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ABSTRACT
This paper presents a brief description of the protein side
chain packing problem (PSCPP) and a performance assess-
ment, on this problem, of three state-of-the-art algorithms:
SCWRL4, OPUS-Rota, and CIS-RR. In order to perform
a fair comparison, the algorithms are evaluated on three
data sets, two of them were previously proposed in the lit-
erature and a set of 723 protein structures proposed here.
Experimental results show that the achieved accuracy when
evaluating the side chain’s first torsion angle (χ1) is of ap-
proximately 86% and around 69% for the first and the sec-
ond torsion angles (χ1+2), for all methods. Although all the
algorithms achieve similar accuracies, SCWRL4 requires on
average, less computation effort than the others. We high-
light relevant aspects that need to be considered in order to
verify whether or not this 86% is a theoretical upper bound
for the algorithms’ performance as well as what might be-
come a promising direction to follow in case an improvement
is possible.
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1. INTRODUCTION
The protein side-chain packing problem (PSCPP) consist

of: given the backbone co-ordinates of each amino acid, se-
lect a set of rotamers (one for every amino acid), from a
rotamer library, such that a given energy function is min-
imized. This problem has been proven to be NP-hard [1].
The PSCPP is an essential part of a protein structure pre-
diction method known as homology modeling [22] as well as
of the protein design problem [9].

Although many methods such as RASP [17], OSCAR-
star [14], SIDEPRO [18], SCMF-PDRL [8], OPUS-Rota [16],
CIS-RR [3], and SCWRL4 [11] have been proposed to deal
with the PSCPP, comparison works have been rather scarce
[19, 17]. Most of the methods present only a brief compar-
ison analysis of their new proposed method against previ-
ously proposed ones on particular test instances. In order
to assess the performance of each method, over a set that
is different from the ones used to tune their parameters, we
propose to use a new set consisting of 723 protein struc-
tures along with two other sets of 65 and 373 structures,
previously used in the literature.

2. PROBLEM STATEMENT
The PSCPP associated to a backbone independent ro-

tamer library is defined as:
Given a sequence of amino acids ~a = (a1, a2, . . . , an), the

co-ordinates of the backbone atoms ~c = (~c1, ~c2, . . . , ~cn) and
the backbone independent rotamer library r, the PSCPP
consist on finding the side chains’ torsion angles ~t = (~t1, ~t2,
. . . , ~tn) such that the energy function f(~a,~c, r,~t) is mini-
mum, where
ai ∈ ~A, with ~A the set of 20 amino acids;
~ci = { ~Ni, ~Cαi , ~Ci, ~Oi}, with Ni, C

α
i , Ci, Oi ∈ <3; and

~ti ∈ r(ai).
If the rotamer library is backbone dependent then r(ai)

changes to r(ai, φi, ψi), with φi and ψi the backbone torsion
angles corresponding to the i− th amnino acid.
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3. ALGORITHMS FOR THE SIDE-CHAIN
PACKING PROBLEM

Several algorithms have been developed to approach the
side-chain packing problem, using a heuristic (either deter-
ministic or randomized) or an exact search method. The
methods to solve the PSCPP consist of three main compo-
nents: a rotamer library, an energy function, and a search
algorithm to find the set of rotamers minimizing the energy
function.

Recently, there have been some advances in all of the three
components mentioned above. The growth and improve-
ment in determining experimentally protein structures have
lead to better rotamer libraries which are generated using
larger data sets of better quality structures. The energy
functions have also benefited from these new structures, ei-
ther by refining the parameters of the functions or by adding
new terms that represent knowledge obtained from them.

Regarding the search algorithms, the improvements con-
centrated mainly on the efficient computation of the energy
function, the bottleneck of the search algorithm. Efficiency
is important due to the huge search space that needs to be
explored.

Next, we briefly describe each of the methods considered
for the performance assessment.

OPUS−Rota [16] uses a backbone-dependent rotamer
library [7], and its energy function is described by:

Etotal = w1Erot + w2Evdw + w3Eorient + w4Esolvation (1)

The term Erot is related to the probabilities associated
with the selected rotamers in a given predicted structure,
and the term Evdw represents the Van der Waals interac-
tions in the structure. These terms are used in almost all the
methods that tackle the PSCPP; however, the terms Eorient
and Esolvation are unique to OPUS-Rota, these terms in-
corporate information about the energy associated with an
angle conformation and the solvent-accessible surface area
of each atom. Each component of the energy function is
weighted by a constant factor wi.

The search method in OPUS-Rota is based on simulated
annealing. The process is initialized by positioning all side
chains at the rotamers with minimum main-chain/side-chain
energy.

SCWRL4 [11] is one of the most accurate, fastest and
most frequently used method to solve the side-chain pack-
ing problem. It uses one of the latest backbone-dependent
rotamer library [21]. The total energy of the protein is ex-
pressed by Equation 2.

E(S) =

N∑
i=1

Eself (ri) +

N−1∑
i=1

N∑
j=i+1

Epair(ri, rj), (2)

where vector r specifies a single rotamer for each of the N
residues in S.

In this case, the self-energy term (Eself ) expresses the ro-
tamer energy relative to the most populated rotamer, given
the backbone dihedrals, in addition to the energy from in-
teractions (Epair) of the side chain with the backbone and
any ligand or other fix atoms in the structure. The pairwise
rotamer energies consist of repulsive and attractive van der
Waals terms as well as a hydrogen bonding term.

SCWRL4 uses a deterministic search method based on

the Dead End Elimination (DEE) [5] algorithm and a tree
decomposition approach to solve the combinatorial problem.

CIS−RR [3] uses a backbone-dependent rotamer library
[6]. The scoring function was adapted from that of SCWRL3
[2], which consists of two terms:

E = EvdW + krotErot (3)

The term EvdW is an empirical van der Waals poten-
tial modified from SCWRL3, and Erot is the rotamer term,
which measures the preferences of the side-chain conformers,
krot is a weighting factor to balance the relative importance
of EvdW and Erot.

The search method of CIS-RR focuses on minimizing the
atomic clashes in the predicted structure. This is done by a
phase called Rotamer Relaxation (RR), which has shown to
lower significantly the number of clashes.

The starting side-chain conformation of each residue is
constructed by the rotamers with the highest probability at
each position. Then, for each residue i, every one of its
rotamers will be optimized (by RR) and tested for clashes
with the other residues that are kept fix [3].

There are other recent approaches for the PSCPP like
RASP [17], OSCAR-star [14], SIDEPRO [18], and SCMF-
PDRL [8]; however, these are not considered since they es-
sentially achieve similar results as those of the methods stud-
ied here.

4. EXPERIMENTAL SETUP AND RESULTS

4.1 Datasets
We use three datasets to make the performance compar-

ison. They consist of 65, 373, and 723 protein structures
from the Protein Data Bank (PDB). The first two data sets
were used previously [20, 10, 16, 11, 3], and the last one is
proposed in this work. A brief description of each dataset is
given below:

• Dataset-65 [20]: 30 proteins were taken from [13]. For
this subset, sequence identity cutoff was set to 50%,
the resolution cutoff was set to 1.8 Å, and the R-
factor cutoff was set to 20%. Only single-chain pro-
teins with 100-500 residues and containing no incom-
plete side chains or ligands were selected. 28 proteins
were taken from [24]; some of them have a resolution

between 0.83-1.4 Å and a pair-wise sequence identity
of less than 20%, while the others have a resolution
better than 1.2 Å and more than 40 residues. The re-
maining 7 proteins were selected from the PDB using
the criteria of having crystallographic resolutions bet-
ter than 1.2 Å, and sequence length between 150-300
residues.

• Dataset-373 [11]: this is a subset from the dataset of
379 proteins proposed for testing SCWRL4, removing
the ones already present in the Dataset-65. The pro-
teins have a sequence length between 40-1000 residues,
with resolutions better than 1.8 Å, maximum mutual
sequence identity lower than 30%, and maximum R-
factor of 20%.

• Dataset-723: proteins in this heterogeneous set have
a single chain with 40-400 residues, a single domain
under SCOP classification (within class a, b, c, and d),
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a maximum R-factor of 20%, a maximum resolution of
2 Å, a maximum sequence identity of 25%; and their
structures were determined by X-ray crystallography.

(a) Dataset-65

(b) Dataset-373

(c) Dataset-723

Figure 1: χ1 accuracy by amino acid for each data
set

4.2 Quality measures
A comparison of the three considered methods is avail-

able [17]; however, it uses only the dataset proposed for
SCWRL4 [11], with general and amino acid accuracy com-
parisons. One of the objectives of this study is to extend
this work by using three datasets, providing a fair compari-
son of the most accurate methods available to date. We will
consider aspects like accuracy over χ1 and χ1+2, by amino
acid and global, as well as running time of each method.

The measure used in the literature to show the accuracy
of a method is the percentage of correctly predicted side-
chain torsion angles. This is called absolute accuracy [11]. A
predicted side-chain torsion angle (χ′) is correct if its error is
less than or equal to a specified threshold (usually 40◦ [7]),
with respect to the angle (χ) calculated from the original
pdb entry. To calculate the error of a predicted side-chain
torsion angle, we use the following expression:

e(χ, χ′) = min(|χ− χ′|, 360− |χ− χ′|) , (4)

Table 1 shows the accuracies of OPUS-Rota [16], SCWRL4
[11], and CIS-RR [3] as they are reported in the literature.
Fortunately, all these works used 40◦ as the threshold for
the accuracy calculations; however, they reported slightly
different results due to the differences in the data sets em-
ployed. For instance, in [16], [11], [3], and [15] the authors

used datasets of 65, 379, 180, and 218 protein structures,
respectively; besides, in [11] they used only side chains with
electron density in a given range.

Table 1: Accuracy of OPUS-Rota, SCWRL4, and
CIS-RR reported by previous work under different
conditions.

Method Ref. χ1(%) χ1+2(%)
OPUS-Rota [16] 89.00 79.10
OPUS-Rota [15] 86.60 75.70
OPUS-Rota [17] 85.03 75.05
SCWRL4 [11] 89.30 79.70
SCWRL4 [3] 85.80 76.30
SCWRL4 [15] 85.10 74.00
SCWRL4 [17] 85.03 75.44
CIS-RR [3] 86.40 76.70
CIS-RR [17] 84.88 74.88

As it can be noticed in Table 1, the reported accuracies
are not consistent for each method, and cannot be compared
easily due to the different experimental conditions. For in-
stance in [16] Opus-Rota is run on a set of 65 proteins while
in [15] and [17] it was evaluated on sets of 218 and 379 struc-
tures, respectively.

4.3 Accuracy comparison: Results
There are different ways to compute the accuracy depend-

ing on the characteristics we want to highlight. Figure 1
shows the accuracy regarding the χ1 torsion angle with re-
spect to each amino acid for the three different data sets. We
can observe that the behavior of this accuracy is similar over
the data sets. Alanine (A) and Glycine (G) do not have side
chain. Serine (S) obtains the lowest accuracy, this is not
an expected result since serine has a short side chain and
shorter side chains should be easier to predict than longer
ones since they have fewer rotamers.

In Table 2 we present the overall accuracy of the three
methods for each dataset (65, 373, and 723 proteins, respec-
tively). The overall accuracy was obtained calculating the
percentage of the correct angles for all the residues in the
datasets. From Table 2 we can observe that all methods per-
form similarly with respect to χ1 and χ1+2. There is a slight
advantage for OPUS-Rota respect to the other methods.

Table 2: Results of accuracy for each method and
each dataset.

χ1(%) χ1+2(%)
Dataset 65 373 723 65 373 723
OPUS-Rota 86.70 85.66 85.90 69.68 69.01 68.60
SCWRL4 85.97 85.37 85.52 68.21 68.74 68.24
CIS-RR 86.18 85.10 85.35 68.70 68.46 68.10

Computation time is another characteristic, besides the
accuracy, that needs to be taken into account when choosing
an algorithm to predict the side-chain atom positions, spe-
cially when dealing with the protein design problem. Table 3
shows that the average running time is consistent among the
three datasets. The algorithm that shows the lowest average
computation time with the highest variability is SCWRL4
[11], while the other two methods have similar computation
times.

We also observed (results not shown here) that SCWRL4
has many outliers (with respect to computation time), and
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some of them are running times that double the maximum
computation time of the other methods. This obeys to the
following reason; when SCWRL4 spends more than a certain
amount of time on a given structure it switches to a heuristic
procedure to assure convergence (at the expense of losing
optimality). It would be very interesting to characterize
the structures that generate the outliers for the SCWRL4
in order to understand what makes a structure harder to
predict than another.

After analyzing the results of this brief experimental com-
parison of side chain packing methods, the following ques-
tions arises:

1. Is 86% the maximum achievable value for the χ1 aver-
age accuracy?

A simple idea to answer this question is to take rotamers
from a simple library and compute the best match it can
achieve for each amino acid on a given set of protein struc-
tures.

2. If the rotamer library is able to achieve higher accu-
racy values, then is the limitation in: i) the energy function
and/or ii) the search algorithm?

A recent work on protein design algorithms [12] indicates
that the energy functions still fail to correctly model the
interactions within a protein, so they could be the main re-
sponsible for the marginal improvements in PSCPP. A sim-
ilar conclusion was reached working with Rosetta for struc-
ture prediction of small proteins [4].

Table 3: Computation time (in seconds) for each
method and each dataset.

Dataset-65 Dataset-373 Dataset-723
AVG SD AVG SD AVG SD

OPUS-Rota 10.66 5.94 15.77 9.88 10.46 4.93
SCWRL4 5.33 11.06 5.72 5.34 4.09 6.41
CIS-RR 11.48 9.01 18.95 16.90 10.22 6.84

5. CONCLUSION
In this work a performance assessment of three state-of-

the-art methods for the PSCPP in terms of accuracy and
running time is presented. To achieve this, we used two
datasets proposed in the literature and added a larger het-
erogeneous one that considers SCOP classes, minimum val-
ues for resolution, R-factor, and a maximum sequence iden-
tity between every pair of proteins in the set.

Regarding the accuracy results, we have not found a sig-
nificant difference between methods considering general and
by amino acid accuracies. All the methods achieve approx-
imately 86% for χ1. However, a most important remaining
question is to decide whether this 86% accuracy is a limit
in some sense or there is still room for improvements. If the
improvement is possible we need to determine if the current
results are due to limitations in the search methods, the
rotamer library, or the energy functions.

Future work is aimed at analyzing the performance of
state-of-the-art methods’ energy functions. For this, the
correlation between the energy and accuracy could be an-
alyzed as it is done elsewhere [23], or a local search method
could be applied to the native structure. In the latter case,
an ideal energy function would at least consider the native
structure as a local minimum.

6. ACKNOWLEDGMENTS
This work was partially supported by the National Coun-

cil of Science and Technology of Mexico (www.conacyt.mx)
under grant SEP-CONACYT-CB-2010-154737.

7. REFERENCES
[1] T. Akutsu. Np-hardness results for protein side-chain

packing. Genome Informatics, 8:180–186, 1997.

[2] A. Canutescu, A. Shelenkov, and R. Dunbrack. A
graph-theory algorithm for rapid protein side-chain
prediction. Protein Science, 12(9):2001–2014, 2003.

[3] Y. Cao, L. Song, Z. Miao, Y. Hu, L. Tian, and
T. Jiang. Improved side-chain modeling by coupling
clash-detection guided iterative search with rotamer
relaxation. Bioinformatics, 27(6):785–790, 2011.

[4] R. Das. Four small puzzles that rosetta doesn’t solve.
PLOS One, 6(5):e20044, 2011.

[5] J. Desmet, M. Maeyer, B. Hazes, and I. Lasters. The
dead-end elimination theorem and its use in side-chain
positioning. Nature, 356:539–542, 1992.

[6] R. Dunbrack and F. Cohen. Bayesian statistical
analysis of protein side-chain rotamer preferences.
Protein Science, 6:1661–1681, 1997.

[7] R. Dunbrack and M. Karplus. Backbone-dependent
rotamer library for proteins. application to side-chain
prediction. Journal of Molecular Biology, 230:543–574,
1993.

[8] P. Francis-Lyon and P. Koehl. Protein side-chain
modeling with a protein-dependent optimized rotamer
library. Proteins: Structure, Function, and
Bioinformatics, 82(9):2000–2017, 2014.

[9] P. Gainza, K. Roberts, and B. Donald. "Protein
Design Using Continuous Rotamers". PLOS
Computational Biology, 8(1):1–15, 2012.

[10] T. Jain, D. Cerutti, and J. McCammon.
Configurational-bias sampling technique for predicting
side-chain conformations in proteins. Protein Science,
15(9):2029–2039, 2006.

[11] G. Krivov, M. Shapovalov, and R. Dunbrack.
Improved prediction of protein side-chain
conformations with SCWRL4. Proteins,
27(6):785–790, 2009.

[12] Z. Li, Y. Yang, J. Zhan, L. Dai, and Y. Zhou. Energy
functions in de novo protein design: Current
challenges and future prospects. Annual Review of
Biophysics, 42:315–335, 2013.

[13] S. Liang and N. Grishin. Side-chain modeling with an
optimized scoring function. Protein Science,
11(2):322–331, 2002.

[14] S. Liang, D. Zheng, C. Zhang, and D. Standley. Fast
and accurate prediction of protein side-chain
conformations. Bioinformatics, 27(20):2913–2914,
2011.

[15] S. Liang, Y. Zhou, N. Grishin, and D. Standley.
Protein side chain modeling with
orientation-dependent atomic force fields derived by
series expansions. Journal of Computacional
Chemistry, 32(8):1680–1686, 2011.

[16] M. Lu, A. Dousis, and J. Ma. OPUS-Rota: a fast and
accurate method for side-chain modeling. Protein
Science, 17(9):1576–1585, 2008.

932



[17] Z. Miao, Y. Cao, and T. Jiang. RASP: rapid modeling
of protein side chain conformations. Bioinformatics,
27(22):3117–3122, 2011.

[18] K. Nagata, A. Randall, and P. Baldi. Sidepro: A novel
machine learning approach for the fast and accurate
prediction of side-chain conformations. Proteins:
Structure, Function, and Bioinformatics,
80(1):142–153, 2012.

[19] L. X. Peterson, X. Kang, and D. Kihara. Assessment
of protein side-chain conformation prediction methods
in different residue environments. Proteins: Structure,
Function, and Bioinformatics, 82(9):1971–1984, 2014.

[20] R. Peterson, P. Dutton, and A. Wand. Improved
side-chain prediction accuracy using an ab initio
potential energy function and a very large rotamer
library. Protein Science, 13(3):735–751, 2004.

[21] M. Shapovalov and R. Dunbrack. A smoothed
backbone-dependent rotamer library for proteins
derived from adaptive kernel density estimates and
regressions. Bioinformatics, 19(22):844–858, 2011.

[22] H. Venselaar, E. Krieger, and G. Vriend. Homology
modeling. Structural Bioinformatics, pages 715–732,
2009.

[23] P. Widera, J. M. Garibaldi, and N. Krasnogor. Gp
challenge: Evolving energy function for protein
structure prediction. Genetic Programming and
Evolvable Machines, 11(1):61–88, 2010.

[24] Z. Xianga and B. Honig. Extending the accuracy
limits of prediction for side-chain conformations.
Journal of Molecular Biology, 311(2):421–430, 2001.

933




