars being rated in test
conditions for their fuel consumption, the rating never ac-
curately translates to intricacies in the real world.

Surrogate objectives are necessary to achieve dynamically
adaptive “green” software. A single point of measurement
as a substitute such as CPU cycles is not enough since they
provide no consistency across programs or platforms. We
therefore can not rely on them to make scientific conclusions
nor use them in practice. We would want alternative mea-
surements such as simulations or modelling from multiple
programmatical sources so that we can reliably use them in

science or at the very least make energy optimisation prac-
tical.

Extending the quote from Lord Kelvin: If you can not
measure it accurately, you can not improve it reliably.
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