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ABSTRACT

This paper introduces two new nominal NK Landscape model
instances designed to mimic the properties of one challeng-
ing optimisation problem from biology: the Inverse Fold-
ing Problem (IFP), here focusing on a simpler secondary
structure version. Through landscape analysis tests, numer-
ous problem properties are identified and used to param-
eterise and validate model instances in terms of epistatic
links, adaptive- and random walk characteristics. Then the
performance of different Genetic Algorithms (GAs) is com-
pared on both the new NK Models and the original IFP, in
terms of population diversity, solution quality and conver-
gence characteristics. It is demonstrated that very similar
properties are captured in all presented tests with a sig-
nificantly faster evaluation time compared to the real IFP.
The future purpose of such a model is to provide a generic
benchmark for algorithms targeting protein sequence opti-
misation, specifically in protein design. It may also provide
the foundation for more in-depth studies of the size, shape
and characteristics of the solution space of good solutions to
the IFP.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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NK Landscape; Landscape analysis; Genetic Algorithm; Bench-
mark function
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1. INTRODUCTION
Protein structure prediction is an essential step in un-

derstanding the molecular mechanisms of living cells with
widespread application in biotechnology and health. Con-
ventional protein folding prediction research is concerned
with finding or predicting the folded structure of a given
amino acid sequence. To the present day the problem is not
solved but scientists have early on sought to simplify it by
solving the inverse problem, referred to as the Inverse Fold-
ing Problem (IFP). The latter consists in finding sequences
that fold into a defined structure. The IFP is an important
research problem that is at the heart of most rational protein
design approaches.

Due to its quickly exploding complexity and highly multi-
modal nature, it is a challenging task to determine all or a
fraction of its local optima. In addition, tackling real bi-
ological instances is computationally very expensive which
therefore limits the number of possible experiments.

In this work some of the problem characteristics are sought
identified to design a model that captures the most promi-
nent of these. With a simple definition based on the well-
known NK Model, the motivation is to make the IFP prob-
lem more accessible to algorithm specialists and model ex-
perts contrary to being a problem solved mostly by bioin-
formaticians with main expertise in other fields.

The remainder of this article is organized as follows. The
next section introduces the related work on the NK Model
and on the inverse folding problem. Then the proposed NK
model is presented in detail in section 3, followed by the
landscape analysis of the original problem and its compari-
son to the proposed NK model in section 4. Finally conclu-
sion and perspectives are provided in section 5.
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2. RELATED WORK
This section presents a few relevant works related to the

two main areas covered in this work: The NK Model and the
Inverse Folding Problem model based on secondary structure
prediction.

2.1 The NK Model
The NK Model introduced by Kaufmann [2] is a tunable

rugged fitness function designed to model complex epistatic
links among variables, to study topics such as gene-interaction.
A central feature of the model is its stochastic design which
opens up possibilities for statistical analysis of its properties
without exact knowledge of all underlying epistatic interac-
tions. While the original model works on a bit-string encod-
ing, Li et al. extended the model to continuous and mixed
integer solution spaces [3]. Specifically the nominal discrete
NKL model is of interest, where L denotes the possible val-
ues at each allele location with L = 2 defining the binary
case corresponding to the original NK Model. The original
NKL Model is described in Equation 1 which implies that
any allele xi and its K neighbors xi1, xik contribute to the
function value.

FNKL(x) =
1

N

N
∑

i=1

Fi(xi;xi1, ..., xik),x ∈ {0, L}N (1)

Most common neighborhoods are defined by the K adja-
cent positions left and right from the position i or K random
positions in addition to i, making K = N − 1 the maximum
possible value for K. Typically the model is made circular
to avoid boundary effects.

2.2 Protein Inverse folding Problem
The structure of a protein can be divided into different

levels (see Fig. 1). The primary structure is the protein
sequence of N amino acids {aai} where 1 ≤ i ≤ N is the
residue position. The secondary structure defines or an-
notates the organisation of helices, sheets and loops of the
tertiary structure and can be expressed by a type {Ti} ∈
{H,E,L} for each position i in the protein. The tertiary
structure completely describes the arrangement of all atoms
of a single sequence in three-dimensional space.

T
3

...T
2

φ
2

Primary structure – Protein sequence of amino-acids

N

Cα

C

R
2

N C

Cα

ψ
2

R
3

Tertiary structure – Three-dimensional arrangement of all atoms

aa
3

...aa
2

Secondary structure – Annotation of structure segments

T
1

aa
1

C

Cα

R
1

ω
2

N

T
N

aa
N

φ
1

ψ
1

ω
1 N

Cα

C

R
N

...

Figure 1: Three levels of protein structure

A protein sequence determines the structure of a protein,
however a given structure can be obtained by more than one
protein sequence. The solution to an instance of the protein

Inverse Folding Problem (IFP) is ideally the complete set
of all sequences that fold into the given reference protein
structure. In practice researchers focus on finding a limited
number of new matching sequences which are as different as
possible from the original reference sequence. The inverse
folding problem has been tackled in [4] where a simplified
model was developed to matching solely the reference sec-
ondary structure - a requirement for the tertiary structure
to match. This is motivated by the fact that computing the
tertiary, i.e. 3D, structure of a given input sequence is com-
putationally very expensive, which prevents the usage of a
metaheuristic on the entire sequence. Using the PROFphd
tool, updated to ReProf [5], the likely secondary structure
type Tpred(i) can be predicted per amino acid aai in A with
a reliability, Rpred(i) ∈ {0...9} by means of posterior neural
network training. With Tref (i) the actual type found at po-
sition i of the reference secondary structure, the estimated
similarity score Fsec(A) is calculated as a sum of reliability
weighted (mis)matches:

Fsec(A) = −

∑N

i=1 si · (C
R
pred +Rpred(i))

Σmax

. (2)

where

si =

{

1 if Tpred(i) = Tref (i)
−1 if Tpred(i) 6= Tref (i)

and

Σmax = (CR
pred +maxRpred) ·N

CR
pred is a constant which purpose is to increase the con-

tribution to the score of a matching type prediction that has
a low reliability Rpred. In the current work it was chosen
such that CR

pred + maxRpred = 20. By using the objective
function Fsec(A) in Equation 2 as target for optimisation
algorithms, likely solutions to the IFP have been found [4].
The next section essentially presents an alternative light-
weight function designed to have very similar properties.

3. PROPOSED NKL MODEL
The proposed NK model is presented in Equation 3, which

is a variation of Equation 1. It omits the contribution of the
ith position in x, hence K for an identical neighborhood
will be one larger than in the original model and the max-
imum K becomes K = N . This is a minor change that
allows to re-create epistatic link effects of the target IFP
problem. In addition, the model uses a single function F0

instead of N different Fi functions. This is for simplicity
reasons as N may exceed values of 100 and in theory two
random functions based on the same distribution are equiv-
alent. N = 67 is chosen because the actual sequence of the
target IFP protein 1b3a has length 67. Then by fixing the
number of nominally discrete values possible at each allele
position to L = 20, a solution vector x = {xi}, xi ∈ {1...20}
for the model can be translated 1:1 from an RNA sequence
A = {aai}, aai ∈ {1...20} of the 20 possible amino-acids.
This effectively makes the solution encoding of the model
and the IFP identical seen from the point of view of an al-
gorithm or solver. Hence, an algorithm designed to work
with amino-acid sequences can easily be adapted to solve
the proposed model and vice-versa.

F (x) =
1

N

N
∑

i=1

F0(xi1, ..., xik),x ∈ {0, L}N (3)
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The novelty in this work is the combination of two NK
Models, FA(x) and FB(x), with different K and different
neighborhood definitions by a simple multiplication:

F (x) = F
A(x) · FB(x)

With this setup, the combined model F (x) can accumu-
late the characteristics of both its underlying models. Say,
strong epistatic interactions are observed between alleles i

and j in FA as well as between k and l in FB . The combined
model will then show interactions for both pairs i and j as
well as k and l. The objective of this setup is ultimately to
come as close as possible to the original IFP that features
both strong epistatic interactions between close alleles, and
a constant interaction between alleles farther apart.

Two novel NK Model instances have been created with
the following settings:

• Model 1

– FA: a K = 4 semi-adjacent circular neighbor-
hood is designed as follows:
{xi−2, xi−1, xi+1, xi+2}, omitting the central po-
sition xi.

– FB : a K = 3 neighborhood of uniform random
distribution.

• Model 2

– FA: a K = 4 neighborhood as Model 1.

– FB : a K = 5 neighborhood of uniform random +
20 positions wide triangular distribution.

The purpose of using a triangle distribution in Model 2
is to induce a higher linkage between alleles closer to each
other. Essentially the chance of linking two alleles drops
off linearly to ±10 alleles apart and is then constant. The
effects of the presented neighborhoods used in FA and FB

on epistatic linkage is seen in Figure 5 and discussed further
in the following section.

4. LANDSCAPE ANALYSIS
With the introduction of the NK Model [2], a number

of model features were analysed, mainly by characterising
adaptive and random walks in the landscape. Analysis of
epistatic links among model variables is another important
way of characterising a problem instance, which will be de-
scribed in the following. As protein sample for the IFP, only
1b3a is considered as previous work [4] has suggested that
different protein samples show very similar characteristics.

4.1 Adaptive Walks
An adaptive walk starts at a random position in the ob-

jective space and progresses by choosing random 1-mutant
fitter neighbors until no fitter neighbors can be found, and
a local optimum has been reached. This provides several
indicators on the landscape, including the length of such
walks and how the number of fitter neighbors decreases with
each step. From literature it is known that the length of an
adaptive walk on a NK Landscape will decrease for larger
K values regardless of the choice of neighborhood. This is
due to the induced ruggedness when using larger K. The
effect can be seen in Table 1 for the standard NKL Mod-
els with K ∈ {3, 4, 5}. Other models in the table include
the actual IFP objective function and the two combined
NK Model variants proposed in this paper, averaged over
100 individual tests for each. It can be seen that the ef-
fect of combining two NK Models increases the length of a
walk approaching that of the IFP for Model 1. All models
show almost the same average number of fitter neighbors at
the first step, ±636.5, which is exactly half of the neighbor-
hood size of N · (L − 1) = 67 · 19 = 1273. This number
shows higher variation in the IFP problem, indicating more
location-dependent characteristics than those expressed in
the NKL models. The number of evaluations required on
average to reach a local optimum is a bit higher for the NK
Models, and the deviation of fitness values at such optima
is slightly higher for the IFP, though Model 1 comes close
with 0.019 vs 0.023. All in all the NKL Model statistics can
roughly be fitted within a maximum factor of two of the IFP
problem, and in most cases a far better match is achieved.

4.2 Random Walks
To compute the auto-correlation function of the problem

and models, a number of random walks have been performed
starting from a local optimum. The reason for choosing a
local optimum as a starting point is motivated by the fact
that the main dynamics of the estimated secondary similar-
ity score Fsec() are present only when the predicted struc-
ture matches the reference structure well. Evolutionary al-
gorithms will mostly be evolving around such good solu-
tions, and small perturbations in key positions here have
larger impact on the overall match score than in a random
poor matching solution. The auto-correlation function used
in this work is equivalent of the one in [1] and can be writ-
ten as co-variance of function values at t and t+ s over the
product of their deviations.

R(t, s) =
σ(F (xt, F (xt+s))

σ(F (xt)) · σ(F (xt+s))
(4)

As the walks all start from local optima, the analysis will
use t = 1, and analyse decay in correlation as the hamming-

Model Walk length Fitter, first step Average fitter Final evaluations Final fitness

IFP 111.070 (15.811) 633.117 (160.977) 234.069 (189.727) 4896.210 (2070.319) -0.899 (0.023)

Model1 95.750 (10.629) 633.330 (79.704) 161.774 (180.554) 7649.454 (2440.165) -0.659 (0.019)

Model2 83.397 (9.520) 641.974 (93.780) 154.469 (181.191) 7734.680 (2797.414) -0.633 (0.017)

K = 3 93.290 (9.659) 620.210 (75.056) 167.943 (178.849) 6568.108 (1561.485) -0.896 (0.011)

K = 4 75.030 (9.598) 618.480 (88.863) 164.381 (180.239) 5915.798 (2011.225) -0.869 (0.010)

K = 5 66.000 (8.464) 645.500 (90.636) 161.252 (184.934) 5684.346 (1521.157) -0.850 (0.012)

Table 1: Adaptive walk statistics
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distance s increases. The random walks were repeated 100
times from different local optima for the IFP and the two
proposed models with the average auto-correlation shown in
Figure 2.
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Figure 2: Auto-correlation of random walks starting

from local optima.

Though the actual correlation lengths are 45, 39 and 27,
for IFP, Model 1 and 2 respectively, they all seem to reach
zero correlation at the same distance of about 40 in general.
The shorter model correlation lengths can be explained by
the higher variation in correlation, and the slightly faster
decay than the IFP at shorter hammin-distances. Overall,
the decay in correlation as the distance increases follows a
quite similar pattern.

4.3 Epistatic link analysis
Epistatic interaction is a concept borrowed from genetics

where two genes can be defined as being epistatically linked
if the effect of one depends on the state of the other. To fully
discover such links would require to observe the effect of all
possible combinations of two genes in all possible states of
all other genes. In this analysis of epistatic links, alleles of
a solution are examined pairwise in a systematical manner,
keeping all other genes constant. Again a local optimum is
chosen as the starting point. For two selected alleles i and
j, i 6= j, three additional function evaluations are done eval-
uating first a mutation at i, then a mutation at j computing
the error ε(x, i, j) by comparing to the same mutations at
both i and j at the same time:

ε(x, i, j) = |∆F (x(i,j))− (∆F (x(i)) + ∆F (x(j)))|

Where ∆F (x(y)) denotes the function value difference in
F when the solution x has values substituted at allele lo-
cations y. If there is no linkage between alleles i and j

at location x, ε(x, i, j) will be zero for all possible substitu-
tion pairs. This information is typically expressed on matrix
form, but reduced here to a single vector, averaging the link-
age in terms of allele distance d = |i− j|, i 6= j. Figure 4(a)
and (b) show this epistatic linkage at two different random
local optima of the IFP problem. Figure 5(a) and (b) shows
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Figure 3: Epistatic linkage in local optima of NKL

Model.

linkage of the proposed models at a local optimum and Fig-
ure 3 the standard NKL Model with K = 5 for comparison.

Clearly the standard NKL Model has absolutely no link-
age beyond 5 loci apart, which is achieved in the combined
models proposed here with the second function FB having
almost uniformly distributed neighborhood. To achieve the
ramp down which can be observed in the real IFP problem,
the neighborhood of function FB of Model 2 is generated
from a partially triangular distribution, which effect is quite
noticeable in Figure 5(b). The epistatic links are slightly
stronger between close alleles in the models than in the IFP
but long range interactions look very similar in both mod-
els. The other main feature of the real IFP problem is the
characteristic dip and then rise in locations 2 and 3 apart
which is captured by the neighborhood function of FA and
observed in both combined models in Figure 5(a) and (b).

4.4 Evolutionary algorithm analysis
As a final comparison, the two NKL Models and the IFP

are solved with a standard Genetic Algorithm (GA) and
the NSGAII with Diversity-as-Objective and Quantile Con-
straint
(NSGAII-DAO-QC) algorithm proposed in [4]. The main
feature of the latter algorithm is to maintain a high and
controllable degree of diversity which allows studying the
exploration-exploitation trade-off.

Table 2: Algorithm settings

Setting V alue

Population size 100

Algorithm NSGA-II and std GA

Termination condition 30000 function evaluations

Selection Binary tournament (BT)

Crossover operator 1-point, pc=1.0

Mutation operator Uniform, pm = 1
N

Quantile constraint Cq ∈ {0%, 5%, 10%, 25%}

Table 2 summarises the settings: Both algorithms use a
population of 100 individuals, a binary tournament selec-
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Figure 4: Epistatic linkage in two local optima of protein 1b3a.
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Figure 5: Epistatic linkage in local optima of proposed models.

tion, 1-point crossover with probability pc=1.0 and uniform
mutation with probability pm = 1

N
. The termination condi-

tion was set to 30000 fitness function evaluations and each
experiment was repeated 30 times. Four different values of
the quantile constraint Cq are considered: 0%, 5%, 10% and
25% of the population resulting in less-to-more exploitation
and more-to-less population diversity, hence more-to-less ex-
ploration.

Figures 6 and 7 show convergence of fitness and diversity
for the protein 1b3a, Figures 8 and 9 the same for the NK
Model 2. Model 1 has been omitted as differences between
the models are minimal and not relevant here. Overall the
ordering of the series for different algorithms and settings is
strikingly similar, especially in the diversity plots. The im-
pact of diversity on the fitness function is more significant in
the models than in the IFP which probably explains why the
GA has better performance in the IFP than in the models.

The information in the convergence plots is supported by
the pairwise comparisons of the algorithms mean values dif-
ference in Tables 3, 4, 5 and 6. The Wilcoxon test in-
dicator [7] with a 5% significance level provides statistical
confidence in comparing the sets with symbols ‘N’, ‘▽’ and
‘-’ indicating superior, inferior and no difference. In terms
of fitness, the algorithms are ordered in the following way:
QC25 = QC10 > QC5 > GA > QC0 and QC25 > QC10 >

QC5 > GA > QC0 with statistical confidence for protein
1b3a and Model 2 respectively. In terms of diversity, the
order becomes QC0 > QC5 > QC10 > GA > QC25 and
QC0 > QC5 > QC10 > QC25 = GA. These minor dif-
ferences can be explained by the difference in sensitivity of
fitness to diversity mentioned earlier.
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GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � −0.272▽ 0.0126N 0.0432N 0.0541N

DAO-QC0 � 0.285N 0.316N 0.327N

DAO-QC5 � 0.0306N 0.0415N

DAO-QC10 � 0.0109 -

DAO-QC25 �

Table 3: Protein 1b3a average fitness delta

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � −47.139▽ −27.653▽ −12.505▽ 3.016N

DAO-QC0 � 19.486N 34.634N 50.155N

DAO-QC5 � 15.148N 30.669N

DAO-QC10 � 15.521N

DAO-QC25 �

Table 4: Protein 1b3a average diversity delta

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � −0.0595▽ 0.0254N 0.0569N 0.0864N

DAO-QC0 � 0.0848N 0.116N 0.146N

DAO-QC5 � 0.0315N 0.061N

DAO-QC10 � 0.0295N

DAO-QC25 �

Table 5: NK Model2 average fitness delta

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � −57.722▽ −30.545▽ −12.078▽ 1.905 -

DAO-QC0 � 27.177N 45.644N 59.627N

DAO-QC5 � 18.467N 32.450N

DAO-QC10 � 13.983N

DAO-QC25 �

Table 6: NK Model2 average diversity delta
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5. CONCLUSION
This article introduced a novel benchmark problem based

on the well know NK Model extended to a nominal discrete
NKL Model definition in a previous third-party work. Set-
ting L = 20 allows the model to work with amino-acid like
sequences similar to RNA with the ultimate goal of mim-
icking the Inverse Folding Problem (IFP). Thorough prob-
lem analysis was conducted through adaptive- and random
walks in terms features like fitter neighbors, auto-correlation
among others as well as an extended epistatic linkage sam-
pling around local optima. Very similar characteristics within
an upper bound of a factor two were achieved in almost all
tests when comparing the NKL Model instances to the IFP.
Running selected Genetic Algorithms with different diver-
sity maintaining features also show very similar convergence
behavior in diversity and fitness for the proposed models and
the IFP. Furthermore the statistical nature of the NK Model
with existing proofs and lemmas may provide the ground for

a theoretical estimate on the number of protein sequences
which fold into a given protein structure.
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