
Coevolutionary Agent-based Network Defense Lightweight
Event System (CANDLES)

George Rush, Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri 65409-0350, USA
gdr34b@mst.edu, dtauritz@acm.org

Alexander D. Kent
Cyber Futures Laboratory

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

alex@lanl.gov

ABSTRACT
Predicting an adversary’s capabilities, intentions, and prob-
able vectors of attack is in general a complex and arduous
task. Cyber space is particularly vulnerable to unforeseen
attacks, as most computer networks have a large, complex,
opaque attack surface area and are therefore extremely diffi-
cult to analyze. Abstract adversarial models which capture
the pertinent features needed for analysis, can reduce the
complexity sufficiently to make analysis feasible. Game the-
ory allows for mathematical analysis of adversarial models;
however, its scalability limitations restrict its use to simple,
abstract models. Computational game theory is focused on
scaling classical game theory to large, complex systems ca-
pable of modeling real-world environments; one promising
approach is coevolution where each player’s fitness is depen-
dent on its adversaries. In this paper, we propose the Coevo-
lutionary Agent-based Network Defense Lightweight Event
System (CANDLES), a framework designed to coevolve at-
tacker and defender agent strategies and evaluate potential
solutions with a custom, abstract computer network defense
simulation. By performing a qualitative analysis of the re-
sult data, we provide a proof of concept for the applicability
of coevolution in planning for, and defending against, novel
attacker strategies in computer network security.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.6 [Simulation and Modeling]:
Miscellaneous; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

Keywords
cyber security, coevolution, simulation

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768429

1. INTRODUCTION
Great strides are needed in the defensive tools and tech-

nologies available to cyber security practitioners, as the asym-
metric nature of cyber warfare [8] puts defending practi-
tioners at a distinct disadvantage; i.e., cyber attackers get
to decide when and where to attack, without the need for
physical presence providing advance notice to the cyber de-
fenders who must scramble to quickly determine that an
attack is occurring, select an appropriate defense, and exe-
cute it. In cyber security, as in many security-related fields,
it can be prudent to evaluate worst-case attack scenarios.
Whether facing insider threats or sophisticated adversaries
outside one’s networks, it is important to develop threat and
attack models such that one can predict an adversary’s ca-
pabilities, intentions, and probably vectors of attack. Cyber
space is particularly vulnerable to unforseen attacks due to
most computer networks having a large, complex, opaque at-
tack surface area and therefore being extremely difficult to
analyze. Invariably, the large number of variables involved
in both offensive and defensive strategies makes an exhaus-
tive search of all strategies infeasible. Abstract adversarial
models which capture the pertinent features needed to an-
alyze such strategies, can reduce the complexity sufficiently
to make analysis feasible.

Game theory allows for mathematical analysis of adver-
sarial models; however, its scalability limitations restrict its
use to simple, abstract models. Computational game theory
is focused on scaling classical game theory to large, com-
plex systems capable of modeling real-world environments;
one promising approach is coevolution where each player’s
fitness is dependent on its adversaries. Coevolution can be
employed to explore the associated search spaces, examin-
ing strategic capabilities and estimating how each side will
adapt in response to moves made by an opponent.

It makes sense to focus resources on securing systems such
that attacks become less effective. There are several well-
known ways to harden systems against attack, from lim-
iting access permissions to patching software and reducing
exposed network services. These are useful measures to re-
duce the attack surface and make it easier to defend vi-
tal assets. Yet for all the efforts taken to secure systems,
intrusions still occur in many organizations, often without
their knowledge [8]. Once it is acknowledged that intrusions
cannot be stopped entirely, awareness, damage mitigation,
and disaster recovery become important goals. In particular,
knowing how an adversary could break into a network and
devising possible counter-strategies is vital. In this paper,

859

we propose the Coevolutionary Agent-based Network De-
fense Lightweight Event System (CANDLES), a framework
designed to coevolve attacker and defender agent strategies
and evaluate potential solutions with a custom, abstract
computer network defense simulation. Our approach co-
evolves two populations containing attacker and defender
strategies in a network defense scenario, and the fitness of
strategies is determined through simulations. In this way,
unique, near-optimal strategies for both sides can be dis-
covered. By performing a qualitative analysis of the result
data, we provide a proof of concept for the applicability of
coevolution in planning for, and defending against, novel
worst-case attacker strategies in computer network security,
allowing an end user to develop strategies and set up test
scenarios. This offers new possibilities for analyzing and re-
inforcing defensive capabilities against unknown threats.

2. RELATED WORK
Coevolution has been used to find better placements for

Flexible AC Transmission System (FACTS) devices [10],
which are used to prevent cascading blackouts in electric
transmission systems [7], and also to evolve attackers and
defenders for graph-based network theory models [1]. De-
fenses have been designed that can predict the behavior of
adaptive adversaries using a combination of game theory
and machine learning [5], and machine learning has likewise
been used to predict the nature of relationships in adversar-
ial social networks [4]. Strategies have been developed for
defending against Distributed Denial-of-Service (DDoS) at-
tacks using a Bayesian game theoretic framework [12], and
hidden Markov models have been developed to detect cyber
attacks in network traffic [6].

Current approaches to developing computer network de-
fense strategies largely focus on either pure game theoretic
models [11] or real world implementations and emulated sys-
tems [2, 9]. Emulated systems more accurately reflect real
world conditions, but require a fair amount of resources and
configuration knowledge. Game theoretic models are math-
ematically elegant, but they do not scale well to larger so-
lution spaces. Our approach falls somewhere in the middle,
as our experiments employ a custom network security sim-
ulation. Coevolution allows us to approximate game theory
solutions for large search spaces, thus providing scalability
beyond the limits of classic game theory, and the simula-
tion provides a more realistic strategy evaluation without
the configuration difficulty of most emulated systems.

3. METHODOLOGY
There are two main parts to the CANDLES framework:

the coevolutionary algorithm (CoEA) and the network se-
curity simulation. A CoEA was chosen over other stochastic
methods since it most closely represents the natural dynamic
between attackers and defenders in cyber space. Namely,
they evolve their capabilities over time in response to ac-
tions taken by opponents. The network security simulation
was developed to evaluate potential solutions in the CoEA,
and it is used to simulate cyber defense scenarios given an
abstract set of capabilities for both attackers and defenders.

In our model, attacker capabilities include exploits and re-
connaissance, or recon. Recon techniques identify features
of defender machines or networks and increase the chance
of exploit success. Exploits are used to compromise a vul-

nerability and deliver a payload used to exfiltrate data. In
our simulation, a vulnerability may be specific to a service
or operating system, and there are no payloads designed to
damage enemy systems. This is meant to model a stealthy
attacker with advanced intrusion capabilities and a desire to
gather as much information as possible. Attacker profit is
defined in the simulation as the total amount of information
exfiltrated from the defender’s machines.

Defender capabilities include detection systems, mitiga-
tion techniques, and shutting down machines. Detection
systems attempt to detect both exploits and reconnaissance
and inform the defender. Upon detection, dynamic mitiga-
tion techniques can be used to attempt to stop the attack.
Should the attack not be detected or if dynamic mitigation
fails, then static mitigation techniques may still prevent the
attack from working. Dynamic mitigation is meant to rep-
resent an Intrusion Prevention System (IPS), whereas static
mitigation represents passive defenses like closed network
ports, software patches, or limited user privileges. Paranoia
is also used to represent how alert a defender is after exploits
have been detected, and high paranoia will eventually cause
the defender to shut down targeted machines.

3.1 Classes
This section describes classes that provide the structural

basis for the rest of the framework.

3.1.1 Action
The Action class represents a possible action by any en-

tity in the simulation, and it specifies both a target and a
technique. Since currently only Attackers use Actions, tech-
niques can be either Recon Techniques or Exploits.

3.1.2 Attacker
The Attacker class is initialized with an Attacker Solution

and executes Actions during the simulation. Which Actions
to use are determined using capabilities in the Attacker So-
lution, and state information is used to track reconnaissance
information and event history. The structure for this class
is visualized in Fig. 1.

3.1.3 Attacker Solution
An Attacker Solution specifies attack capabilities by defin-

ing available Recon Techniques and Exploits, and it specifies
strategy through a target list of Defender Machines. In gen-
eral, an attacker should not attack too many targets since
that raises the Defender’s paranoia level, which makes it
harder to extract information once machines are shut down.
On the other hand, attacking too few targets or targets of
low value will not provide enough profit to be worthwhile.
Attacker Solutions compose the first of two populations in
the CoEA, and they are initialized using population seeds
as described in Subsection 4.4.

3.1.4 Defender
The Defender class is initialized with a Defender Solution

and responds to Actions by an attacker using detection sys-
tems and mitigation techniques. State information is used
here to track the paranoia level. Paranoia is a mechanism
that increases with detected exploits and allows the De-
fender to shut down machines upon reaching certain thresh-
olds. Note that shutting down machines incurs a passive

860

Table 1: Experiment Configuration Parameters
Experiment ID Attacker Pop. Seed Defender Pop. Seed Attacker Evolution Defender Evolution

X1 Weak Weak Static Static
X2 Weak Weak Static Dynamic
X3 Weak Weak Dynamic Static
X4 Weak Weak Dynamic Dynamic
X5 Weak Strong Static Static
X6 Weak Strong Static Dynamic
X7 Weak Strong Dynamic Static
X8 Weak Strong Dynamic Dynamic
X9 Strong Weak Static Static
X10 Strong Weak Static Dynamic
X11 Strong Weak Dynamic Static
X12 Strong Weak Dynamic Dynamic
X13 Strong Strong Static Static
X14 Strong Strong Static Dynamic
X15 Strong Strong Dynamic Static
X16 Strong Strong Dynamic Dynamic

Figure 1: Attacker Diagram

cost for productivity loss, but it prevents further data exfil-
tration. The structure for this class is visualized in Fig. 2.

3.1.5 Defender Machine
Each Defender Machine has a unique ID, intrinsic value,

operating system, and list of available services. State infor-
mation tracks whether the machine is active and any status
effects incurred as a result of Exploits or Recon Techniques.

3.1.6 Defender Solution
A Defender Solution specifies a Defender’s capabilities by

defining available Detection Systems and Dynamic Mitiga-
tions, and it specifies strategy through suspected targets and
paranoia thresholds. Suspected targets are used to perform
extra defensive measures with a one-time cost, and para-
noia thresholds are used to determine when to shut down
machines. Defender Solutions compose the second popula-
tion in the CoEA, and they are initialized using population
seeds as described in Subsection 4.4.

Figure 2: Defender Diagram

3.1.7 Detection System
Each Detection System has a one-time installation cost

and four separate detection probabilities for the following
events against any target: successful recon, failed recon, suc-
cessful exploit, and failed exploit.

3.1.8 Dynamic Mitigation
Each Dynamic Mitigation has a local execution cost, a

user cost (to represent spent effort or time), and a proba-
bility of success. Note that Dynamic Mitigations can also
be used as a static defensive measure on suspected targets.
This means the costs are only incurred once per suspected
target, but they are incurred regardless of whether or not
that target is attacked.

3.1.9 Exploit
Each Exploit has a value multiplier, a probability of suc-

cess, and one or more constraints. The value multiplier in-
dicates the utility of the payload since a higher multiplier

861

will extract more value, representing information, from a
given Defender Machine. The constraints specify the oper-
ating system or services required for the Exploit to function
correctly.

3.1.10 Recon Technique
Each Recon Technique has type information and a proba-

bility of success. Type information indicates which effect the
Recon Technique will have if successful, and the three possi-
ble effects are to increase the probability of exploit success,
identify the OS, or identify running services.

3.2 Coevolutionary Algorithm
The CoEA evolves a population of Attacker Solutions against

a population of Defender Solutions. Attacker Solutions use
targets, Recon Techniques, and Exploits while Defender So-
lutions use paranoia thresholds, a budget, suspected targets,
Detection Systems, and Dynamic Mitigations. Note that in
both solution classes, targets are references to Defender Ma-
chines. Both Attacker and Defender Solutions are initialized
from population seeds as covered in Subsection 4.4.

Parent selection is random, and survivor selection uses
truncation. For recombination, a random subset of values
are chosen for each variable from each parent. For muta-
tion, a target or technique is randomly added or removed
from the given solution. Defender Solutions can also mutate
paranoia thresholds to any value with a step size of 0.1 in the
range [0, 1]. Note that paranoia thresholds specify the nec-
essary paranoia level for a Defender to shut down machines,
whereas the paranoia level itself just specifies how paranoid
the Defender is at any time during a given simulation.

Fitness evaluation for any individual requires measuring
its performance multiple times against several opponent so-
lutions in the network security simulation and averaging the
results. The exact number of opponents and number of sim-
ulations per opponent are determined by the CoEA configu-
ration (listed in Subsection 4.3). Pseudocode for the fitness
function is provided in Algorithm 1.

One unique aspect of our CoEA is that the fitness func-
tion is asymmetric. The attacker only attempts to maxi-
mize its profit (representative of information gained), but
the defender wants to both minimize the attacker’s profit
and minimize its own costs. To do this, the fitness value per
simulation is calculated as shown in (1) and (2).

attacker fitness = −(attacker profit) (1)

defender fitness = −(attacker profit)− (defender costs)
(2)

It is important to point out that fitness is determined on
a scale of (−∞, 0], and attackers always want to minimize
their fitness value while defenders want to maximize theirs.
This mirrors reality in that the best case for defenders in
cyber security is having zero losses from attacks and zero
resources spent on defense, resulting in a maximum fitness
value of zero. Attackers attempt to minimize their fitness
value so that the attacker profit can be represented the same
way in both equations.

3.3 Network Security Simulation
The network security simulation follows this process:

1. Attacker and Defender are initialized from solutions.

2. Defender prepares initial defenses.

3. Event loop begins:

(a) Attacker performs an action (or does nothing).

(b) Defender responds as necessary.

(c) Passive costs are calculated.

(d) Exit the loop if Attacker does not act.

During initialization, the Attacker will build attack sequences
based on all possible combinations of available targets and
techniques. It should be emphasized that the Attacker So-
lution only specifies the targets and techniques available
for composing Actions in the attack sequence, and the At-
tacker’s strategy for building attack sequences is static. The
Defender then prepares its initial defense capabilities, which
involves calculating installation costs for detection systems
and static defensive measures. At this point, the main event
loop begins. During each iteration of the event loop, the
Attacker will start by looking up its next planned Action.
If there are recon Actions remaining, those will be given
priority. Should an exploit Action be selected, it will be ex-
ecuted only if the exploit constraints match any known recon
information for the target. The Defender will respond to ei-
ther recon or exploits by attempting to detect and mitigate
them. If the event is successfully detected, dynamic mitiga-
tions are applied. If dynamic mitigations fail or if the event
is not detected, then static mitigations may still take effect
for suspected targets. The Defender also has a paranoia
level which increases when exploits are detected. Should
paranoia reach certain thresholds, then targeted machines
will be shut down upon further detection of exploits or data
exfiltration. Passive costs are also calculated for each itera-
tion of the event loop. The only passive costs are currently
those for productivity loss by inactive Defender Machines,
which are meant to balance out the tendency of a Defender
Solution to simply shut down machines in order to block
all attacks. Finally, should the Attacker have zero planned
actions remaining, the event loop terminates.

4. EXPERIMENT PROCEDURE
The objective of our experiments is to demonstrate that

coevolution can be used to explore and evaluate strategies in
a cyber defense simulation. To this end, we have designed
a number of experiments to explore various offensive and
defensive scenarios.

4.1 Experiment Variables
The variables for individual experiments are the attacker

population seed, defender population seed, and whether or
not each population evolves (listed in Table 1). Population
seeds are individual solutions used as a template for all pop-
ulation members during initialization, and they are listed
as weak or strong depending on their capabilities. We also
examine both static and dynamic populations in order to ex-
amine evolution in different contexts. It is easier, for exam-
ple, to determine how well a population is evolving against
a static opponent since it is not considered a moving target.

4.2 Result Data Format
There are 30 CoEA runs per experiment, and several types

of result data are provided for each run. During a single
run of the CoEA, the best Attacker Solution and Defender

862

Algorithm 1 Fitness Function

function calculateFitness(individual, enemyPopulation)
randomlyChosenOpponents← chooseOpponents(enemyPopulation,NUM OF OPPONENTS)
allOpponentAverages← None
for each opponent in randomlyChosenOpponents do

simulationResults← None
for i in range(NUM OF SIMULATIONS) do

defenderCosts, attackerProfit← runSimulation(individual, opponent)
if individual.class = Attacker then

result← −attackerProfit
else if individual.class = Defender then

result← −attackerProfit− defenderCosts
end if
simulationResults.append(result)

end for
opponentAverage← average(simulationResults)
allOpponentAverages.append(opponentAverage)

end for
return average(allOpponentAverages)

end function

Solution are stored from each generation. After the run is
complete, all the best solutions are output to file and used
to generate a CIAO plot (Current Individual vs. Ancestral
Opponents), which is used to visually convey the progress
of two populations during coevolution [3]. The Defender
Machine configuration is also output to provide contextual
information if needed during analysis.

To briefly explain CIAO plots, an example is provided in
Fig. 3. This particular plot is from the attacker’s perspec-
tive in experiment X8. For this perspective, darker regions
indicate more success for the attacker, and the attacker’s
generation is plotted along the increasing y-axis while the
defender’s generation is plotted along the increasing x-axis.
If this were the defender’s perspective, darker regions would
indicate more success for the defender, and the defender’s
generation would be plotted along the increasing y-axis while
the attacker’s generation would be along the increasing x-
axis. In this CIAO plot, the attacker is most effective to-
wards the last of its generations against the earliest gener-
ations of defenders as indicated by the nearly black pixels.

Figure 3: Example CIAO Plot

4.3 Important Configuration Parameters
All experiments ran with certain fixed values defined in

the configuration, and this section will examine those values.

• 30 CoEA Runs
This specifies the number of times a full CoEA is run
per experiment. 30 CoEAs will result in 60 different
CIAO plots (one each for attacker and defender per-
spective). This means that outliers can be identified,
but when discussing results, we chose a representative
pair of plots for each experiment.

• 10 Defender Machines
This specifies how many machines the Defender has
running on their network.

• 10 Fitness Opponents
This is the number of opponents used to evaluate a
given population member for fitness.

• 5 Simulation Runs
This is the number of simulation runs between any
two opponents during fitness evaluation. With 10 fit-
ness opponents, this means that 50 simulation runs are
needed to evaluate any population member.

• 100 Generations per CoEA

• Attacker Population Size of 100

• Defender Population Size of 100

• 30 Parents
This is the number of parents selected from each pop-
ulation per generation, and each pair of parents pro-
duces a single offspring (i.e., 15 offspring for each pop-
ulation).

• Random Parent Selection

• Truncation Survivor Selection

863

• No Pre-Defined Defender Machines
This is used to specify a Defender Machine configura-
tion for the network security simulation. Since one is
not given, the program will generate a random set of
Defender Machines for the duration of each CoEA.

Many of these constants were chosen to meet time con-
straints in the experiments or to simplify the model, though
there are a few exceptions. Random parent selection was
chosen to add genetic variety to the offspring, and using
truncation for survivor selection ensured that the popula-
tion would attempt to improve over time, or at least not
throw away the best solutions. There were never any pre-
defined settings for the Defender Machines aside from the
total number, as this forced solutions to be robust enough
to succeed against multiple network configurations.

4.4 Population Seeds
Both of the initial populations were generated using either

strong or weak solutions for each experiment. The design of
each population seed is presented here.

4.4.1 Weak Attacker Seed
The weak attacker solution has only three out of ten possi-

ble targets and zero recon techniques or exploits. All useful
capabilities must be developed through mutation.

4.4.2 Strong Attacker Seed
The strong attacker solution has all ten defender machines

as targets, one recon technique for each possible effect, and
an exploit with the highest possible multiplier for the cur-
rent configuration. All techniques have a success rate of
100 percent. While not a perfect solution, this provides the
attacker with a powerful set of starting capabilities.

4.4.3 Weak Defender Seed
The weak defender solution starts both shutdown thresh-

olds at 1.0 (the highest level), which means that the defender
will wait the longest possible time before shutting down ma-
chines despite detecting exploits and data exfiltration many
times. Only three out of ten machines are listed as suspected
targets, and there are no detection systems or dynamic mit-
igation techniques. Like the weak attacker seed, all useful
capabilities must be developed through mutation.

4.4.4 Strong Defender Seed
The strong defender solution starts both shutdown thresh-

olds at 0.5, which is meant to strike a balance between in-
creasing security and minimizing productivity losses from
having to shut down machines. It also has a cheap detection
system with perfect detection rates against all recon tech-
niques and exploits, and it has an even cheaper mitigation
technique with a success rate of 100 percent. All ten ma-
chines are listed as suspected targets. This provides a nearly
perfect defense.

5. RESULTS
Typical CIAO plots for each experiment are shown in ta-

bles 2 and 3. The reason for having CIAO plots with both
the attacker and defender perspectives is because each pop-
ulation uses a slightly different fitness function (as explained
in Subsection 3.2).

5.1 Entirely White or Black CIAO Plots
CIAO plots are entirely white or black for ten experiments,

indicating that little or no evolution occurred. The following
is an examination of these cases.

5.1.1 X1, X5, X9, and X13
These are experiments where both populations were static

(no evolution was allowed to occur), so this behavior is en-
tirely expected.

5.1.2 X2, X6, and X14
These are experiments with a static attacker and dynamic

defender. In X2, both sides start with weak population
seeds. Since the weak attacker essentially starts out with
zero attack capabilities, there is no motivation for the de-
fender to evolve. In X6, the defender is strong while the
attacker is still weak, so the same thing happens. In X14,
both sides start out strong, and this leads to a different prob-
lem: If both sides are currently near their peak capabilities,
there is little room to improve via evolution.

5.1.3 X7 and X15
These are experiments with a dynamic attacker and static

defender. In X7, the attacker starts out weak while the de-
fender starts out strong. While this provides plenty of room
for the attacker to evolve, the defender was simply too pow-
erful. The attacker never managed to evolve stronger capa-
bilities since it could never gain a foothold in the defender’s
network. In X15, both sides start out strong, so neither has
room to evolve past their peak capabilities.

5.1.4 X16
In this experiment, both populations were dynamic and

started out strong. However, since both started near their
peak, there was no room to evolve for their best members.

5.2 Gradient CIAO Plots
CIAO plots have gradients for six experiments, indicating

that evolution occurred for one or both sides. The following
is an examination of these cases.

5.2.1 X3 and X11
These are experiments with a dynamic attacker and static

defender. In X3, both sides start out weak, which allows
the attacker to evolve many new capabilities and produce
a smooth gradient in the corresponding CIAO plots. In
X11, attackers started out strong while defenders started
out weak. As a result, the attacker’s best members only
evolved a few times since they were already strong. This
created CIAO plots with a few large bands in the gradient.
In both cases, these CIAO plots show clear evolution by the
attacker.

5.2.2 X10
In this experiment, the defender was dynamic and started

out weak while the attacker was static and started out strong.
Because of the attacker’s strength, the defender had an in-
centive to evolve better capabilities, and since the defender
started out weak, it had a lot of room to evolve. Also, the
attacker being static made it easier for the defender to im-
prove since it was not chasing a moving target. This led to a
smooth gradient in the corresponding CIAO plots represent-
ing the clearest evolution by the defender in all experiments.

864

Table 2: Typical Resulting CIAO Plots (Attacker Perspective)
X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Table 3: Typical Resulting CIAO Plots (Defender Perspective)
X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

5.2.3 X4, X8, and X12
These are experiments where both populations were dy-

namic. In X4, both populations started out weak, which
leads to a lot of evolution on both sides. This experiment’s
CIAO plots show the attacker doing better against earlier
defenders, whereas the later defenders eventually became
strong enough that the attackers had trouble keeping up.

In X8, the attacker started out weak while the defender
started out strong. The attacker managed to evolve enough
to do better against earlier opponents, though against the
defenders compensated for this by the end of the CoEA. In-
terestingly, the defender’s CIAO plot in X8 is mostly black
since the defender was doing well nearly the entire time ac-
cording to its own fitness estimates.

In X12, the attacker started out strong while the defender
started out weak. In the attacker’s CIAO plot, it is clear that
the attacker was getting weaker over time according to its
own fitness estimates. This is because it started out strong
while the defender was weak, meaning that the attacker did
not have much room to evolve and was also chasing a mov-
ing target. The defender’s CIAO plot for X12 has mixed
gradients, which means that the attacker was at least at-
tempting to counter the defender’s evolution. However, it
still shows that the defender eventually evolved to do well
against almost all the attackers.

5.3 Outlier CIAO Plots
There were a few outlier CIAO plots for experiments X14

and X16, and examples of them are displayed in Table 4. In
both experiments, each side starts out with a strong popu-
lation seed, though the attacker is static for X14 while the
defender is dynamic in both experiments. The CoEA starts

Table 4: Outlier CIAO Plots
X14 Attacker X14 Defender

X16 Attacker X16 Defender

out with the attackers doing decently well early on, but then
they are clearly dominated by all later defender solutions.
This is consistent with other CIAO plots for X14 and X16
in the sense that little evolution seems to occur, at least
after a certain point. With little room for improvement,
it appears that the defender will always dominate due to a
nearly perfect defense.

865

6. DISCUSSION
The results show that coevolution can be used to explore

strategies by both attackers and defenders in network se-
curity, but there are still several opportunities for improve-
ment. First, we chose to develop our own network security
simulation as a compromise between a purely mathematical
model and real world testing. Unfortunately, there seem to
be few realistic simulations with the capabilities to test dif-
ferent types of cyber attacks. This is an important point
since both the scenarios and strategies need to map accu-
rately to real world entities. With our current simulation,
it is possible to connect individual components in solutions
to offensive and defensive capabilities in modern networks,
but it will likely be an inaccurate or inconsistent mapping.

Second, the attacker and defender solutions mostly con-
tained capabilities and a few important thresholds. The
fundamental strategy for both sides does not change accord-
ing to the solutions. Attackers always attempt to maximize
their own profit by attacking a specific list of targets with
all reconnaissance techniques and exploits available to them.
Exploits will only be ignored for a given target if reconnais-
sance on that target has shown it to violate the exploit’s
own constraints (e.g. cannot use a SQL exploit if that ser-
vice does not exist on the target). Defenders only respond to
attacks rather than taking independent actions, and beyond
detection and mitigation techniques, their only available op-
tion for stopping attacks is to shut down machines entirely.

Third, there are a number of parameter combinations that
can affect the simulation or CoEA in interesting ways. One
can change the number of defender machines, the number
of generations, parent and survivor selection methods, the
fitness function for either side, population sizes, etc. So far
only limited hand tuning has been performed, due to the
high computational cost of running experiments.

7. CONCLUSION AND FUTURE WORK
The goal of this work is to demonstrate the viability of de-

veloping cyber defense strategies by applying coevolution to
network security simulations. We created our own simula-
tion to test attacker and defender capabilities since existing
frameworks did not meet our needs, and the results have
shown that coevolution is a capable model in this solution
space. In particular, experiments X3, X7, X11, and X15 are
significant since they reflect the current situation in cyber
security. This is because they model a dynamic attacker
and static defender, an accurate situation as a defender will
typically deploy defenses once and rarely change them while
attackers constantly update their capabilities.

Note that our project is designed as a proof of concept.
The network simulation in CANDLES is purposely some-
what abstract for the sake of simplicity. By utilizing coevo-
lution with a more accurate simulation, it is likely that solu-
tions with a stronger mapping to real world systems would
emerge. Therefore, in future work, the first priority is to
increase the fidelity of the simulation, such as introducing
the notion of time (currently the simulation only recognizes
order). Another important goal would be to develop more of
the general strategy and less of the capabilities for attackers
and defenders, as this could lead to more dynamic behavior
on both sides. Finally, an extensive sensitivity study needs
to be performed for identifying high-quality CoEA and sim-
ulation parameters.

8. ACKNOWLEDGMENTS
This work was supported in part by Los Alamos National

Laboratory via the Cyber Security Sciences Institute under
subcontract 259565 and in part by the Missouri S&T Intel-
ligent Systems Center.

9. REFERENCES
[1] H. Arnold, D. Masad, G. A. Pagani, J. Schmidt, and

E. Stepanova. NetAttack: Co-Evolution of Network
and Attacker. In Proceedings of the Santa Fe Institute
Complex Systems Summer School 2013.

[2] T. Benzel, B. Braden, T. Faber, J. Mirkovic,
S. Schwab, K. Sollins, and J. Wroclawski. Current
Developments in DETER Cybersecurity Testbed
Technology. In Proceedings of the Cybersecurity
Applications & Technology Conference For Homeland
Security (CATCH), pages 57–70. IEEE, 2009.

[3] D. Cliff and G. F. Miller. Tracking the Red Queen:
Measurements of Adaptive Progress in
Co-Evolutionary Simulations. In Advances In
Artificial Life, pages 200–218. Springer, 1995.

[4] R. Colbaugh and K. Glass. Leveraging Sociological
Models for Prediction I: Inferring Adversarial
Relationships. In 2012 IEEE International Conference
on Intelligence and Security Informatics (ISI), pages
66–71. IEEE, 2012.

[5] R. Colbaugh and K. Glass. Predictability-Oriented
Defense Against Adaptive Adversaries. In 2012 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), pages 2721–2727, 2012.

[6] J. Grana, D. Wolpert, J. Neil, D. Xie,
T. Bhattacharya, and R. Bent. HMMs for Optimal
Detection of Cybernet Attacks. Technical Report
SFI-2014-06-022, Santa Fe Institute, June 2014.

[7] N. G. Hingorani, L. Gyugyi, and M. El-Hawary.
Understanding FACTS: Concepts and Technology of
Flexible AC Transmission Systems. Wiley-IEEE Press,
Dec. 1999.

[8] A. T. Phillips. Now Hear This–The Asymmetric
Nature of Cyber Warfare. In US Naval Institute,
volume 138/10/1,316, Oct. 2012.

[9] L. Pridmore, P. Lardieri, and R. Hollister. National
Cyber Range (NCR) Automated Test Tools:
Implications and Application to Network-centric
Support Tools. In Proceedings of the 2010 IEEE
Systems Readiness Technology Conference
(AUTOTESTCON), pages 1–4, Sept. 2010.

[10] T. Service and D. Tauritz. Increasing Infrastructure
Resilience Through Competitive Coevolution. New
Mathematics and Natural Computation, 5(2):441–457,
July 2009.

[11] M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
FlipIt: The Game of “Stealthy Takeover”. Journal of
Cryptology, 26(4):655–713, 2013.

[12] G. Yan, R. Lee, A. Kent, and D. Wolpert. Towards a
Bayesian Network Game Framework for Evaluating
DDoS Attacks and Defense. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security (CCS ’12), pages 553–566, 2012.

866

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150512071142
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Right
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 15.12 points
 Normalise (advanced option): 'original'

 32

 D:20150512071142
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 15.1200
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 8
 7
 8

 1

 HistoryList_V1
 qi2base

