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ABSTRACT
Active sites are regions in the enzyme surface designed to
interact with other molecules. Given their importance to en-
zyme function, active site amino acids are more conserved
during evolution than the whole sequence, and can be a use-
ful source of information for function prediction. For this
reason, great effort has been put into identifying active sites
in proteins. The majority of methods for this purpose uses
an active site template of a protein of known function to
search for similar structures into proteins of unknown func-
tion. In this direction, we recently proposed GASS (Genetic
Active Site Search), a method based on an evolutionary al-
gorithm to search for active sites in proteins. Although the
method obtained very accurate results, its main strength
and weakness are related to using only the spatial distance
from the template to the protein to evaluate candidate sites.
In this direction, this paper proposes MeGASS, a multi-
objective version of GASS that also considers the depth of
the residues when looking for active sites. This is important,
as active sites are known for being closer to the protein sur-
face to allow interactions with ligands. Results showed the
depth attribute improves over the results of GASS, and its
role into the method is worth further investigation.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and medical sciences;
I.2.8 [Computing Methodologies]: Artificial Intelligence—
problem solving, control methods, search

1. INTRODUCTION
Binding sites are regions in the enzyme surface designed to

interact with other molecules [16]. There are many types of
binding sites, including allosteric, receptors, active, among
others. Here we are interested in active sites. Active sites
are commonly divided into two parts: catalytic site and sub-
strate binding site. The first is usually a set of 2 to 6 amino
acids responsible for catalytic reactions. The latter recog-
nizes the molecules with which the enzyme works, and can
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be larger than the catalytic site, reaching up to 20 amino
acids.

Given their importance to enzyme function, active site
amino acids are more conserved during evolution than the
whole sequence. Consequently, they can be a useful source
of information for function prediction [21, 3], besides be-
ing a key element to the process of drug discovery. Hence,
great attention has been given to active site identification
methods.

Most of the methods for active site identification proposed
in the literature represent enzymes as graphs, where each
node corresponds to an amino acid of the side chain and is
represented by one or more atoms, and each edge a connec-
tion between neighbour atoms. Then, classical and more so-
phisticated methods for graph search, including depth search
and geometric hashing [22], are used to identify active sites
based on known active site templates.

However, due to the problem of graph isomorphism, these
methods usually impose some restrictions to make the search
space more tractable. They include setting a maximum ac-
ceptable distance between two neighbour atoms [20] or re-
stricting the maximum size of the active site template [17].
In order to tackled these problems, we recently proposed
GASS (Genetic Active Site Search) [10], which does not
impose any restrictions such as those aforementioned and,
above all, can precisely identify the chain where the residues
of the active site are located. Difficulties in correctly iden-
tifying the chain where the active site residues are located
is one of the main drawbacks of the current methods, as
showed in [10].

GASS is an evolutionary algorithm designed to find ac-
tive sites in proteins. It receives as input a template and an
unknown protein, and searches for the active site template
in the protein residues. Although GASS presented very ac-
curate results in active site identification, it still has room
for improvements. Among these improvements are its eval-
uation function.

The original version of GASS evaluates individuals ac-
cording to their spatial distance to the active site template,
without accounting for any other properties of the proteins.
This can be seem as an advantage of GASS, as it does not
need a lot of information from the protein. At the same
time, it may be considered a drawback, as it allows individ-
uals with certain characteristics not common to active sites
to be considered as such. One of this properties relates to
the position of the active site regarding the protein surface.
Active sites usually have at least one of their amino acids
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close to the protein surface, facilitating the contact with po-
tential ligands [16].

In this direction, this paper introduces MeGASS, a multi-
objective version of GASS that uses alternative ways of eval-
uating the potential of a candidate active site. In particular,
we investigate the advantages of using active sites depth in
relation to the protein surface as an additional information.
As previously mentioned, this is relevant because at least
one residue of the active site is usually closer to the pro-
tein surface to facilitate interaction. We present two ways
of incorporating depth to the current fitness, including a
multi-objective lexicographic approach [6].

The original version of GASS returns a ranking of can-
didate active sites to the user. So far, the results showed
that the addition of depth has a small positive impact in
the results found in the top 10 positions of the ranking, but
overall MeGASS brings the correct active sites closer to the
top of the ranking, indicating further investigation on this
matter is relevant.

2. RELATED WORK
In the literature, the similarity search of active sites can

be performed using information about the sequence or the
structure of the proteins. Many of the works proposed in the
literature are based on multiple sequence alignment of dif-
ferent organisms to detect active site conservation [21, 15].
These methods were the first proposed because initially the
availability of sequences was much greater than the avail-
ability of structures. However, these methods have serious
drawbacks, as the sequences might be similar and perform
completely different functions [23] or be so different they
cannot be successfully aligned.

Structure-based methods are an alternative to solve the
problems aforementioned [2]. However, these methods have
to deal with the inherent problems of searching in a 3 dimen-
sional space. Most of methods for identifying active sites
based on structure represent the proteins as graphs, where
each node represents an atom in the side chain and edges
are connections between neighbour atoms, weighted by their
distances. Given this representation, methods based on sim-
ple depth-first search or graph isomorphism [17] have been
proposed.

Here we describe two methods that are close related to
ours, given their objectives. The first is ASSAM (Amino
acid pattern Search for Substructures And Motifs) [17], which
searches for maximum common sub-graphs to find similar
structures between the template active site and the pro-
tein. Each graph node corresponds to an amino acid in
the side chain, which in turn is represented by two pseudo-
atoms. ASSAM calculates spatial differences between the
protein and template using the Root Mean Squared Devia-
tion (RMSD).

The second method is named Catalytic Site Identification
(CatSId) [14]. It performs a protein-to-template matching
using a sub-graph search method and a library of catalytic
residue templates from CSA (Catalytic Site Atlas) [19] – a
database of catalytic sites in enzymes of known 3D struc-
ture. These results are then refined using a logistic scoring
procedure to re-score the matches found in the first phase,
using information such as binding site predictions and oth-
ers physical descriptors to improve the structure matching
previously obtained.

The main problem with the methods previously described

is that it is very difficult to compare them with GASS and
MeGASS, as they work with their own templates and pro-
tein datasets, which were not made publicly available. How-
ever, we can highlight that the main differences from the
proposed method to them are the heuristics used to search
for active sites, the representation of the atoms, the metric
used to calculate the distance from the templates and the
fact that MeGASS does not impose any restrictions to the
search space, as discussed in the next sections.

Finally, although evolutionary algorithms are popular meth-
ods in the context of bioinformatics [8, 18], to the best of our
knowledge GASS is the first method to solve the problem of
active site identification, although other related problems,
such as multiple graph alignment for molecule structural
analysis [7] and protein structure prediction [5], were pre-
viously investigated.

3. AN OVERVIEW OF GASS
GASS was created to solve the following problem. Given

a set of N amino acids that compose the active site A1 of
a protein pA of known function, and a second hypotheti-
cal protein pB of unknown function and sequence size M .
The problem is to search for a match of A1 in pB . The
naive solution to this problem is to enumerate all possible
arrangements of N amino acids considering all M available
in pB and select those with most similar amino acid confor-
mation and relative position to pA. However, this solution
becomes intractable as N grows. Hence, GASS appears as
an efficient alternative approach.

Figure 1 illustrates GASS, which receives as input a pro-
tein and one active site template. The given protein is
identified by its PDB (Protein Data Bank) [1] identifica-
tion number, and the catalytic site can be manually created
or extracted from CSA (Catalytic Site Atlas)[19]. PDB is a
well-known repository of 3D structures of proteins and nu-
cleic acids, while CSA stores catalytic sites of enzymes of
known 3D structure.

Apart from the protein and active site template, GASS
also receives as input a substitution matrix, which repre-
sents amino acids conservative mutations. Conservative mu-
tations occur when when one type of amino acid is replaced
by another with similar biochemical properties, and they
represent one of the difficulties of active site matching algo-
rithms. This is because different amino acids may perform
the same type of functions in active sites.

Notice that the method can be used under two different
scenarios: (i) to find a given template in one or more pro-
teins; (ii) to find sets of templates in one or more given
proteins. Below we describe the main components of GASS,
available as a webservice1.
Individual Representation: In GASS, each individual
represents a candidate active site, and each gene an amino
acid. As what differentiates amino acid is their side chain,
each amino acid is represented by the last heavy atom (LHA)
of its side chain [11], although experiments with the atom
centroid and α-carbon were also performed. The size of
the individual is dynamic, and usually assumes the size N
of the active site template. Figure 2 shows an example of
an individual. Each gene stores the name of the amino acid
(considering the first gene in Figure 2, ALA), the name of the
LHA (e.g. CB), its chain (e.g. A), position in the sequence

1http://gassweb.dcc.ufmg.br/
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Figure 1: GASS framework.

(e.g. 103), and the 3D position of its LHA (10.551, 41.606,
-5.105). The last field, 13.64, represents the depth of the
amino acid in relation to the surface of the protein, which
will be used as part of the evaluation process by MeGASS.

Population Initialization: The initialization of each in-
dividual takes into account the type of the amino acid in
each position of the active site template. Hence, considering
the example in Figure 2, the first position is always a ALA,
extracted from a list of all positions of the protein where
ALA is found, followed by an ASP and a HIS.

Fitness function: In the original version of GASS, the
fitness function is based on the spatial distance between the
individual and the active site template, defined according to
Eq. 3, where n is the number of amino acids in the template,
v is the candidate active site (individual) and w the active
site template. As observed, i accounts for distances between
all pairs of residues in the template. Notice that this equa-
tion differs from the well-known RMSD metric, as it does
not average the squared distances of the results. As shown
in [12], slightly different active sites may have very similar
RMSD values when the square root is taken. By using their
absolute distance values we avoid this problem.

Fitdist(v, w) =

√√√√(n2−n)/2∑
i=1

‖vi − wi‖2 (1)

Evolution process: After individuals are evaluated, they
undergo a tournament selection and traditional one-point
crossover. The mutation operator, apart from introducing
variability to the population by replacing genes from the
same type of amino acid, has another role: to deal with
conservative mutations. If the amino acid selected to un-
dergo mutation can suffer a conservative mutation (accord-
ing to the substitution matrix described below), the mutated
amino acid might be chosen to replace the original amino
acid in the individual. The decision of which type of muta-
tion should be applied is given by user defined probabilities,
which might account for the number of possible available
active site conservative mutations. At each generation, an
elitist process saves the k best individuals, and automati-
cally inserts them into the new population. At the end of
the evolutionary process, GASS returns a ranking of k in-
dividuals, where the application user can analyse them and
choose the best based not only on the spatial distance, but
also on expert knowledge.

Substitution matrix: As previously mentioned, the mu-

Figure 2: Example of an individual, which repre-
sents a candidate active site.

tation operator is responsible for dealing with conservative
mutations, by replacing genes with different but compatible
types of amino acids. These amino acids are defined accord-
ing to a substitution matrix. The substitution matrix used
in this work was borrowed from [14], where it was built us-
ing data from CSA. CSA entries may be of two types: those
annotated as LIT (i.e., manually annotated and reported
in the literature) or PSI-BLAST (i.e. annotated using the
PSI-Blast tool for protein sequence search). The matrix is
generated by comparing LIT and PSI-Blast entries with ac-
tive sites with the same number of amino acids and Enzyme
Commission (EC) number. For each active site template,
a substitution matrix was built according to these compar-
isons. For more details on this approach, the user is referred
to [14].

4. MeGASS: MULTI-OBJECTIVE GASS
As previously mentioned, the original version of GASS

evaluates candidate active sites simply based on their spa-
tial distance from the template. This has advantages (as we
do not need a lot of information about proteins properties)
but at the same time does not account for other active site
characteristics. Here we address one of this relevant char-
acteristics: how close to the protein surface are the amino
acids in the active site.

We used the depth of the active site [4] to measure this dis-
tance, although the accessibility [13] metric was also consid-
ered in initial experiments. The accessibility shows whether
the residues of the active site are in the surface of the pro-
tein, and hence can recognize or react with other structures.
The depth, in contrast, tells how buried the amino acids are
in the protein, i.e., how far from the surface. Preliminary ex-
periments showed the accessibility presented great variations
in its results. This is because it does not distinguish between
atoms just below the protein surface and those in the core of
the protein [4]. Although atoms coordinates obtained from
crystallography are a good approximation of their positions,
atoms just below the surface might have contact with a lig-
and or solvent, and this is not reflected by the accessibility
measure.

Hence, the depth, i.e., how close to the surface of the
protein a residual is, was the measure incorporated to the
fitness function. The depth of an active site was calculated
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(a)

(b)

Figure 3: Example of an enzyme with its active site
(in the surface) highlighted in red (a). In (b), the
catalytic site residues are shown in red. In yellow, a
candidate serine, disregarded as it was further from
the surface than the serine in red.

using the software Depth2. Depth calculates the depth of
an atom using its distance from the water molecule closer to
the protein surface. It generates depth information for each
atom on the side and main chain, and for each residue.

Figure 3 brings an example of a protein and its active
site. In (a), we observe the active site in the surface of the
enzyme. In (b) we see the catalytic triad. The residues
in red represent the real active site. However, a candidate
active site might consider the Serine in yellow as the correct
active site residue instead of the one in red. By using the
depth of the residues, the correct Serine would be preferred
over the incorrect (yellow) one, as it is closer to the surface.

Given this motivation, the depth measure was incorpo-
rated to GASS in two different ways: (i) by adding it as a
new term to the fitness function, considering two objectives
simultaneously; (ii) by using a multi-objective lexicographic
approach [6]. The latter was proposed because the spatial
distance from the active site template and depth may be
conflicting objectives, as GASS is able to find amino acid
very close to the template but buried in the protein. In the
lexicographic approach, a pre-defined ordering is established
between the competing objectives, as one can be considered
more relevant than the other. The next sections discuss
these approaches.

4.1 Unique multi-objective fitness approach
This approach is the simplest to incorporate depth to the

fitness function. Our first idea was to use the raw values of
depth. However, it is known that the depth of active sites
with similar function is also similar [4]. Hence, in the same
way that we did with the spatial distance between the amino
acids, we computed the depth distance from the template to
the candidate active sites, as described in Eq. 2, where vd

2http://mspc.bii.a-star.edu.sg/tankp/intro.html

and wd represent the depth of each residual of the candidate
and template active sites, respectively.

Fitdepth(vd, wd) =

√√√√(n2−n)/2∑
i=1

‖vdi − wdi‖2 (2)

Hence, the total fitness function is defined by Eq. 3.

FitMO(v, w, vd, wd) = Fitdist(v, w) + Fitdepth(vd, wd) (3)

4.2 Lexicographic Multi-objective Approach
In contrast with traditional multi-objective optimization

using the Pareto approach [6], where objectives are consid-
ered equally important, the lexicographic approach avoids
the use of weight factors by explicitly incorporating priorities
for the objectives of interest. Hence, it requires a special-
ist of the domain to establish a priority for each objective.
After that, two solutions are compared with respect to the
most important objective. If the result is a tie, the algorithm
continues and compares the solutions according to the sec-
ond most important objective. This tie-breaking process is
repeated until no objectives are left to be accounted for.

In our approach, being closer to the template is initially
more important than being similar in terms of protein depth.
Hence, for all individuals, the depth is only analysed when
two individuals are similar regarding spatial distance from
the template. These two objectives are taken into account
during the tournament selection process.

We opt for using a lexicographic approach over a Pareto-
based approach because we know distance is more important
than depth. However, a Pareto approach where the decision
process would account for the lowest distance with the ben-
efit of a non-dominated depth is the subject of future work.

5. EXPERIMENTAL RESULTS
The tests reported in this section consider datasets of cat-

alytic sites, although MeGASS can be also used for subtract
binding site identification [10]. We start with catalytic sites
because they are smaller and easier to deal with. Prelimi-
nary experiments are reported in two datasets:

NOS: 125 enzymes from the Nitric Oxide Synthase (NOS)
family (EC:1.14.13.39) with 248 catalytic sites annotated in
CSA.

TRP: 1,085 enzymes Trypsin-like randomly chosen from
PDB using SCOP (http://scop.berkeley.edu/) classification
(superfamily 1A0J). For these 1,085 enzymes we had 1,085
templates annotated in CSA.

For both datasets, we used as templates the enzymes ap-
pearing in CSA as LIT entries, i.e., those that were manu-
ally annotated and hence have a higher confidence of being
correct than the active sites annotated via Psi-BLAST. For
NOS, only the enzyme human endothelial nitric oxide syn-
thase with arginine substrate (PDB id 3NOS) was obtained
from the literature. For TRP, 9 LIT templates were found,
and their PDB ids are: 1A0J, 1CA0, 1DDJ, 1DS2, 1HJA,
1N8O, 1RTF, 1SSX and 2LPR.

MeGASS was executed 30 times with the following pa-
rameters: 300 individuals evolved for 100 generations, with
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Table 1: Results obtained by GASS (in terms of number of correctly identified active sites) and the two
versions MeGASS considering different ranking sizes.

Data # Enzymes # Lit Templ. Rank
# of Active Sites Found

CSA GASS MeGASS-Depth MeGASS-Lexic.
NOS 125 1 1 248 248 248 248
TRP 1,085 9 1 1,085 899 893 901

1,085 9 5 1,085 987 973 986
1,085 9 10 1,085 1,015 1,008 1,017

a crossover probability of 0.9, a mutation probability con-
sidering the same amino acid of 0.2 and a mutation proba-
bility considering a different amino acid (conservative muta-
tion) of 0.1. The 5 best individuals are always conserved via
elitism. Results were evaluated considering two different cri-
teria: the number of active sites found in the first position of
the ranking and the Cumulative Match Score Curve (CMS).
This curve shows the relation between the number of cor-
rect active sites found according to CSA and their position
in the ranking, and allows us to clearly see how MeGASS im-
proves the ranks of the correct active sites when compared to
GASS. From now on, the version of MeGASS with a unique
multi-objective function is referred as MeGASS-Depth and
the lexicographic version as MeGASS-Lexic.

Table 1 shows the results obtained for rankings of size 1,
5 and 10 with the original version of GASS and the two
versions of MeGASS. The first thing to notice is how much
room for improvement exists. For NOS, the results obtained
by GASS were already the best possible to obtain, as the
algorithm found all the 248 active sites available using the
single LIT template catalogued in CSA. In this case, our
intention was to show that the information coming from the
depth attribute would not interfere into the results already
obtained.

For TRP, in contrast, there is room for improvement, but
note that the results of template matching for GASS were
already high. From the 1,085 active sites, 82.85% appeared
in the first position of the raking. The objective of MeGASS
was to improve over the 17.15% left. Table 1 shows the
number of active sites recovered considering rankings of 1,
5 and 10 active sites. Notice that, considering the top 10
ranked active sites, MeGASS-Depth obtained worse results
than GASS while MeGASS-Lexic inserted two new active
sites into the top 1 and top 10 rankings. However, looking at
Figure 4, it is interesting to observe that, considering bigger
rankings, MEGASS-Lex classifies 95% of active sites within
the top-20 candidate solutions. GASS, in contrast, needs to
consider almost 60 positions of the ranking to obtain these
same results. It is important to observe that, in both cases,
around 5% of the active sites were not found in the final
ranking, regardless of the algorithm used. Suggestions to
solve this problem are discussed as future work.

A deeper analysis of how often MeGASS-Lexic actually
uses the second objective, namely depth, showed that, dur-
ing the evolution, in average 81% of the times only the spa-
tial distance is considered, while in the other 18.95% the
depth criterion is taken into account. Figure 5 shows how
the fitness of the individuals, in this case represented by the
spatial distance from an individual to a template, evolves
over time. Note the wide range of values, varying from num-
bers smaller than one to almost 200.

As already mentioned, one of the main problems with the

Figure 4: Results of CMS for dataset TRP.

Figure 5: Fitness evolution over time for MeGASS-
Lexic

experimental analysis of GASS is that we cannot directly
compare it with other methods proposed in the literature.
However, indirect comparisons with small sets of proteins
used by them has already shown they are at least as good
as and most time better than ASSAM and CatSid [10].

6. CONCLUSIONS AND FUTURE WORK
This paper introduced MeGASS, a first multi-objective

version of GASS for active site search. The main differences
of MeGASS over GASS is the use of the depth of the residual
into the protein to improve the active site identification pro-
cess. MeGASS was tested with two classical approaches for
multi-objective optimization: (i) considering different ob-
jectives (spatial distance and depth distance) in the same
fitness function or (ii) using a lexicographic approach, as
the spatial distance is crucial in the identification process.

Preliminary results showed that MeGASS-Lexic brings
the active sites to rank positions that are closer to the top
than those obtained by GASS. However, as GASS already
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obtains very accurate results ( ≈ 87%), improving over them
is not a straightforward task. We intend to further investi-
gate the role of depth in the fitness function. Another ap-
proach would be, instead of rerunning the algorithms with
an additional objective to be optimized, to propose a method
for rescoring the active sites ranks according to depth or
any other protein properties, such as whether they are in a
pocket or not.

Apart from the fitness function, we also would like to make
MeGASS population a bit more dynamic, so that it could
search templates of different sizes simultaneously (nowadays
it is done on batch). For example, we could have different
sub-populations where, apart from looking for the complete
template, we would also search for subsets of residues. This
is particularly useful when dealing with substrate binding
sites, which are bigger and might make the search space
more difficult to explore.

Other directions not related to the evolutionary computa-
tion components include studying a more sophisticated sub-
stitution matrix, perhaps more generic and based on other
classical ones, such as Blosum62 and MIQS [9]. We believe
this would increase the chances of bringing active sites cur-
rently left out of the ranking (not found by the algorithm)
to the final population, as they might have gone through
conservative mutations not reflected in the current matrix.
Finally, investing on using the identified active sites for pro-
tein function prediction is a relevant task.
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