
Using Genetic Algorithms for Deadline-Constrained
Monitor Selection in Dynamic Computer Networks

Robin Mueller-Bady
Frankfurt University of Applied

Sciences
Nibelungenplatz 1

Frankfurt am Main, Germany
mueller-bady@fb2.fra-

uas.de

Ruediger Gad
Frankfurt University of Applied

Sciences
Nibelungenplatz 1

Frankfurt am Main, Germany
rgad@fb2.fra-uas.de

Martin Kappes
Frankfurt University of Applied

Sciences
Nibelungenplatz 1

Frankfurt am Main, Germany
kappes@fb2.fra-uas.de

Inmaculada Medina-Bulo
Universidad de Cádiz

C/Chile 1
CP 11002 Cádiz, Spain

inmaculada.medina@uca.es

ABSTRACT
In this paper we address the problem of selecting a mini-
mal number of optimally positioned monitors for capturing
network traffic in dynamic computer network environments.
Requirements of computer network monitoring change fre-
quently, e.g., due to indicators of an ongoing attack, which
requires a continuous optimization and adaptation of the
monitoring state. The monitor selection problem can be
mapped to the vertex cover problem which NP-complete.
Therefore, we propose a genetic algorithm (GA) as opti-
mization heuristic for obtaining an appropriate solution in
adequate time.

In case of incidents in the monitored computer network,
it is necessary to adapt the monitoring strategy swiftly, reli-
ably and frequently. This is why we constrain the heuristic
using a hard deadline for the optimization process indicated
by the number of processed generations of the GA. Neces-
sary parameters for the GA were studied in order to optimize
them with respect to the given time constraint.

The GA was applied to different computer network graph
models generated using the Barabasi-Albert model with 30
and 100 vertices and the “National Research and Education
Network” (NREN) Europe. We show that the proposed GA
provides reliable and valuable results in an adequate time.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Heuristic Methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15 Companion, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768430

Keywords
Genetic Algorithm, Computer Network, Monitor Selection,
Network Monitoring

1. INTRODUCTION
Over the past decades, computer networks became an in-

dispensable part of todays business-, research- and personal
sector. Both, quality and quantity of computer networks in-
creased due to the higher amount and different types of de-
vices in communication networks, e.g., mobile phones, tablet
computers, or smart home devices[18]. At the same time,
those devices require a higher bandwidth to fulfill their re-
quirements, e.g., Voice over IP (VoIP) calls, video, or music
streaming.

The development of modern computer networks also in-
creases security concerns related to those communication
networks. Data theft, fraud, and (denial of service) attacks
become more frequent as they also imply higher significance
on business- or safety-critical systems[17]. It is necessary to
address these security related problems with high attention.

The first step of the successful implementation of coun-
termeasures against attacks is the gathering of information
about the current underlying computer network. This is
usually done using passive network monitoring techniques,
i.e., sniffing of network traffic. To accomplish this task ef-
ficiently, it is necessary to identify optimal positions in a
computer network to install monitors, which can either be
specific hardware devices or software on existing networking
infrastructure, e.g., switches or routers. For optimizing effi-
ciency, it is also important to identify the optimal number
of monitors. A large quantity of monitors leads to high costs
for implementation and maintenance. It has also a higher
negative impact on the computer networks performance due
to the monitoring process and exchange of information be-
tween the monitors or a central analysis server. However,
too few monitor positions will lead to loss of information of
the target network and therefore to a higher security risk.
An adequate amount of and positions for monitors in the
network must be found such that they cover all traffic that
passes on adjacent links.

867

In our work, the best position for a monitor in a network is
determined based on a snapshot of the current situation. A
shift of the traffic in the network, e.g., based on an ongoing
attack, might change the situation for the monitors drasti-
cally. It is necessary to be able to react rapidly on changing
requirements of the current situation of a network in order
to preserve a high security level. The upcoming technol-
ogy of software-defined networking (SDN) is one of the key
technologies to enable this rapid change of the configuration
of a computer network, e.g., its monitors. This technology
leverages the advantages of a continuous optimization of the
monitoring configuration of dynamic computer networks.

In this paper we use genetic algorithms (GAs) for the op-
timization process. Humans often tend to design a systems,
devices, machines, or structures by the means of aesthetics,
symmetry and order. As Keane and Brown show, better so-
lutions for a given problem might not always be symmetric
or aesthetic: they optimize a satellite beam regarding its
stability in space using evolutionary computing methods by
a factor of 200[20]. There are several advantages of using
GAs for this type of optimization problem[15, 5]. GAs are
known to perform well on computational hard problems with
constraints and a high number of input parameters. Further-
more, compared to other greedy local search techniques, e.g.,
hill-climbing, they are flexible regarding the search space, es-
pecially in case the search space is multimodal, i.e., it has
many local optima which may trap other search methods.
Finally, in our specific case, genetic algorithms continuously
provide results after each generation, i.e., the GA might be
disrupted during the optimization process still providing the
currently best result. This might helpful in cases where an
urgent change of the monitoring state of the current situa-
tion is required.

This paper addresses those issues and shows, how to solve
them using genetic algorithms.

2. RELATED WORK
The problem of finding an optimal amount of monitors

and their optimal positions can be mapped to the NP-complete
minimum vertex cover optimization problem[26]. Thus, as-
suming P 6= NP , there is no algorithm to compute an opti-
mal solution to a given instance of the problem in acceptable
time. For this reason, we apply genetic algorithms as prob-
abilistic optimization heuristic.

There are many systems which provide an architecture for
monitoring different types of information in a network, e.g.,
available bandwidth[1], traffic information on flow level[23],
or multi-tenant cloud infrastructures[22]. However, all of
them are facing the problem of finding an optimal cover-
age for their network in order to minimize the necessary re-
sources for the monitoring process. Chaudet et al.[6] propose
an integer-programming method to place a fixed number of
monitors on optimal positions in the network. Chen et al.[7]
study the placement of intrusion detection system sensors in
a network for surveillance purposes. Both approaches solve
design problems, where the genetic algorithm is used once
before the implementation of the final solution in the target
network. Our solution is designed in order to continuously
optimize the existing dynamic computer network having a
time constraint. For our problem, the NP-complete inte-
ger programming paradigm does not meet the requirements
of having a flexible and fast solution for the optimization
problem.

Applying evolutionary computing to graph-based prob-
lems from many different disciplines is common[13]. Syarif
et al.[24] propose a method to optimize a multi-stage supply
chain network (SCN) regarding their cost using a spanning-
tree based genetic algorithm. Altiparmak et al.[3] developed
another genetic algorithm for the optimization of the same
SCN but based on multiple objectives: transportation cost,
delivery time, and optimization of the capacity utilization
balance of storage centers. Other graph-based problems are
researched by Gen et al.[12, 13, 14], developing genetic algo-
rithms for several graph-based problems, e.g., the minimum
spanning-tree problem, design of local area networks, fixed-
charge transportation problem, or the centralized network
design problem.

Regarding the specific problem of selecting an optimal
number of monitors in a given network graph, Zhu et al.[25]
provide an overview of existing monitor selection methods in
computer networks. They are based on information which
finally helps to determine the quality of the given network
with respect to quality of service (QoS) attributes, e.g.,
bandwidth and packet drop rate.

Our approach can also be used for distributed monitor-
ing of network traffic, as shown by Gad et al.[11]. In this
work, a method for distributing network traffic capturing is
introduced based on simple classifications of packets based
on packet header field information. They also propose an
approach to dynamically monitor network traffic on certain
points in a network in a self-adaptive and cooperative man-
ner[10]. Both applications can benefit from a continuous se-
lection of optimal monitoring positions. However, all those
proposed methods do not fulfill the requirement of being
flexible enough to react on recent changes in the network.
Therefore, our solution can be used to bridge that gap.

3. PROBLEM
As model for reflecting the computer network, we as-

sume an undirected simple graph with a fixed topology G =
(V,E,w) with V being the set of vertices, E ⊆ V 2 being
the set of edges which are symmetric tuples of vertices, and
w : E → N+ being a non-negative weighting function for the
edges representing the priority of the edge to be monitored.
For the remainder of this paper, we follow the graph nota-
tion and definitions of[8]. We study the problem of finding
the optimal number and positions of monitors in a computer
network, such that the number of monitors is minimal and
the positions are chosen in order to cover each edge. Having
a graph g ∈ G whose edge weightings are all 1, this problem
can mapped to the vertex cover problem, which is defined
as follows: Let G = (V,E) be an undirected simple graph,
a vertex cover is a subset of vertices V ′ ⊆ V such that for
each edge (vi, vj) ∈ E, either vi ∈ V ′ or vj ∈ V ′, or both.
The minimum vertex cover is a vertex cover where k = |V ′|
is minimal for all possible vertex covers of G[19].

4. GENETIC ALGORITHM
We propose a general generational genetic algorithm as

search strategy. For the experiments, we pick a population
size of 200 for all GA runs, as this provides an adequate
amount of genetic diversity for the given problem. The ini-
tial population is randomly generated. As the number of
generations is our key indicator for the runtime of the GA,
we will vary it over four steps: 50, 100, 500, and 1, 000. In

868

Figure 1: Genotype of an individual in the genetic
algorithm indicating the selected monitors

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 2: Phenotype of an individual in the genetic
algorithm indicating the selected monitors

the following, the individual components of the GA will be
discussed in more detail.

4.1 Representation
While there exist different approaches for representations

of graph based problems in GAs[12], we follow a vertex-
based approach for the proposed GA. Let G = (V,E,w) be
a graph. We use a binary vertex-based genotype encoding
string, ~x ∈ {0, 1}|V |, such that each gene, (x1, ..., xn) ∈ ~x, is
representing one vertex in the graph:

xi =

{
1, if vi selected as monitor

0, otherwise
(1)

This results in a binary string representing one individual
from the result space. An example for the genotype of such
an individual is shown in Figure 1. See Figure 2 for the phe-
notypical graph representation of this individual. The mon-
itored vertices are represented by triangles, whereas vertices
not acting as monitors have a circle representation.

4.2 Evaluation
The fitness for the individuals is evaluated using the net-

work graph model as defined before in conjunction with the
genotype of the individual indicating the positions of the
monitors. As this problem is defined as minimization prob-
lem, a lower fitness indicates a better result. Calculation of
the fitness is done as follows: Let G = (V,E,w) be a graph
and (x1, . . . , xn) ∈ ~x a solution instance of the problem.
First we calculate the number of selected monitors

monitors(~x) =

|V |∑
i=1

xi (2)

where ~x is an individuals genotype and xi gene at position
i, respectively. In case of an individual with an infeasible

solution, i.e., a solution that does not cover all edges, we
introduce a penalty which penalizes the solution with the
double of its weighting, such that

penalty(~x) =
∑

(vi,vj)∈E

c · w(vi, vj) (3)

where {(vi, vj) ∈ E | xi + xj = 0} (4)

and c is a constant penalty factor. We use a penalty factor
c = 2 for our experiments. In this case, having an uncovered
edge is worse than having too many monitors. With c <
2, the fitness distance of solutions having uncovered edges
compared to solutions with a higher number of monitors but
less uncovered edges decreases. Having c > 2, this distance
increases but the GA becomes greedier. In our case, both
are undesirable behaviors. Additionally, with this factor we
ensure that the minimal vertex cover is always the solution
with the best fitness value.

Finally, the total fitness for each individual is calculated
as follows:

fitness(~x) = monitors(~x) + penalty(~x) (5)

which is in the range of1,

|V |+ ∑
(vi,vj)∈E

c · w (vi, vj)

 (6)

assuming a graph with V 6= ∅.

4.3 Genetic Operators
In the following, the used genetic operators and their pa-

rameters for the GA will be described. For the given prob-
lem, we follow the steps of the simple genetic algorithm as
described by Baeck et al.[4]: First, the population is eval-
uated using the defined objective (fitness) function. For a
given number of generations, the existing population cre-
ates their offspring using selection, crossover and mutation
operations. The new population is evaluated and selected
according to the selection algorithm. This process repeats
until a certain termination condition is met. In case of the
proposed GA, the termination condition is the number of
processed generations.

4.3.1 Recombination
The recombination operation is used in order to explore

a new area of the search space with the help of two parent
individuals. We researched different recombination opera-
tors, including simple 1-point crossover, 2-point crossover,
and partially mapped crossover (PMX)[4, 16]. The 1-point
crossover operation randomly picks 1 position in the geno-
type string and swaps all genes beyond. The 2-point crossover
operation works similar except that two points are chosen
which mark start and end position of the gene swapping
interval. PMX is usually used for permutation based prob-
lem representations. It works by randomly choosing two
crossover points and exchange position of genes in both par-
ents without changing the set of elements in the individual.
This crossover operation only changes the order of elements
in the genotype string according to their parents. We con-
sidered this operation for this genetic algorithm as we ex-
perienced beneficial results in a later stage of the GA run
when primarily placement of monitors is important over the
reduction of monitoring points. See Figure 3 for an evalu-
ation of the crossover operations for an average of 100 GA

869

900

1000

1100

1200

1300

0 50 100 150 200
Generation

F
itn

es
s

Operation

PMX

OnePoint

TwoPoint

Figure 3: Evaluation of the crossover operations

runs of the given problem. As shown in the figure, there is
just a negligible difference between the researched crossover
methods for the underlying problem. However, the PMX
operation has slight advantages as it converges earlier to a
good result. Thus, we use PMX as the preferred crossover
operation.

We studied the different parameter options for the crossover
probability, as can be seen in Figure 4. In this figure, we
show the mutation rate, pind in relation to the crossover rate
pcx and the fitness average of the GA run. A population size
of 200, the PMX crossover operation, shuffle mutation and
tournament selection with tournament size 20 and 400 gen-
erations is used. The step size of the crossover and mutation
rate is 0.05 per operation. A low fitness average value of a
certain pind/pcx combination determines a high suitability
for the GA.

As can be seen in the figure, a value of pcx = 1.0 is bene-
ficial for our GA which means that each tuple of parents of
the population will produce exactly two children.

4.3.2 Mutation
For the exploration of the local search space of the cur-

rent solution, a shuffle operation is used as the mutation
operator. This operation is used in order to avoid prema-
ture convergence but also introduce slight changes to the
genotype of the individual. We studied different mutation
operations for this problem, especially the common bit flip
and shuffle mutation operation. The bit flip operation in-
troduces a change in the genotype by flipping an allel with a
certain probability, whereas the shuffle mutation picks two
different alleles and changes their position. As can be seen
in Figure 5, the shuffle operation performed better than the
bit flip operation for an average of 100 runs of the proposed
GA. For this reason we use the shuffle mutation as muta-
tion operation. We distinguish between two different types
of mutation probabilities: the mutation probability for the
individual components (alleles) (pind) and the general mu-
tation probability (pmut). Probability value pmut is used in

Crossoverrate

0.0
0.2

0.4
0.6

0.8
1.0

Muta
tio

nra
te

0.0
0.2

0.4
0.6

0.8
1.0

Fi
tn

es
s

Av
er

ag
e

600
700
800
900
1000
1100
1200

900
950
1000
1050
1100
1150
1200
1250
1300

Figure 4: Evaluation of the crossover probability pa-
rameter pcx

900

1000

1100

1200

1300

0 50 100 150 200
Generation

F
itn

es
s Operation

Shuffle

Flip

Figure 5: Evaluation of the mutation operations

870

Figure 6: Evaluation of the pind and pmut parameters

order to distinguish whether an individual is considered for
mutation at all, whereas pind defines the probability for al-
tering single alleles in case an individual is considered for
the mutation.

We studied the different probabilities for the underlying
problem, as can be seen in Figure 6. In this figure we com-
pared the fitness values of 400 generations of the individual
and the allel mutation probability with a step size of 0.05
for each value from 0.0 to 1.0. The following values yield
the best results in the evaluation of possible parameters:
pmut = 0.8 and pind = 0.05.

4.3.3 Selection
Selection was implemented using a tournament selection[4].

Within this selection type, a random choice of individuals
from the population is used to participate in a tournament.
The best individual of the tournament gets selected. This
procedure is repeated until the number of necessary selec-
tions is reached. For the tournament selection, the param-
eter for the tournament size is chosen as one-tenth of the
population size. We avoid using elitist approaches due to
the huge multimodal search space.

5. EXPERIMENTS
For our experiments, we use three different network graph

models. The first two graphs are generated following the
Barabási-Albert model[2] generating scale-free networks hav-
ing 30 and 100 vertices, respectively. The weighting for the
edges is randomly generated using the interval]0, 10] indi-
cating the priority of the edge being monitored where 1 in-
dicates a low and 10 a high priority. Both graphs are sparse
as they have the minimum number of edges, |V | − 1.

The data for the third network is provided by the National
Research and Education Network (NREN) Europe[21]. The
model contains the data set of the European NREN inter-
connect model which forms the backend for the European
research network. This network model consists of 1,157 ver-
tices and 1,465 edges. We apply the same random weighting
in the interval of]0, 10] as for the other two graphs. How-
ever, this graph has, compared to the first two, a higher rate
of interconnecting vertices and is therefore tighter.

Figure 7: Graph |V | = 30

0 20 40 60 80 100
Generation

0

50

100

150

200

250

300

350

Fi
tn

e
ss

EA Run, G = (V, E) with |V|: 30; |E|: 29; Best Fit: 8.0

Minimum Fitness
Average Fitness
Maximum Fitness

Figure 8: GA statistics for graph |V | = 30

Each result of the GA is averaged over 10 runs per genera-
tion and network model. The implementation of the genetic
algorithm is done using python, deap, and igraph[9].

6. RESULTS
The results of the experiments are shown in Table 1.
For the graph with |V | = 30, the GA already converges

early to a result close to the final one using the minimal
number of generations. For all cases of generations of this
network model, there is no uncovered edge within the graph.
As there applies no penalty for uncovered edges, the fitness
number of monitors is equal to the fitness. For all cases of
different generation deadlines, the fitness is equal.

Figure 7 provides an illustration of the resulting graph
with the highest fitness discovered during the run of the GA
with 100 generations. The statistics for this run are shown
in Figure 8, where the minimum, average, and maximum
fitness are plotted in relation to the generations over the
whole GA run. As can be seen, the GA converges in an early
generation to a result close to the final result. In this case,
the best result of the heuristic run appears first in generation
∼ 90. The high variation of the maximum fitness indicates
a high genetic variation during the search process, whereas
the low variation of the average and minimum fitness shows
that there exists a stable subpopulation near the current
optimum.

For the graph with |V | = 100, the results in Table 1 show
that all edges are covered for all generation deadlines. How-

871

Table 1: Results of the GA - using deadlines for introduced network graph models
Network Model Generations Covered Edges Uncovered Edges Monitors Fitness
Graph |V | = 30 50 29 0 8 8
Graph |V | = 30 100 29 0 8 8
Graph |V | = 30 500 29 0 8 8
Graph |V | = 30 1000 29 0 8 8

Graph |V | = 100 50 99 0 32.1 32.1
Graph |V | = 100 100 99 0 30.6 30.6
Graph |V | = 100 500 99 0 29.8 29.8
Graph |V | = 100 1000 99 0 29.7 29.7

Graph “NREN” 50 1386.0 79.0 631.8 789.8
Graph “NREN” 100 1397.6 67.4 637.7 773.5
Graph “NREN” 500 1414.9 50.1 631.6 731.8
Graph “NREN” 1000 1419.5 45.5 632.5 723.5

Figure 9: Graph |V | = 100

ever, the number of monitors required to cover all edges
improves noticeable. For the case of 50 generations, the av-
erage number of monitors is 32.1. The GA run with 100
generations improves this to an average number of monitors
of 30.6, which is an improvement of 4.67%. This average
improvement factor reduces with the number of generations,
e.g., between 500 and 1,000 generation it is 0.34%, but it is
shown that improvement is still possible. From the dead-
line of 50 generations to 1,000 generations, the total average
improvement factor is 7.48%.

The statistics for one exemplary GA run in Figure 10 and
the final graph in Figure 9 confirms this observation. In the
beginning of the GA run, there is an improvement in the
fitness level of the individuals until generation ∼ 50. As for
the first graph, the GA also converges in an early generation
to a fitness value close to the final result. After that, only
minor changes to the fitness are introduced. As described
before, the high variation of the maximum fitness indicates a
high genetic variation during the search process, whereas the
low variation of the average and minimum fitness indicates
the stable subpopulation.

For the NREN graph, the results show that a significantly
higher amount of generations is necessary in order to pro-
duce satisfactory results. After the first 50 generations, the
GA produces a result were 5.39% of the edges are not cov-
ered, this reduces to 4.60% after 100 generations, 3.42% af-
ter 500 generations and finally to 3.11% after 1, 000 genera-
tions. Simultaneously, the number of monitors remains sta-
ble throughout all generations including minor deviations,
e.g. −0.93% from 50 to 100 generations or +0.14% from
500 to 1,000 generations.

0 100 200 300 400 500
Generation

0

200

400

600

800

1000

Fi
tn

e
ss

EA Run, G = (V, E) with |V|: 100; |E|: 99; Best Fit: 29.0

Minimum Fitness
Average Fitness
Maximum Fitness

Figure 10: GA statistics for graph |V | = 100

The final graph in Figure 11 and the related statistics
for this GA run in Figure 12 show noticeable improvements
over the generations of the GA. The GA does still maintain
a high genetic variation as indicated by the maximum fitness
values, but minimum and average are constantly decreasing,
even after generation 800. This run of the GA requires∼ 300
generations until it reaches a fitness level close to the final
fitness. The GA converges to the final fitness in generation
∼ 850, which shows that it is still worthwhile to use a higher
amount of generations for the GA to access better results.

Indeed, we can still experience improvement by increas-
ing the number of generations, which is shown in another
experimental run of the GA for the NREN network model
using 5,000 generations. The results are shown in Figure
13. This plot shows that the GA is still able to introduce
improvements on the given network graph model, even after
the defined deadline of 1,000 generations.

Table 2 shows the ratios of uncovered edges and monitors
for the different graphs and number of generations. As can
be seen, the coverage ratio for small and medium sized net-
works does not change as it already reaches its maximum in
early generations. For the network graph model containing
30 vertices, even the number of monitors is constant for all
runs of the GA. However, for the network graph model with

872

Table 2: Results of the GA - coverage and monitor ratio
Graph 30 Graph 100 Graph NREN

Generations Uncovered Monitors Uncovered Monitors Uncovered Monitors
50 0.00% 26.67% 0.00% 32.10% 5.39% 54.61%
100 0.00% 26.67% 0.00% 30.60% 4.60% 55.12%
500 0.00% 26.67% 0.00% 29.80% 3.42% 54.59%
1000 0.00% 26.67% 0.00% 29.70% 3.11% 54.67%

Figure 11: Graph “NREN”

0 200 400 600 800 1000
Generation

600

700

800

900

1000

1100

1200

1300

1400

1500

Fi
tn

e
ss

EA Run, G = (V, E) with |V|: 1157; |E|: 1465; Best Fit: 688.0

Minimum Fitness
Average Fitness
Maximum Fitness

Figure 12: GA statistics for graph “NREN” after
1,000 generations

0 1000 2000 3000 4000 5000
Generation

600

700

800

900

1000

1100

1200

1300

1400

1500

Fi
tn

e
ss

EA Run, G = (V, E) with |V|: 1157; |E|: 1465; Best Fit: 623.0

Minimum Fitness
Average Fitness
Maximum Fitness

Figure 13: GA statistics for graph “NREN” after
5,000 generations

100 vertices the number of required monitors reduces during
later generations while maintaining the same coverage.

For the more complex NREN network graph model, the
situation is different. Here, a low number of uncovered edges
is found in early generations but it is still decreasing during
the run of the GA. While still increasing the coverage, the
number of monitors remains constant as also described in
the results before.

7. CONCLUSION
In this paper we developed a genetic algorithm for find-

ing continuously rapid, reliable and adequate solutions for
the problem of selecting monitors in a dynamic computer
network. The GA was applied to two generated and a real
network graph model with 30, 100, and 1157 vertices having
a random weighting within]0, 10] indicating the importance
of a certain edge to be monitored.

As the results show, the proposed GA leads to good re-
sults for small to medium sized networks after just a few
generations. For those networks, further computing might
still lead to better results regarding the number of monitors
while the ratio of covered versus uncovered edges remains
constant. Having a more complex network, the amount of
necessary generations for creating results with similar qual-
ity compared to the simple networks increases, but satisfying
solutions are still produced in early generations.

On average, a higher number of generations leads to fewer
number of monitors for, at least, the same amount of covered
edges as shown before. This increases the coverage of the
monitors which in the end leads to higher security and fewer
cost of the monitoring process.

873

Our approach can be beneficial for usage in IT-Security
related systems, e.g., traffic monitoring or intrusion detec-
tion systems. This approach can be used in dynamic systems
which depend on fast reactions on rapidly changing require-
ments due to, e.g., attacks. Especially in dynamic computer
networks such as virtual environments or software defined
networks, where configuration can be automated, this ap-
proach can be very beneficial. As future work, the research
continues increasing the network graph models size and the
further development of the genetic algorithm using new op-
erations, EA models and multiple (concurrent) objectives.

8. ACKNOWLEDGMENTS
This work was supported in the framework of Hessen Mod-

ellProjekte, financed with funds of the European Union (Eu-
ropean Regional Development Fund - ERDF) and the State
of Hessen in the context of the research project “Reactive
network Optimization by Using SDN-Technology”(ROBUST)
(HA project no. 123/14). Responsible for the content are
the authors.

9. REFERENCES
[1] G. Aceto, A. Botta, A. Pescapé, and M. Darienzo.

Unified architecture for network measurement: The
case of available bandwidth. Journal of Network and
Computer Applications, 35:1402–1414, 2012.

[2] R. Albert and A.-L. Barabási. Statistical mechanics of
complex networks. Reviews of Modern Physics,
74(January):48–94, 2002.

[3] F. Altiparmak, M. Gen, L. Lin, and T. Paksoy. A
genetic algorithm approach for multi-objective
optimization of supply chain networks. Computers &
Industrial Engineering, 51(1):196–215, 2006.

[4] T. Bäck, D. B. Fogel, and Z. Michalewicz.
Evolutionary computation 1: Basic algorithms and
operators. CRC Press, 1st edition, 2000.

[5] T. Bäck and H.-P. Schwefel. An overview of
evolutionary algorithms for parameter optimization.
Evolutionary computation, 1(1):1–23, 1993.

[6] C. Chaudet, E. Fleury, I. G. Lassous, H. Rivano,
M.-E. Voge, I. Guerin, I. D. Lyon, and E. Voge.
Optimal positioning of active and passive monitoring
devices. CoNEXT 2005 - Proceedings of the 2005
ACM Conference on Emerging Network Experiment
and Technology, pages 71–82, 2005.

[7] H. Chen, J. a. Clark, S. a. Shaikh, H. Chivers, and
P. Nobles. Optimising IDS sensor placement. In ARES
2010 - 5th International Conference on Availability,
Reliability, and Security, pages 315–320, 2010.

[8] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg,
4th editio edition, 2010.

[9] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagne. DEAP: Evolutionary
Algorithms Made Easy. Journal of Machine Learning
Research, 13:2171–2175, 2012.

[10] R. Gad, M. Kappes, and I. Medina-Bulo. Monitoring
Traffic in Computer Networks with Dynamic
Distributed Remote Packet Capturing. In IEEE ICC
2015 - Next Generation Networking Symposium
(ICC’15 (07) NGN), 2015.

[11] R. Gad, M. Kappes, R. Mueller-bady, and
I. Medina-Bulo. Header Field Based Partitioning of

Network Traffic for Distributed Packet Capturing and
Processing. In IEEE 28th International Conference on
Advanced Information Networking and Applications
(AINA), pages 866–874, 2014.

[12] M. Gen and R. Cheng. Genetic algorithms and
engineering optimization, volume 7. 2000.

[13] M. Gen, R. Cheng, and S. S. Oren. Network design
techniques using adapted genetic algorithms. Advances
in Engineering Software, 32:731–744, 2001.

[14] M. Gen, A. Kumar, and J. R. Kim. Recent network
design techniques using evolutionary algorithms.
International Journal of Production Economics,
98:251–261, 2005.

[15] D. E. Goldberg. Genetic algorithms in search,
optimization and machine learning. Addison-Wesley,
1989.

[16] D. E. Goldberg and R. Lingle. Alleles, loci, and the
traveling salesman problem. In Proceedings of an
International Conference on Genetic Algorithms and
Their Applications, 1985.

[17] IBM Global Technology Services. IBM Security
Services Cyber Security Intelligence Index. Technical
report, 2013.

[18] International Telecommunication Union. International
Telecom Union Annual Report 2013: Measuring the
Information Society. Technical report, Geneva,
Switzerland, 2013.

[19] R. M. Karp. Reducibility among combinatorial
problems. In Complexity of Computer Computations,
pages 85–103, 1972.

[20] A. Keane and S. Brown. The design of a satellite
beam with enhanced vibration performance using
genetic algorithm techniques. The Journal of the
Acoustical Society of America, 99:2599–2603, 1996.

[21] S. Knight, N. Falkner, H. X. Nguyen, P. Tune, and
M. Roughan. I can see for miles: Re-visualizing the
internet. IEEE Network, 26(December):26–32, 2012.

[22] J. Povedano-Molina, J. M. Lopez-Vega, J. M.
Lopez-Soler, A. Corradi, and L. Foschini. DARGOS: A
highly adaptable and scalable monitoring architecture
for multi-tenant Clouds. Future Generation Computer
Systems, 29(8):2041–2056, 2013.

[23] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R.
Kompella, and D. G. Andersen. CSAMP: A System
for Network-wide Flow Monitoring. Proceedings of the
5th USENIX Symposium on Networked Systems
Design and Implementation, pages 233–246, 2008.

[24] A. Syarif, Y. Yun, and M. Gen. Study on multi-stage
logistic chain network: A spanning tree-based genetic
algorithm approach. Computers and Industrial
Engineering, 43:299–314, 2002.

[25] N. Zhu, J. Zuo, Y. Zhou, and W. Wang. Overview of
Monitor Selection in Computer Networks. In Y. Yuan,
X. Wu, and Y. Lu, editors, Trustworthy Computing
and Services, pages 52–59. Springer Berlin Heidelberg,
2013.

[26] X. Zhuo and X. Cao. Research based on the specific
optimizing strategy for network flow monitoring. In
3rd IEEE International Conference on Network
Infrastructure and Digital Content (IC-NIDC), pages
294–298, 2012.

874

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 15.12 points
 Normalise (advanced option): 'original'

 32

 D:20150508111446
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 15.1200
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move right by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150508111446
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Right
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

