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ABSTRACT
Marine pollution is the release of by-products that cause
harm to natural marine ecosystems and one of the most im-
portant sources is the discharge of oil, ballast water from
vessels. If the relevant technology is not available, alterna-
tive way to monitor environmental pollution is to use un-
manned air vehicles (UAVs). Since the navigating vessels
move in different directions and speeds, the determination
of the tour that should be traveled by a UAV resembles to
the dynamic traveling salesman problem (DTSP) in many
aspects. This paper addresses a new type of DTSP, where
targets can move in different directions with different speeds.
The locations of all vessels can change due to changes in ve-
locity that alters the length of all edges. Consequently, this
problem has a higher complexity in comparison to classical
DTSP presented in the literature. An empirical study is
conducted to evaluate performance of selected evolutionary
dynamic optimization techniques on solving the problem.

Categories and Subject Descriptors
Computing methodologies [Artificial Intelligence]: Search
methodologies—Discrete space search; Applied computing
[Computers in other domains]: Military

General Terms
Algorithms, Experimentation

Keywords
Evolutionary Dynamic Optimization; Dynamic Traveling Sales-
man Problem

1. INTRODUCTION
One of the most significant causes of marine contamina-

tion problem is accepted as pollutants, including dumping,
oil and exhaust pollution that are discharged from large
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ships. An alternative way to detect the discharge of such
substances is to use unmanned air vehicles (UAVs). In this
problem, a couple of traveling vessels at the sea on different
positions should be surveilled along the way according to
predefined objective function by a UAV. The UAV wants to
take a snapshot of these vessels starting from ground station
and returning after it visited all the vessels to its original
base. The objective is to minimize total distance traveled or
total elapsed time.

Assume that at t0 a UAV takes off and it is on its route,
and there are initially eight vessels (V1, · · · , V8) positioned
at different locations. By considering the distance between
vessels, the route can be generated, and the UAV starts the
tour. Most of the vessels move in different directions with
different speeds, hence the planned tour should be affected
seriously. In this way, both the positions and their links
(i.e. distances) should be changed during the execution.
After the occurrence of a change, an alternative tour must
be generated fast enough in order to complete the mission.
In this real world application, travel directions and speeds
can change dynamically and hence, are reasonably modeled
as stochastic variables.

Most of the real world problems in different domains have
various forms of dynamism, including a change(s) in the ob-
jective function, the problem constraints, the decision vari-
ables or environmental parameters with time, where the
main motivation of a given dynamic optimization problem
becomes tracking the global optimum value as close as possi-
ble [7]. But, there is a few studies focuses on these real world
problems and applying evolutionary dynamic optimization
(EDO) techniques to solve them.

The main motivation of this paper is to better understand
the nature of moving vessels in determination of tours dy-
namically for the domain of marine contamination, where
course directions and speeds of vessels can change dynam-
ically. In order to model this problem, we present a new
type of dynamic traveling salesman problem (DTSP). We
also conduct an empirical study to evaluate performance of
selected EDO techniques on solving the problem.

2. A VARIANT OF THE DYNAMIC TRAV-
ELING SALESMAN PROBLEM

The traveling salesman problem (TSP) is a fundamental
and intensively studied NP-hard combinatorial optimization
problem. Given a set of cities and the distance between each
pair of the cities, it aims to find the shortest path that visits
each city exactly once and returns to the original city. There
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are various formulations of the traveling salesman problem;
and one of them is the binary integer programming formu-
lation [6].

The dynamic traveling salesman problem (DTSP) in the
literature can be constructed in three ways/modes [8]. In
the first mode, the edge change mode, DTSP is generated
by introducing traffic factor [5] on one or more edges, which
can be simulated by the increase or decrease in the distance
between cities. An increase in the traveling distance on an
edge due to traffic factor does not change the locations of
the cities that are connected by the edge; and all other re-
maining edges are not affected. On the other hand, the in-
sert/delete mode, adds or deletes one or more cities, which
is more difficult for EDO techniques due to variable length
chromosome representation. In order to simplify representa-
tion, the number of cities are kept constant by keeping half
of all cities in the initial solution and using the remaining
half as the spare set for changes [4]. The last mode, the
vertex swap mode, swaps the locations of two cities, which
only changes the solution but keeps the length of the tour
constant.

Although the problem presented in this paper looks sim-
ilar to the DTSP, there are some important differences. In
our problem, the locations of all vessels can change due to
changes in velocity that alters the length of all edges, which
is not possible in the edge change mode. Furthermore, after a
long testing interval with a high frequency of change (say in
every 10-20 generations), the insert/delete mode may start
to repeat previous instances if a fixed length chromosome is
considered [4]. Additionally, our search space (the number
of different locations of vessels) gradually increases accord-
ing to frequency of change, and they are not predefined as
in the DTSP instances in the literature. Finally, the vertex
swap mode does not cause a change in the length of optimal
tour, which is irrelevant with our version of the DTSP.

3. EVOLUTIONARY DYNAMIC OPTIMIZA-
TION TECHNIQUES

In our experimental study, we consider four algorithms
in order to measure their performance on the given DTSP,
where a brief explanation of each algorithm is given below.

Steady-State Genetic Algorithm (SSGA).
It is basically a simple genetic algorithm where it checks

whether there is a change in the environment at each iter-
ation. In case of a change, whole population is randomly
re-initialized; otherwise, normal GA cycle is repeated. It
should be noted that changes in the environment are known
a priori for most of the dynamic optimization problems where
EDO techniques do not perform an extra work.

Random Immigrants (RI) Method.
Random Immigrant algorithm [3] is a genetic algorithm

that targets to maintain diversity by adding a number of
generated random individuals to the population without de-
tecting the changes explicitly. A control parameter pr, which
is the replacement rate, is used to generate r × |P | number
of individuals where |P | is the population size.

Hyper-Mutation (HM) Method.
The hyper-mutation approach [7] targets to increase the

diversity of a genetic algorithm by increasing the current

mutation rate. In case of a change, mutation rate, pm, is
increased to a high mutation rate, phigh. After a new pop-
ulation is reproduced with the high mutation rate, it is set
to low mutation rate, pm.

Memory/Search (MS) Algorithm.
The memory/search algorithm [2] divides the population

into two sub-populations each having n individuals, a mem-
ory population and a search population. Additionally, a third
population, a separate explicit memory of k individuals, is
also considered in this method. While the search population
explores new areas of the search space and it submits new
peaks to the memory, the memory population exploits the
memory and it maintains minimum jump [2].

Memory update frequency term determines when the best
individual selected from the memory population and the
search population is stored into the memory. When the
memory becomes full, the mindist (minimum distance) re-
placement strategy [2] is considered to replace the best indi-
vidual with another one from the population. Search popu-
lation is evolved as the memory population. When there is
a change, the memory population and the explicit memory
are merged, and the best n individuals constitute the mem-
ory population. The individuals in both populations are
reevaluated when the environment is changed. The search
population is reinitialized in case of a change.

4. RESULTS AND DISCUSSION
In order to investigate the performance of four algorithms

for the given DTSP, a set of experiments are conducted in
this study. For each algorithm on a DTSP instance, a total
of 30 independent runs were carried out by using the same
random environmental changes with the stopping criteria of
5000 generations. Number of vessels in our experiments are
set to 100 for all tests, and the coordinates of vessels are
randomly assigned from the range [20..80], unless otherwise
stated. The initial heading angles (θ values) are randomly
assigned from the range [0◦..360◦], and the initial velocity
of the vessels are randomly assigned from the range [2..12].

The population size for each algorithm (other than the
MS algorithm) is set to 50. On the other hand, the size of
both memory and search population of Memory Search (MS)
algorithm is set to 25; and explicit memory size is set to 10.
The mutation rate is set to 0.02; and high mutation rate for
hyper-mutation is equal to 0.5. The population replacement
rate for the RI algorithm is set to 0.3.

We consider offline performance as the main metric for
the comparisons, which is defined as the average of the
best solution found within the same period over a given
number of periods until termination, where a period is the
time interval between two landscape changes. Formally, the
offline performance is defined by x∗ = 1

T

∑T
t=1 e

∗
t where

e∗t = max{eτ , eτ+1, . . . , et}, et is the tth evaluation, τ is
the time of the last change. It should be noted that the of-
fline performance values given in tables and figures are the
average of 30 independent runs, unless otherwise stated.

Table 1 presents offline performance values of the SSGA,
the HM, the RI and the MS algorithms. The severity of
changes in this paper is represented with three parameters:
(α, θ, Vmoving). The first parameter, α, is the the percentage
of changing (i.e. moving) vessels in the environment, where
different α values are given at the first row of the table. If α
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is equal to 100%, all vessels move by changing their velocities
and the heading angles so that their positions are updated.
The θ parameter is the change severity in the heading angle,
where a vessel may change its heading angle randomly up
to θ angle in both radial directions. The Vchange parameter
is the severity of change in velocity of vessels, where the
velocity of a moving vessel is updated using the uniform
distribution U(−Vchange, Vchange). When a vessel is selected
for the change, its both velocity and moving direction (i.e.
the heading angle) will be updated.

Based on the results observed in Table 1, the HM al-
gorithm outperforms all other algorithms for environments
with different characteristics. Increasing Vchange and α val-
ues causes performance degradation of algorithms. An in-
crease in θ value leads to better performance for the cases
of low Vchange and α values. The SSGA algorithm is the
worst performing algorithm for all cases due to suffering
from random initialization and beginning from scratch to
the convergence process for all change periods.
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Figure 1: Offline performance by varying the change fre-
quency

The second experiment shows the effect of frequency of
change (f) on solution quality of each algorithm where Vchange
is set to 5.0, θ is set to 40 and α is set to 0.2. Figure 1
presents the average offline performance values of the four
algorithms for six different change frequencies. As the the
number of generations between successive changes increases,
algorithms have longer time to come up with a solution
which decrease the offline performance values for all algo-
rithms. When f = 10, the HM algorithm significantly out-
performs the other algorithms; and it is better than SSGA
algorithm by 50%. Both the HM and the RI algorithms
give the best results and they outperform the SSGA by 33%
when f = 500.

In another experiment, initial coordinates of the vessels
are updated based on different coordinate ranges, where a
coordinate range of [0..100] indicates that vessels have a
higher dispersion area for setting their initial coordinates
when compared with the case of range [40..60] in a 2-D space
(see Figure 2). All algorithms have better results for envi-
ronments when vessels are initialized in a closer range; and
the HM algorithm outperforms all other algorithms for dif-
ferent initial conditions.

We consider three different severity of change levels, low
severity, medium severity and high severity, in order to mea-
sure performance of algorithms on environments with differ-
ent characteristics of our variant of the DTSP. For each level,
the three parameters for specifying the severity of changes,
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Figure 2: Offline performance by varying the initial range of
the coordinates for all vessels

which are α, θ, Vmoving, are set based on the values given in
Table 2.

Table 2: Values of parameters for different severity levels

Setting Low Medium High
Severity Severity Severity

Velocity(Vlength) 2.0 5.0 10.0
Angle(θ) 20 40 60

Changing Vessel Ratio 0.05 0.5 1.0

In this set of experiments, we study both average perfor-
mance over the given population and the best performance
of all algorithms for different levels of severity changes based
on the parameter values given in Table 2, where frequency
of change is set to 100. If there is a small change in the
environment, both the HM and RI algorithms outperforms
other algorithms, and the populations of the HM algorithm
converge better than the populations of the RI algorithm.
A similar behavior is observed for the medium severity case
and the HM algorithm outperforms the other algorithms,
where the changes in each period is not as smooth as the
low severity case.

On the other hand, performance degradation is observed
for the high severity case, which is the result of distribution
of vessels in search space beside the high level of change
severity in the environment. Positions of vessels are initial-
ized to the coordinate ranges of [20..80]. Vessels can move
all directions significantly for the high severity case by leav-
ing the initial search space. After a few change cycles are
performed, positions of vessels become more sparse, which
cause performance drops of the algorithms. As in the other
cases, the HM algorithms gives the best offline performance
values for the high severity case, which is followed by the
RI algorithm. The previous set of experiments are repeated
for a low frequency of change value, i.e., when a change oc-
curs in every 250 generations. The HM and RI algorithms
outperforms the other algorithms for all severity levels. Al-
though HM algorithm is better than the RI algorithm, the
differences in best performance curves are not as significant
as the case of higher frequency of change values.

As our last experiment, we consider the area between curves
(ABC) metric [1], which is a new metric that quantifies the
distance between the performance curves of each pair of algo-
rithms. It is the difference of area below performance curves,
which is calculated with the trapezoidal method for consecu-
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Table 1: Average offline performance values of the algorithms for different severity of changes by varying the percentage of
modified vessels, velocities and heading angles

α = %5 α = %10 α = %20 α = %50 α = %100
θ=20 θ=40 θ=60 θ=20 θ=40 θ=60 θ=20 θ=40 θ=60 θ=20 θ=40 θ=60 θ=20 θ=40 θ=60

Vchange:2
SSGA 2913.16 2892.77 2846.88 3347.39 3256.18 3154.79 3842.28 3671.03 3491.74 4586.11 4206.15 3840.25 4929.90 4445.44 4055.48
HM 1559.62 1533.11 1495.84 1788.39 1765.93 1715.58 2004.22 2029.97 1918.96 2345.07 2373.50 2246.88 2667.37 2722.25 2546.89
RI 1703.30 1655.75 1625.86 1932.99 1898.64 1844.38 2182.50 2155.30 2085.31 2547.70 2598.28 2439.14 2923.10 2950.43 2763.20
MS 2054.55 2000.40 1977.01 2356.96 2326.74 2225.55 2710.64 2646.88 2521.20 3190.10 3118.26 2921.54 3626.13 3533.98 3225.66
Vchange:5
SSGA 2969.14 2989.79 2896.57 3533.42 3476.16 3307.19 4210.55 4096.04 3860.94 5002.16 4743.67 4389.52 5300.15 4975.72 4614.46
HM 1617.41 1610.56 1554.03 1938.54 1916.56 1902.90 2195.82 2268.22 2272.00 2552.58 2822.80 2811.90 2949.12 3320.12 3282.45
RI 1742.42 1722.88 1743.08 2127.76 2062.07 2054.44 2447.68 2470.01 2446.52 2837.14 3055.71 3065.60 3222.67 3594.75 3545.51
MS 2078.31 2090.28 2036.06 2543.36 2535.62 2482.71 3009.82 3015.54 2962.21 3564.97 3756.02 3663.56 4141.48 4350.90 4197.06
Vchange:10
SSGA 3124.61 3080.07 3021.69 3781.94 3712.46 3576.79 4503.87 4384.06 4196.79 5115.20 4942.46 4671.19 5315.66 5122.77 4836.29
HM 1731.21 1704.93 1720.88 2098.15 2100.01 2108.41 2368.42 2498.81 2523.79 2698.34 3114.55 3217.05 3136.53 3664.33 3781.74
RI 1866.72 1877.64 1841.16 2277.76 2281.68 2275.07 2574.15 2742.02 2751.31 2930.51 3377.11 3455.13 3474.38 4004.65 4069.27
MS 2258.76 2234.31 2234.23 2770.48 2750.02 2714.62 3245.46 3330.53 3336.43 3766.39 4186.31 4144.30 4355.88 4799.04 4764.61

tive generations. It can be mathematically represented with
the following integral in the interval [1..G],

ABCA1,A2
p =

1

G
.

∫ G

1

pA1(x)− pA2(x)dx (1)

where G is the total number of generations and the pA1(x)
and pA2(x) are the functions (for algorithms A1 and A2)
that are to be replaced with a measure of population qual-
ity including average best of generation, offline performance
value, offline error value [1]. ABC value can be positive and
negative, where a negative value indicates that algorithm A1

performs better than A2 for a minimization problem.

Table 3: ABC results for low severity

Algorithms SSGA HM RI MS

SSGA - 1353.54 1209.86 858.61
HM -1353.54 - -143.68 -494.92
RI -1209.86 143.68 - -351.25
MS -858.61 494.92 351.25 -

Table 4: ABC results for medium severity

Algorithms SSGA HM RI MS

SSGA - 1920.88 1687.96 987.66
HM -1920.88 - -232.91 -933.22
RI -1687.96 232.91 - -700.31
MS -987.66 933.22 700.31 -

Tables 3, 4 illustrate the ABC results for each pair algo-
rithms in environments with low severity and medium sever-
ity, respectively, when the change frequency is set to 50. The
rows of the HM algorithm always receive negative ABC val-
ues with all other algorithms, since the curves of the HM
algorithm always lie under the other three alternatives. An
increase in the gap between performance of algorithm pairs
is observed when it is moved from low severity (Table 3) to
medium severity (Table 4).

Performance evaluation of all algorithms show that the
HM algorithm is the best approach to converge each inter-
vals’ best solution while keeping its population more diver-
sified compared to other dynamic optimization techniques.
Inadequate performance of the RI approach shows that ran-
dom search, aiming to keep diversified population to tackle

changes, is less suitable than the HM algorithm where there
are local changes. On the other hand, the MS approach
performs worse than other dynamic optimization techniques
due to lack of any cyclicity/periodicity in the environment.
Use of explicit memory is futile for the problems where the
previous best solutions do not visit same or nearby locations
in the search space.

5. CONCLUSIONS
In this paper, we model the marine contamination prob-

lem with a new version of the dynamic traveling salesman
problem (DTSP), assuming that targets change their loca-
tion with different directions and speeds. It has higher com-
plexity in comparison to classical DTSP presented in the
literature. The empirical study validates the applicability of
selected evolutionary dynamic optimization techniques for
solving a different version of the DTSP.
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