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ABSTRACT
Many proteins involved in human proteinopathies exhibit
complex energy landscapes with multiple thermodynamically-
stable and semi-stable structural states. Landscape recon-
struction is crucial to understanding functional modulations,
but one is confronted with the multiple minima problem.
While traditionally the objective for evolutionary algorithms
(EAs) is to find the global minimum, here we present work
on an EA that maps the various minima in a protein’s en-
ergy landscape. Specifically, we investigate the role of initial-
ization of the initial population in the rate of convergence
and solution diversity. Results are presented on two key
proteins, H-Ras and SOD1, related to human cancers and
familial Amyotrophic lateral sclerosis (ALS).

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences;
I.6.3 [Computing Methodologies]: Simulation and Mod-
eling—Applications
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1. INTRODUCTION
Traditionally, the focus of EAs in protein modeling has

been the de novo structure prediction problem (PSP), where
the goal is to discover the global minimum of the protein con-
formation space provided only information on its amino-acid
sequence[4, 5, 6]. While this is a difficult problem, a more
challenging setting concerns proteins with multiple minima
in their energy landscapes. These minima correspond to sta-
ble or semi-stable structural states exploited for functional
modulation. Many proteinopathies involve such proteins.
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Recently, we have proposed EAs to address such proteins
and uncover multiple minima. However, to maintain fea-
sibility, the de novo setting has been discarded. Instead,
known experimental structures of wildtype and variant se-
quences of such proteins are employed to either define the
dimensionality, shape, and bounds of the underlying vari-
able space for a CMA-ES algorithm [2] or in addition to
seed the initial population of a population-based memetic
cellular EA [3, 1].

Here we explore in further detail the relationship between
convergence rate and solution diversity conferred by the
EA presented in [1]. Specifically, we investigate the role of
the initial population, pursuing three settings that vary the
amount of a priori information employed from known exper-
imental structures. Testing is carried out on two proteins.
Our analysis suggests an optimal setting to compromise be-
tween fast convergence but high solution diversity, motivat-
ing further investigation of other algorithmic components for
mapping complex protein energy landscapes with EAs.

2. METHODS
The algorithm we investigate here is a population-based,

memetic, cellular EA. The EA operates on a variable space
extracted from Principal Component Analysis of existing X-
ray structures of wildtype and variant sequences of a protein
under investigation. Only principal components (PCs) that
cumulatively contribute 90% of the total variance are re-
tained as variables. This affords significant reduction in the
dimensionality of the variable space over other cartesian-
based or angle-based representations of protein chains.

At each generation, all parents are selected in turn to
produce offspring. The coordinates of a selected parent are
modified by a randomly-drawn vector in the variable space.
The vector contains components for each of the variables,
the underlying PCs, and is scaled to preserve the ratios of
the bounds of each of the PCs relative to the first one. The
goal is to perturb more along PCs that are responsible for
more of the data variation. Each offspring undergoes a local
improvement. The CA coordinates are first recovered, back-
bone atoms are reconstructed, and then side chain atoms are
packed and minimized, so an all-atom conformation is ob-
tained for each offspring, together with its all-atom Rosetta
(score12) energy. Competition is limited between an off-
spring and only its structurally-similar parents to preserve
diversity. Similarity is determined fast and coarsely, on a
neighborhood-structure in a 2d embedding along the top
two PCs. Further details can be found in [3, 1].
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Here we investigate the effect of the initial population on
the relationship between convergence and solution diversity.
While the first is important for computational efficiency, the
latter is central to discovering the multitude of potentially-
relevant local minima in the landscape. In published work,
the initial population is seeded with X-ray structures. To
reach a desired population size, more individuals are gener-
ated by subjecting the X-ray structures to the perturbation
operator described above. The generated offspring are sub-
jected to the local improvement operator before being added
to the initial population. One issue with such an initializa-
tion is that it is unlikely that individuals will be generated in
regions of the variable space that are void and not populated
by any X-ray structures. This may affect the performance
of the algorithm. While it may confer faster convergence,
potentially important minima may be missed.

For these reasons, we investigate here two additional ini-
tialization mechanisms. In one, we randomize the initial
population by generating individuals at random in the vari-
able space. The individuals are subjected to the local im-
provement operator before being added to the initial pop-
ulation. in the other initialization mechanism, we combine
X-ray structures with individuals generated at random and
improved to reach the desired population size. We report
below our analysis on the convergence, solution diversity,
and quality of the hall of fame for each of the initialization
mechanisms. The size of the initial population is 250.

Each of the settings are run for 100 generations, and pop-
ulation size is set at 250. The analysis is conducted on two
proteins, H-Ras and SOD1. The PCA on H-Ras reveals
10 PCs that contribute cumulatively 90% of the variance
among the X-ray structures; thus the variable space for H-
Ras is 10-dimensional. For SOD1, the variable space is 20-
dimensional (these proteins are 165 and 90 amino acids long,
respectively). We distribute the execution of the local im-
provement operator across 10 3.2GhZ HT Xeon CPUs with
9GB RAM, which allows a running time of 4−5 hours for
each of the proteins here. Each of the experiments is per-
formed 5 times.

3. RESULTS

3.1 Convergence Rate Analysis
We track the average fitness of the hall of fame over gener-

ations. Results are shown in the top panel of Figure 1. Data
are not drawn after generation 18, as convergence has clearly
been reached by all 3 settings. The comparison shows that
seeding the initial population with random individuals con-
verges more slowly than the other settings. It takes longer
for the algorithm to reconstruct fit individuals, as the prob-
ability that a randomly-packed chain will have low fitness is
very low for proteins. The setting where X-ray structures are
combined with individuals drawn at random reaches conver-
gence faster, but is outdone by the setting where individual
drawing is biased by the X-ray structures.

3.2 Solution Diversity Analysis
We track the structural diversity of the hall of fame across

generations in terms of the mean Euclidean distance in the
variable space. Results are shown in the middle panel of Fig-
ure 1. Solution diversity is measured as the mean Euclidean
distance in the variable space. Again, data are not drawn
after generation 18. The comparison shows that seeding the

initial population with random individuals has higher diver-
sity and preserves such diversity longer. The setting where
the drawing of individuals is biased by the X-ray structures
has the lowest diversity and loses it fast.

3.3 Quality of Hall of Fame Analysis
Figure 2 plots the hall of fame individuals of all genera-

tions, projecting them on the top two PCs (in terms of vari-
ance/eigenvalue), and color-coding them by their all-atom
energy (Rosetta score12 ). The three population initializa-
tion settings are compared.

For H-Ras, the hall of fame in the setting where the ini-
tial population is seeded with X-ray structures and their off-
spring has settled over three major basins in the landscape.
The major one to the right is the active structural state
of H-Ras, and the one to the left is the inactive structural
state. The other two clearly separated grouping of individ-
uals are novel structural states deemed Conf1 and Conf2 in
prior modeling work on H-Ras [1]. The other two settings
have higher-energy individuals in the hall of fame across
generation, as expected. The active structural state/basin
is present in both, but the other three states are sparsely
populated due to the presence of high-energy individuals.

For SOD1, the hall of fame in the setting where the initial
population is seeded with X-ray structures and their off-
spring has settled over two major basins in the landscape,
as observed in [1]. The setting where the initial population is
seeded with X-ray structures and individuals drawn at ran-
dom largely recovers the same basins, due to the fact that
there are many more X-ray structures that can be used as
opposed to H-Ras. The setting where individuals are drawn
at random for the initial population has recovered the same
basins, but has not had enough time to settle to the bottoms
of these basins and discriminate against similarly-favorable
structures that connect the basins.

These results point to the fact that while the average fit-
ness results shown above suggest convergence by generation
18, longer generations and perhaps larger populations are
needed in order for the algorithm to settle into all basins
when employing less and less a priori information in its con-
struction of the initial population . This is clearly a direction
of future work.

4. CONCLUSION
The work presented here expands upon a novel direction of

research on evolutionary algorithms designed for exploring
protein energy landscapes and uncovering multiple minima.
While it has been previously shown that a structure-driven
EA can be designed to uncover diverse minima, here we
have investigated the role of the initialization mechanism on
convergence and solution diversity. Our analysis suggests an
optimal setting to compromise between fast convergence but
high solution diversity, motivating further work and inves-
tigation of other algorithmic components for mapping com-
plex protein energy landscapes with EAs. However, detailed
investigation of the known minima/basins recovered by the
algorithm highlights further work is needed to determine ap-
propriate population size and number of generations.

5. ACKNOWLEDGMENTS
This work is supported in part by NSF CCF No. 1421001,

924



NSF IIS CAREER Award No. 1144106, and the Thomas F.
and Kate Miller Jeffress Memorial Trust Award.

6. REFERENCES
[1] R. Clausen, K. A. De Jong, and Shehu. A data-driven

evolutionary algorithm for mapping multi-basin protein
energy landscapes. J Comput Biol, 2015. in press.

[2] R. Clausen, E. Sapin, K. A. De Jong, and A. Shehu.
Evolution strategies for exploring protein energy
landscapes. In GECCO. ACM, 2015.

[3] R. Clausen and A. Shehu. A multiscale hybrid
evolutionary algorithm to obtain sample-based
representations of multi-basin protein energy
landscapes. In ACM Conf on Bioinf and Comp Biol
(BCB), pages 269–278, Newport Beach, CA, September
2014.

[4] B. Olson, K. A. D. Jong, and A. Shehu. Off-lattice
protein structure prediction with homologous crossover.
In Conf on Genetic and Evolutionary Computation
(GECCO), pages 287–294, New York, NY, 2013. ACM.

[5] B. Olson and A. Shehu. Multi-objective stochastic
search for sampling local minima in the protein energy
surface. In ACM Conf on Bioinf and Comp Biol (BCB),
pages 430–439, Washington, D. C., September 2013.

[6] J. Santos, P. Villot, and M. Dieguez. Emergent protein
folding modeled with evolved neural cellular automata
using the 3d hp model. J of Comp Biol,
21(11):823–845, 2014.

925



H-Ras SOD1

Figure 1: Results are shown in (a) for H-Ras and (b) for SOD1. The average fitness of the hall of fame is
tracked across generations in the top panel. The average pairwise Euclidean distance in the hall of fame is
tracked across generations in the middle panel.
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(a) H-Ras (b) SOD1

Figure 2: Results are shown in (a) for H-Ras and (b) for SOD1. All individuals in the hall of fame at each
generation are projected onto the top two PCs and color-coded by their all-atom Rosetta score12 energies.
The top panel shows the setting where the initial population is drawn at random; the middle panel shows
the setting where X-ray structures are combined with individuals drawn at random; the bottom panel shows
the setting where the perturbation operator is additionally used over the X-ray structures to initialize the
population.
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