

Evolutionary Algorithms

- Population-based, stochastic search algorithms
- Exploitation: selection
- Exploration: mutation & crossover

Model-Based Evolutionary Algorithms

- Population-based, stochastic search algorithms
- Exploitation: selection
- Exploration:
 - 1. Learn a model from selected solutions
 - 2. Generate new solutions from the model (& population)

Model-Based Evolutionary Algorithms (MBEA)

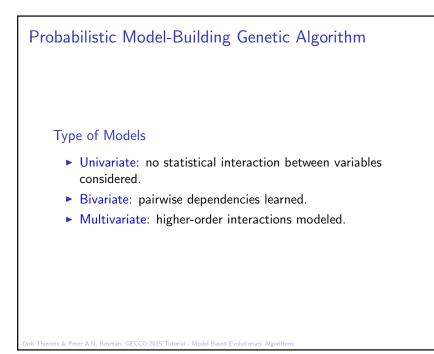
- a.k.a. Estimation of Distribution Algorithms (EDAs)
- > a.k.a. Probabilistic Model-Building Genetic Algorithms
- > a.k.a. Iterated Density Estimation Evolutionary Algorithms

MBEA = Evolutionary Computing + Machine Learning

Note: model not necessarily probabilistic

Why ? Goal: Black Box Optimization Little known about the structure of the problem Clean separation optimizer from problem definition Easy and generally applicable Approach * Classical EAs: need suitable representation & variation operators * Model-Based EAs: learn structure from good solutions

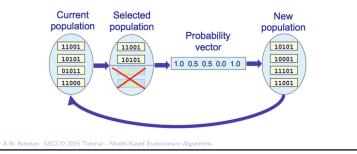
Discrete Representation Typically binary representation Higher order cardinality: similar approach Current Selected New population population population 11001 01111 11001 **Probabilistic** 11001 11101 10101 01011 Model 11011 11000 00111

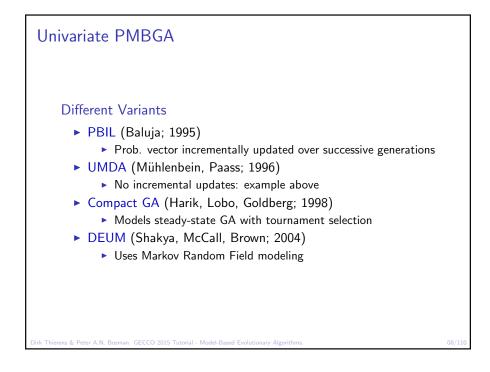


Univariate PMBGA

Model

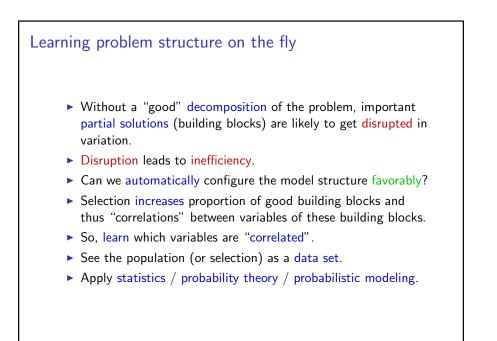
- * Model: probability vector $[p_1, ..., p_\ell]$ (ℓ : string length)
- * p_i : probability of value 1 at string position i
- * $p(X) = \prod_{i=1}^{\ell} p(x_i) (p(x_i): univariate marginal distribution)$
- Learn model: count proportions of 1 in selected population
- Sample model: generate new solutions with specified probabilities

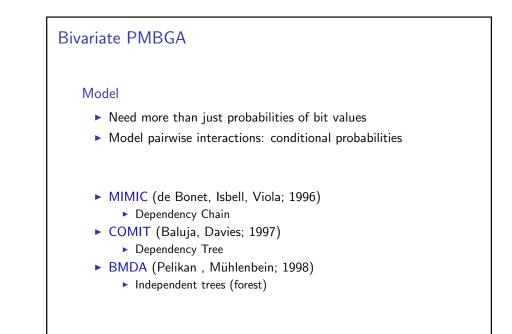




A hard problem for the univariate FOS

:	Data 000000	= _	Marginal Product (MP) FOS					
	111111	-	Ê	$\overline{(X_0X_1\lambda)}$	ζ ₂)	$(X_3X_4X_5)$		
	010101	-	000	0.3		0.3		
	1010101		001	0.0		0.0		
	000010		010	0.2		0.2		
	111000		011	0.0		0.0		
	010111		100	0.0		0.0		
	111000		101	0.1		0.1		
	000111		110	0.0		0.0		
	111111	_	111	0.4		0.4		
		_						
		Univariate FOS						
		$\widehat{V}_0) \ \widehat{P}(X_1)$	$\hat{P}(X_2)$	$\hat{P}(X_3)$	$\hat{P}(X_4)$	$\hat{P}(X_5)$		
	0 0.	5 0.4	0.5	0.5	0.4	0.5		
	1 0.	5 0.6	0.5	0.5	0.6	0.5		
 What is 	the pro	bability	of ger	eratin	g 111	111?		
► Univaria	e FOS	: 0.5 · 0.	6 · 0.5	· 0.5 ·	0.6 · 0	0.5 = 0.0		
► MP FOS	. 0 1	01-0	16(7)	timor	largarl)		





Bivariate PMBGA

MIMIC

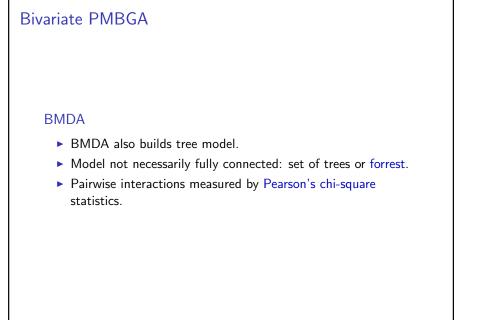
- Model: chain of pairwise dependencies.
- $p(X) = \prod_{i=1}^{\ell-1} p(x_{i+1}|x_i) p(x_1).$
- MIMIC greedily searches for the optimal permutation of variables that minimizes Kullack-Leibler divergence.

Bivariate PMBGA

COMIT

- Optimal dependency tree instead of linear chain.
- Compute fully connected weighted graph between problem variables.
- ▶ Weights are the mutual information *I*(*X*, *Y*) between the variables.
- ► $I(X, Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$.
- COMIT computes the maximum spanning tree of the weighted graph.

Dirk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.



Bivariate PMBGA DSMGA Dependency Structure Matrix Genetic Algorithm (Yu, Goldberg, Sastry, Lima, Pelikan; 2009) Dependency Structure Matrix (DSM) contains the information of pairwise interactions. DSMGA constructs the DSM by using mutual information metric. DSM clustering aims to transfer the pair-wise interaction information into higher-order interaction information. DSM Clustering Metric based on the minimum description length principle (MDL).

irk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

Multivariate PMBGA

Marginal Product Model

- Extended Compact GA (ECGA) (Harik; 1999) was first EDA going beyond pairwise dependencies.
- Greedily searches for the Marginal Product Model that minimizes the minimum description length (MDL).
- $p(X) = \prod_{g=1}^{G} p(X_g)$
- ► Choose the probability distribution with the lowest MDL score.
- ► Start from simplest model: the univariate factorization.
- Join two groups that result in the largest improvement in the used scoring measure.
- Stop when no joining of two groups improves the score further.

Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms

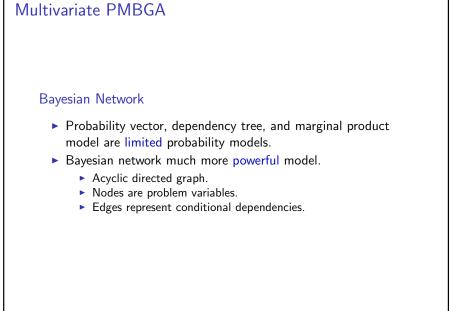
Multivariate PMBGA

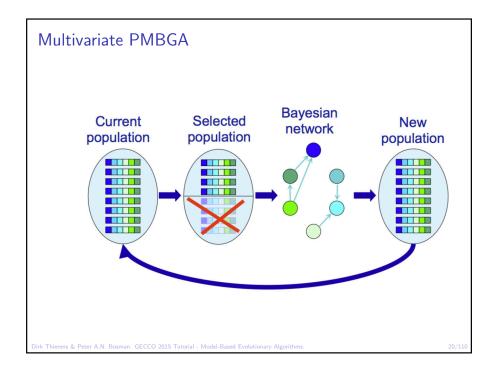
Minimum Description Length (MDL)

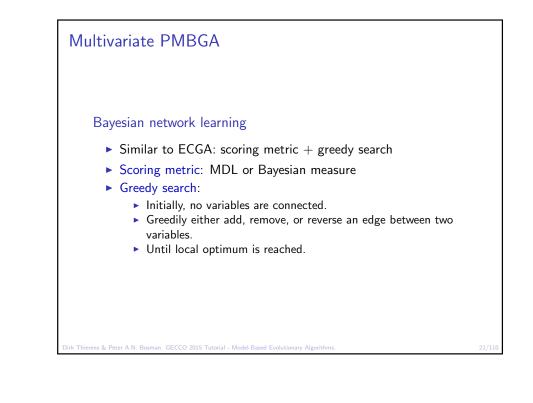
- $MDL(M, D) = D_{Model} + D_{Data}$
- ▶ Best factorization = the one with the lowest MDL score.
- MDL is a measure of complexity.
 - 1. Compressed population complexity: how well the population is compressed by the model (measure of goodness of the probability distribution estimation).
 - 2. Model complexity: the number of bits required to store all parameters of the model.

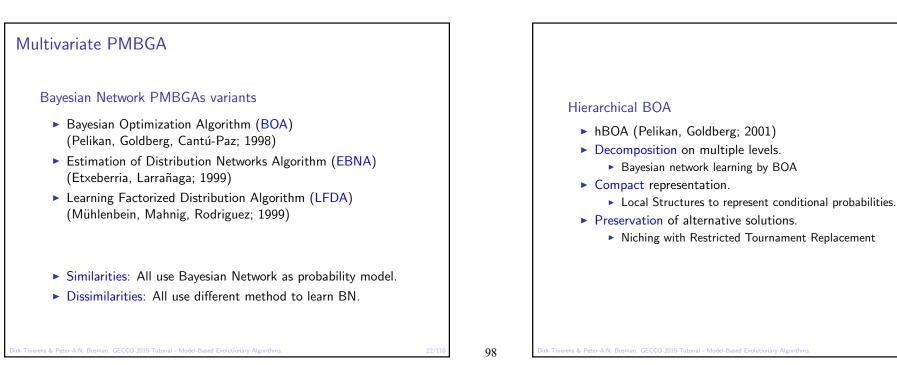
irk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

Multivariate PMBGALearning MP model1. Start from univariate FOS:
 $\{\{0\}, \{1\}, \{2\}, \dots, \{l-2\}, \{l-1\}\}$ 2. All possible pairs of partitions are temporarily merged:
 $\{\{0, 1\}, \{2\}, \dots, \{l-2\}, \{l-1\}\}$
 $\{\{0, 2\}, \{1\}, \dots, \{l-2\}, \{l-1\}\}$
 \vdots
 $\{\{0\}, \{1, 2\}, \dots, \{l-2\}, \{l-1\}\}$
 \vdots
 $\{\{0\}, \{1\}, \{2\}, \dots, \{l-2, l-1\}\}$ 3. Compute MDL score of each factorization.4. Choose the best scoring factorization if better than current.5. Repeat until no better scoring factorization is found.









Multivariate PMBGA Markov Network Markov Netwok EDA (MN-EDA: Santana, 2005) (DEUM: Shakya & McCall, 2007). Probability model is undirected graph. Factorise the joint probability distribution in cliques of the undirected graph and sample it. Most recent version: Markovian Optimisation Algorithm (MOA) (Shakya & Santana, 2008). MOA does not explicitly factorise the distribution but uses the local Markov property and Gibbs sampling to generate new solutions.

irk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

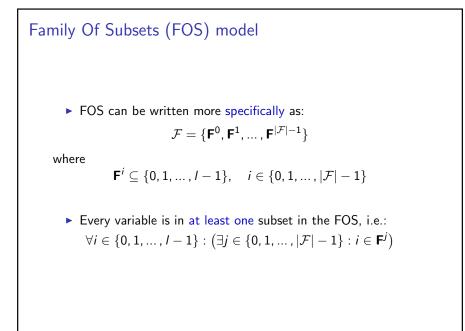
24/110

Family Of Subsets (FOS) model

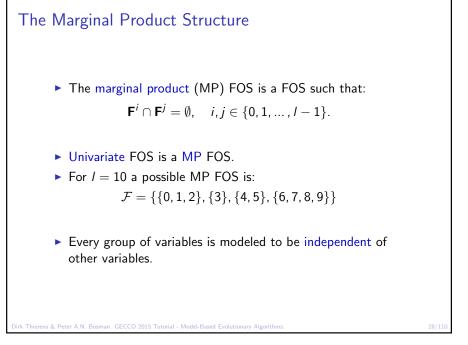
FOS \mathcal{F}

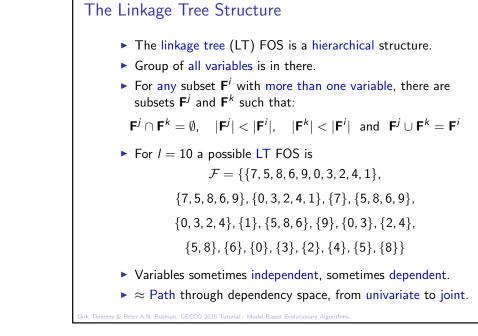
- PMBGAs learn a probabilistic model of good solutions to match the structure of the optimization problem
- Key idea is to identify groups of problem variables that together make an important contribution to the quality of solutions.
- Dependency structure generally called a Family Of Subsets (FOS).
- Let there be ℓ problem variables $x_0, x_1, \dots, x_{\ell-1}$.
- Let S be a set of all variable indices $\{0, 1, \dots, \ell 1\}$.
- A FOS \mathcal{F} is a set of subsets of the set S.
- ▶ FOS \mathcal{F} is a subset of the powerset of S ($\mathcal{F} \subseteq \mathcal{P}(S)$).

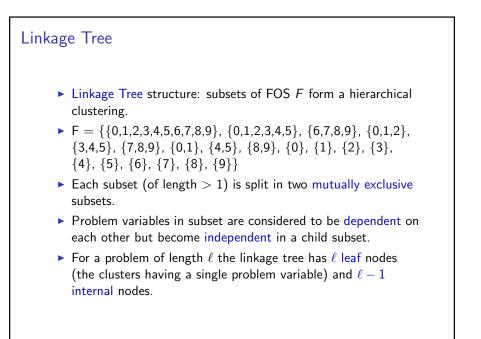
Thierens & Peter A.N. Bosman, GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms

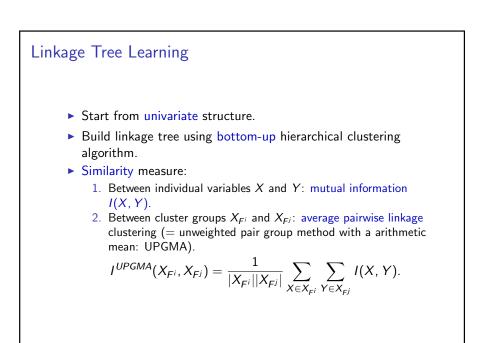


The Univariate Structure • The univariate FOS is defined by: $\mathbf{F}^i = \{i\}, i \in \{0, 1, ..., l-1\}$ • For l = 10 the univariate FOS is: $\mathcal{F} = \{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}\}$ • Every variable is modeled to be independent of other varibables.







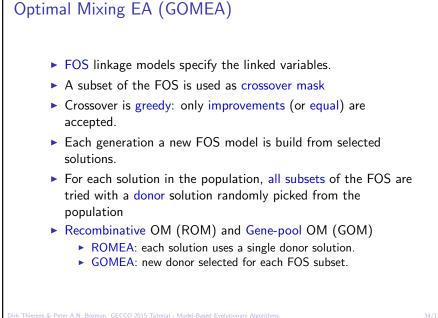


Linkage Tree Learning

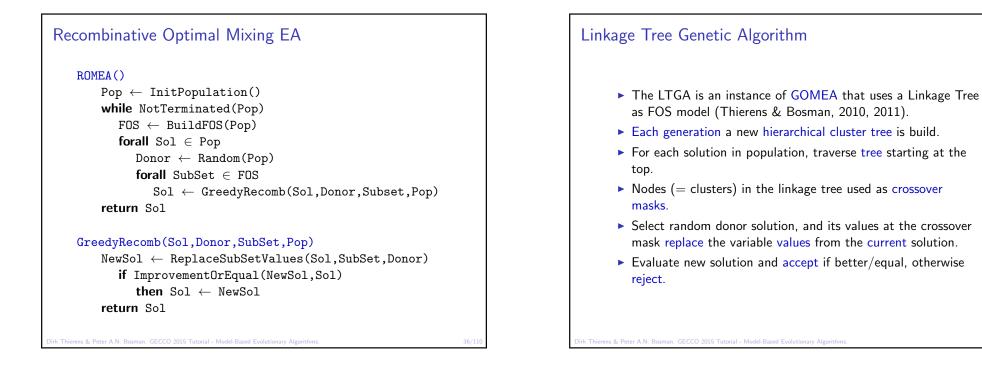
- This agglomerative hierarchical clustering algorithm is computationally efficient.
- Only the mutual information between pairs of variables needs to be computed once, which is a $O(\ell^2)$ operation.
- ▶ The bottom-up hierarchical clustering can also be done in $O(\ell^2)$ computation by using the *reciprocal nearest neighbor chain* algorithm.

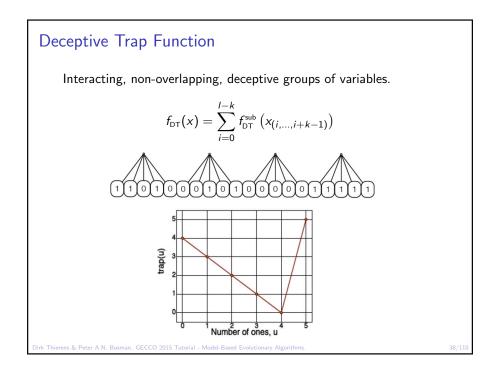
Optimal Mixing Evolutionary Algorithms (OMEA)

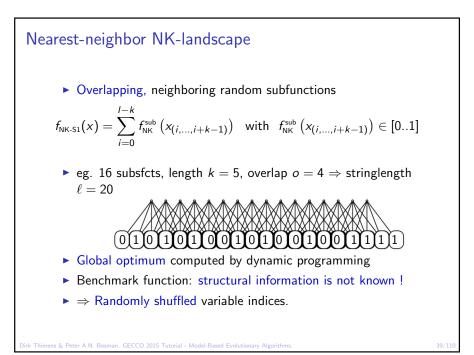
- OMEA is a Model-Building EA that uses a FOS as its linkage model (Thierens & Bosman, 2011).
- Characteristic of Optimal Mixing Evolutionary Algorithm (OMEA) is the use of intermediate function evaluations (inside variation)
- Can be regarded as greedy improvement of existing solutions
- ► Coined "Optimal" Mixing because better instances for substructures are immediately accepted and not dependent on "noise" coming from other parts of the solution
- ▶ Recombinative OM (ROM) and Gene-pool OM (GOM)
 - ▶ ROM is GA-like: select single solution to perform OM with
 - GOM is EDA-like: select new solution for each substructure in ΟM

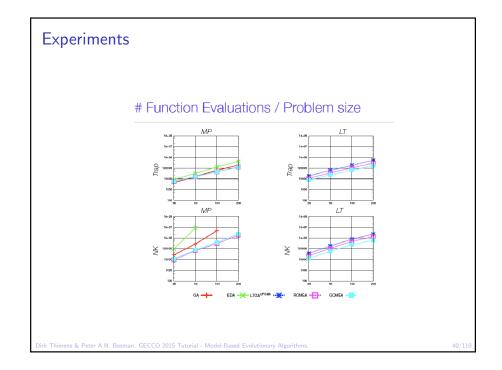


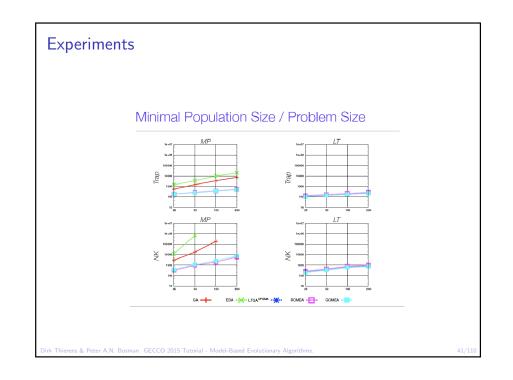
Gene-pool Optimal Mixing EA GOMEA() Pop ← InitPopulation() while NotTerminated(Pop) FOS ← BuildFOS(Pop) forall Sol ∈ Pop forall SubSet ∈ FOS Donor \leftarrow Random(Pop) return Sol GreedyRecomb(Sol,Donor,SubSet,Pop) NewSol <-- ReplaceSubSetValues(Sol,SubSet,Donor) if ImprovementOrEqual(NewSol,Sol) then Sol \leftarrow NewSol return Sol

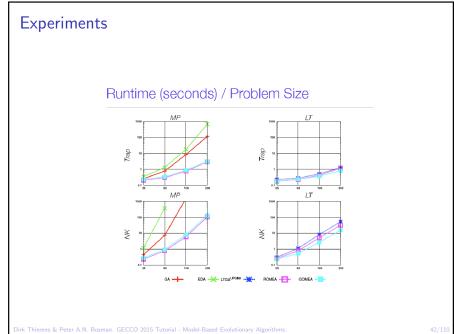








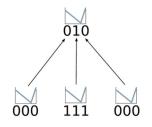




Hierarchical Trap function

HTrap

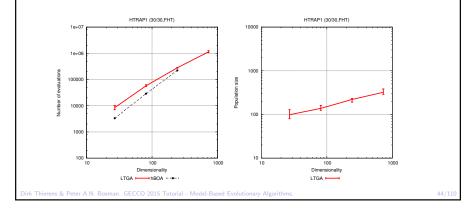
- Combine deceptive trap functions at each level in tree.
- ► Balanced *k*-ary tree
- Internal nodes are 0 (resp. 1) if all their children are 0 (resp. 1).
- Global optimum is all ones, yet at each level search is biased towards zeroes.



Hierarchical Trap function

HTrap: LTGA and hBOA

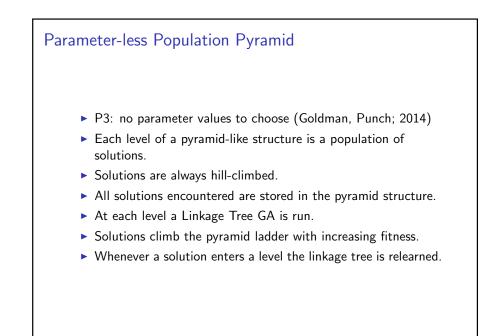
- HTrap problems:
 block length k = 3; problem lengths 27, 81, 243 & 729.
- Number of evaluations & minimal population size.



Experiments: conclusion

- LTGA (= GOMEA with LT FOS) very efficient on Deceptive Trap function, Nearest-Neighbor NK landscape, and Hierarchical Trap function.
- Tree not always suitable linkage model: for instance spin-glasses LTGA vs. hBOA (Pelikan, Hauschild & Thierens, 2011).
- Other FOS models possible: Linkage Neighborhood OM (Bosman & Thierens, 2012).
- Linkage Tree seems to be good compromise between FOS model complexity and search efficiency.

irk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

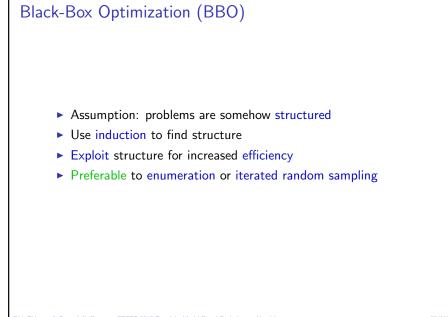


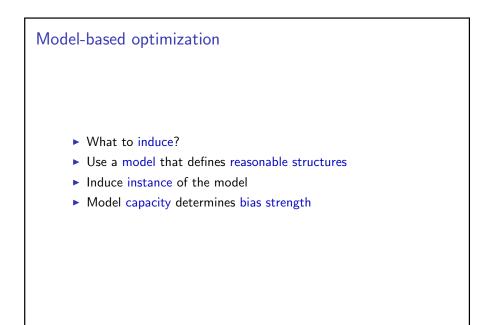
Predetermined vs. Learned FOS

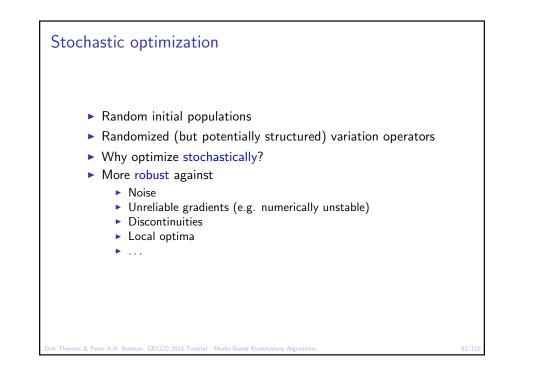
- Problem structure unknown: learn a FOS model.
- Problem structure Information available: predetermined FOS model.
- What is a good predetermined FOS model ?
- Direct mapping of dependency structure of problem definition to a predetermined FOS model ?
- Predetermined linkage models mirroring the static structure of the problem not sufficient (Thierens & Bosman, 2012).
- Dynamically learned tree model superior to mirror structured models and to static tree model.
- Question: is there an optimal, predetermined linkage model that outperforms the learned (tree) model ?

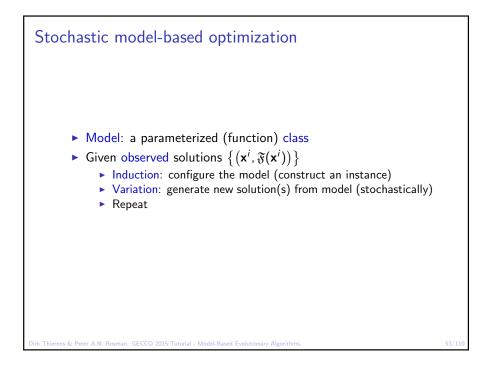
7/110

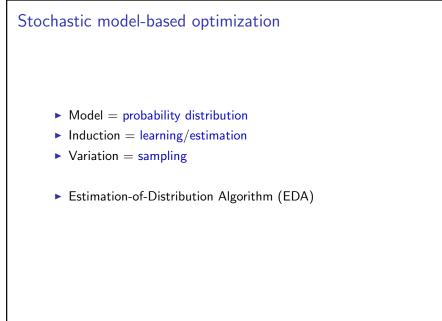
Conclusions Black-Box Optimization (BBO) • "Blind" Evolutionary Algorithms are limited in their capability ▶ Maximize $\mathfrak{F}(\mathbf{x}), \mathbf{x} \in \mathbb{P}$ to detect and mix/exploit/re-use partial solutions (building • No prior knowledge of \mathfrak{F} blocks). Guess a new x and evaluate it • One requires luck or analyzing and designing ways of structure exploitation directly into problem representation and search Can only use previously evaluated solutions operators. Minimize number of evaluations and/or actual time ► Having a configurable model can help overcome this. Needed when not much known about a problem • Algorithm then must learn to configure the model and thereby (e.g. simulations) exploit structure online during optimization (e.g. EDAs, OMEAs).

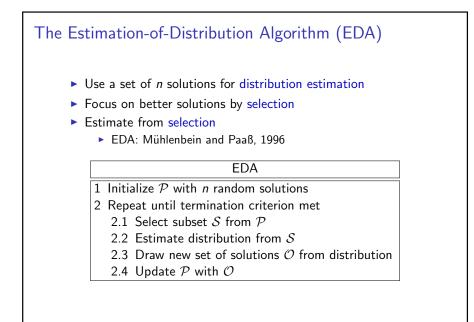




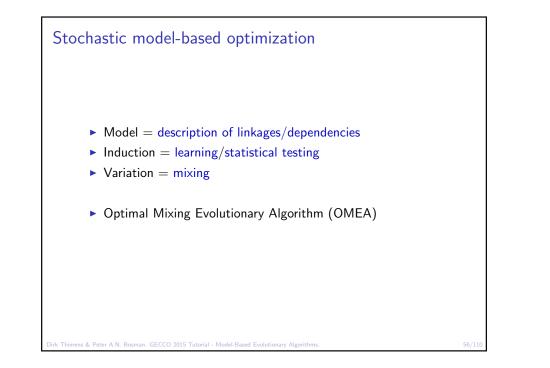








Dirk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

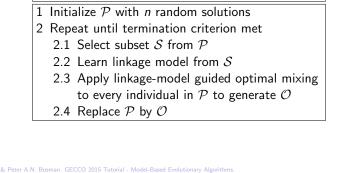


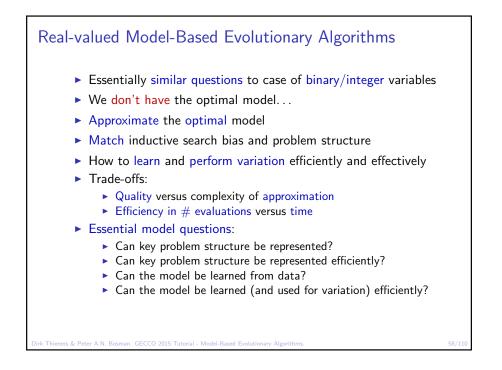
The Estimation-of-Distribution Algorithm (EDA)

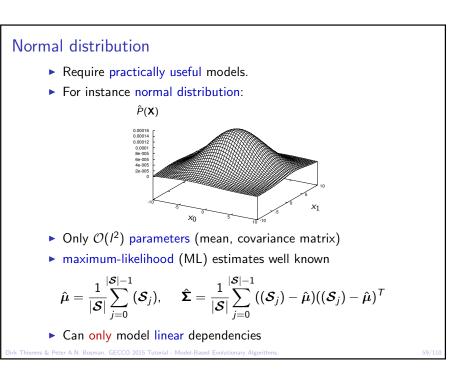
- Use a set of n solutions for linkage detection
- ► Focus on better solutions by selection within variation
- Estimate from selection

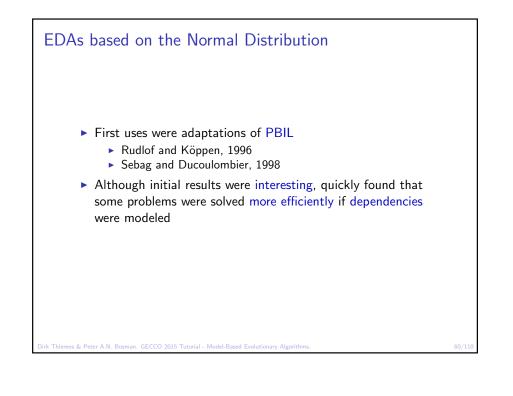
107

• OMEA: Thierens and Bosman, 2011



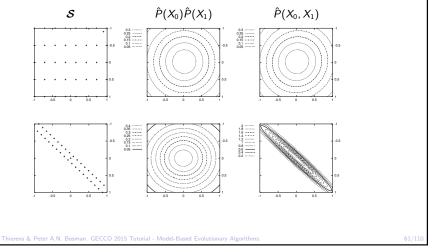


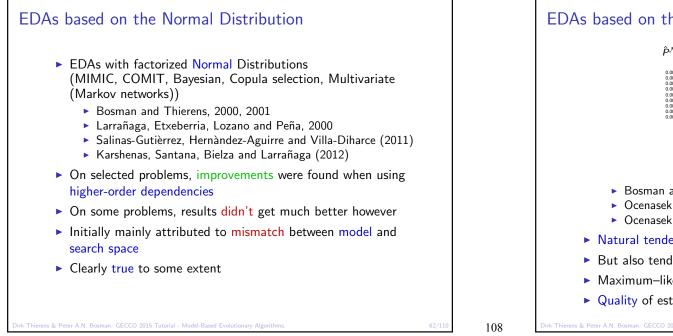


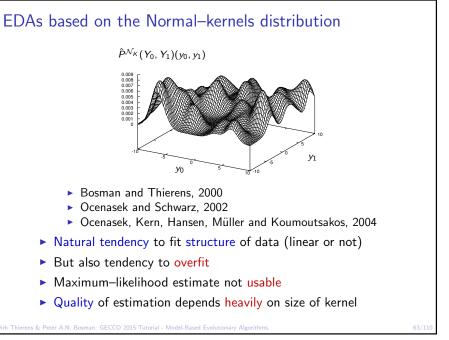


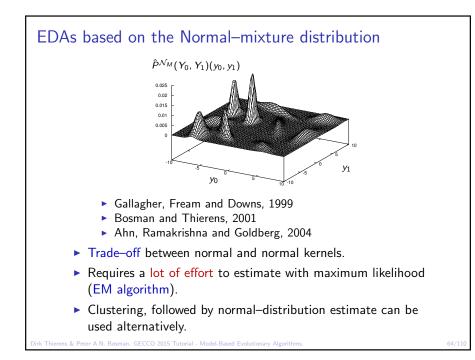
EDAs based on the Normal Distribution

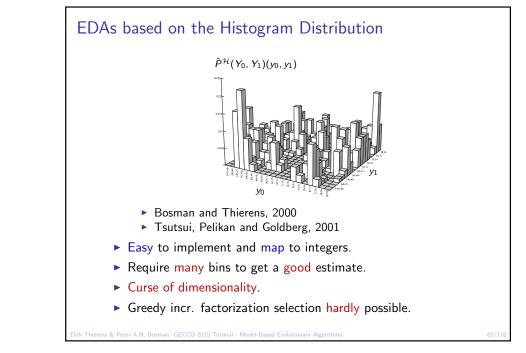
► Make decisions based on better fit and increased complexity (e.g. P̂(X₀, X₁) vs. P̂(X₀)P̂(X₁))

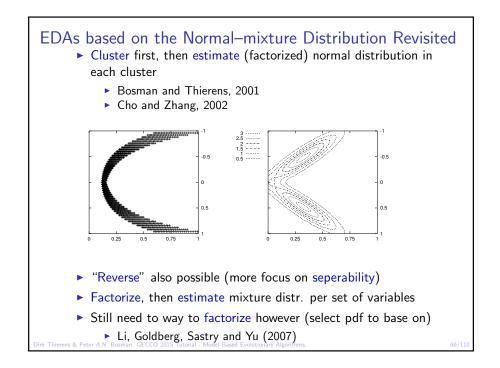


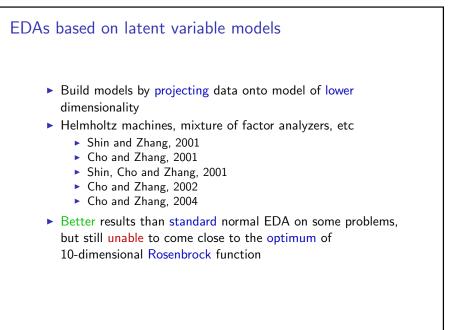


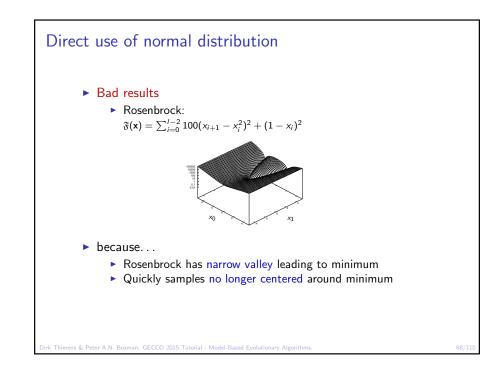


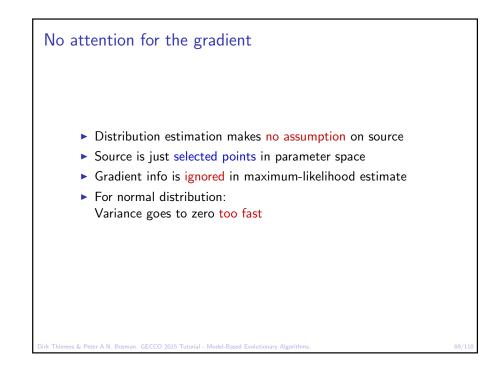


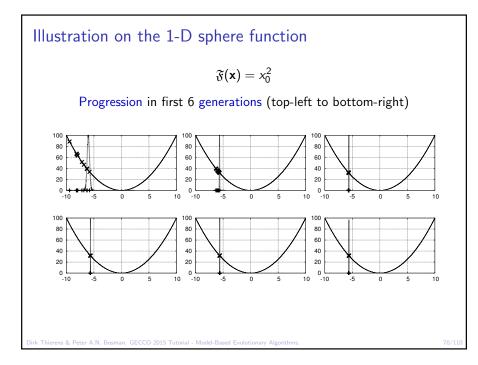


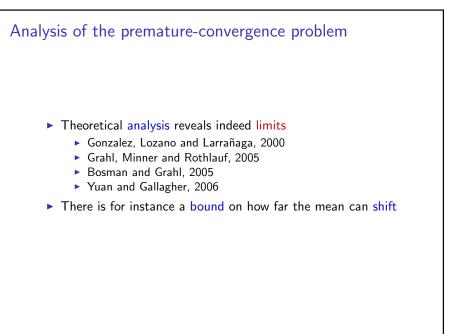












Analysis of the premature-convergence problem

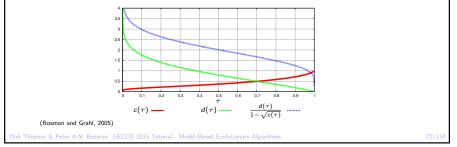
Variance decreases (exponentially fast)

$$\lim_{t\to\infty} \left\{ \hat{\sigma}(t) \right\} = \lim_{t\to\infty} \left\{ \hat{\sigma}(0) c(\tau)^t \right\} =$$

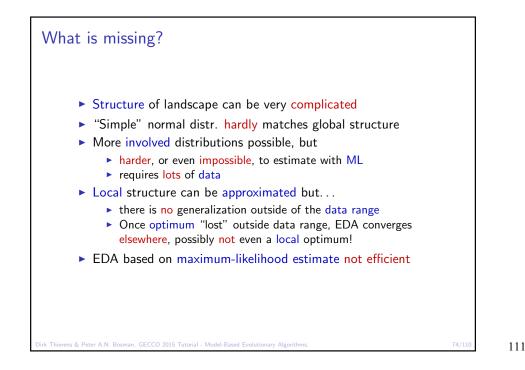
This limits mean shift to a fixed factor times initial spread!

$$\lim_{t\to\infty} \left\{ \hat{\mu}(t) \right\} = \hat{\mu}(0) + \frac{d(\tau)}{1 - \sqrt{c(\tau)}} \hat{\sigma}(0)$$

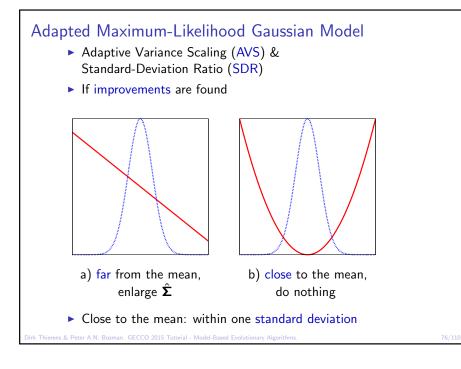
- $c(\tau)$ and $d(\tau)$ functions of
 - $\phi()$ (standard normal distribution) and
 - Φ() (inverse cumulative normal distribution)





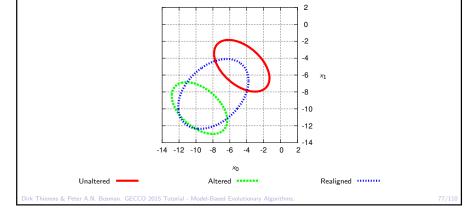


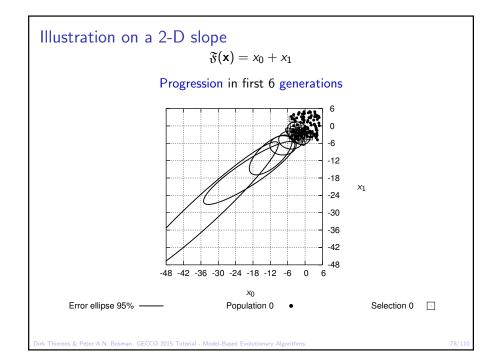


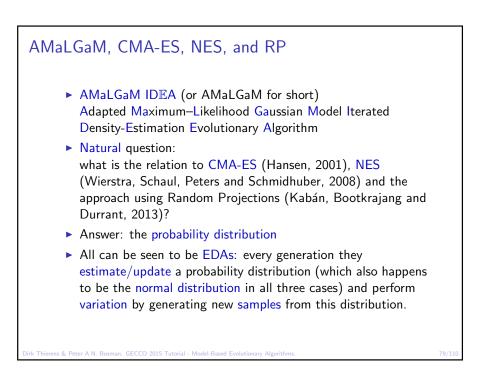


Adapted Maximum-Likelihood Gaussian Model

- Anticipated Mean Shift (AMS)
- Anticipate where the mean is shifting
- Alter part of generated solutions by shifting
- On a slope, predictions are better (further down slope)
- Require balanced selection to re-align covariance matrix

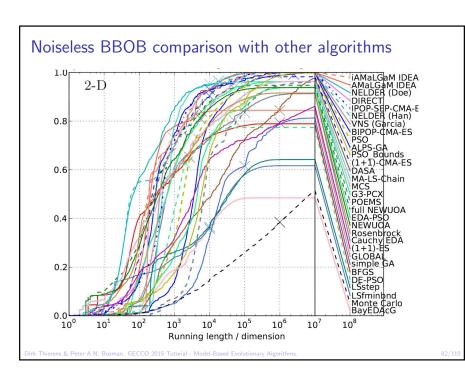






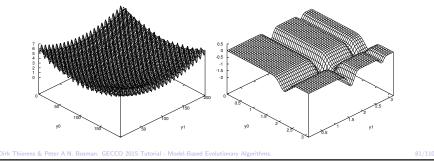
AMaLGaM, CMA-ES, NES, and RP

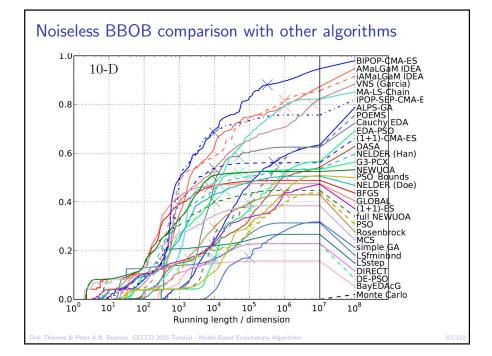
- Differences are only in how the distribution is obtained. Where AMaLGaM uses maximum-likelihood estimates from the current generation, CMA-ES and NES base estimates on differences between subsequent generations as well as many elaborate enhancements (see tutorial on CMA-ES) and RP uses ensembles of random projections to lower dimensions to estimate covariance matrices more efficiently.
- On typical unimodal benchmark problems (sphere, (rotated) ellipsoid, cigar, etc) these algorithms exhibit polynomial scalability in both minimally required population size and required number of function evaluations
- CMA-ES, NES and RP scale better than AMaLGaM on such problems

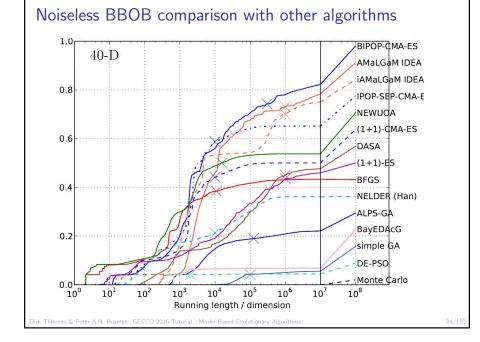


Parameter-free Gaussian EDAs

- Parameters get in the way of ease-of-use
- Remove all parameters: derive and implement guidelines
- Restart mechanism to increase success probability
- ► Typical restart scheme: increase size exponentially
- Works well on Griewank (left), not so much on Michalewicz (right)
- Many different schemes exist therefore (also algorithm specific, e.g. BIPOP-CMA-ES and IPOP-CMA-ES)







Permutation Model-Based Evolutionary Algorithms

- Binary/Integer representations are discrete, but also Cartesian
- Other discrete search spaces exist that are non-Cartesian
- Most notably: permutation-based problems
- Important real-world relevance, e.g. routing and scheduling
- Brings different challenges than Cartesian spaces however
 - Relative ordering problems
 - Absolute ordering problems
 - Neighbor ordering problems
 - Combinations of these
- Different types of models are more suited for specific types of ordering problem

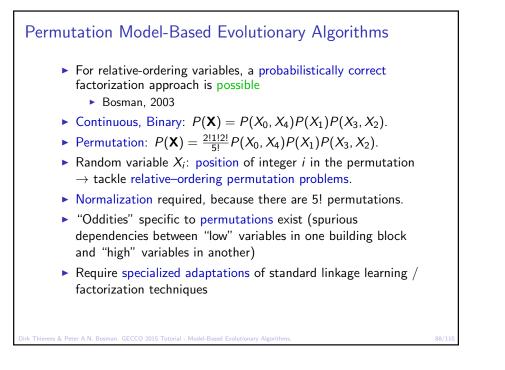
Dirk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

Permutation Model-Based Evolutionary Algorithms Building permutation models directly not straightforward Potential aid in the form of random keys (Bean, 1997) Random keys encode permutations in real-valued space (via sorting) 0 1 2 3 3 1 0 2 \Rightarrow 0.61 0.51 0.62 0.31 0.31 0.51 0.61 0.62 Real-valued approaches can thus be used directly Bosman and Thierens (2001) (normal EDA) Larrañaga et al (2001) (normal EDA)

- Inefficient scale-up behavior on deceptive additively decomposable relative ordering problems
- Highly redundant encoding that is hard to model with a normal distribution

Permutation Model-Based Evolutionary Algorithms Use crossover on the basis of a factorization of the normal distribution instead Bosman and Thierens, 2001 Now obtain polynomial scale-up behavior How about a direct modelling of probabilities of permutations? Consider a marginal product factorization (i.e. mutually exclusive subsets of variables as in ECGA) Once an instance is sampled for a subset of variables, other variables can't use these values anymore One way to deal with this is explicit repair of probability tables during sampling

- Bengoetxea et al (2000)
- Pelikan et al (2007)
- Requires very large sample sizes
- Sampling repair can introduce unwanted biases



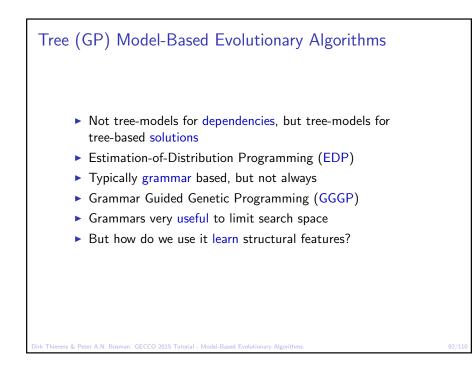
Permutation Model-Based Evolutionary Algorithms

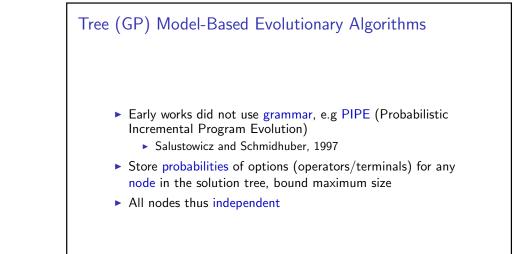
- Generate instance for each subset of variables independently
- Then map to the real-valued domain using random keys and then translate the entire string into a valid permutation
- Preserves relative ordering of variables in subsets
- Can sample directly instead of using crossover (crossover still more robust however)
- Scales polynomially and much better than normal-pdf induced crossover

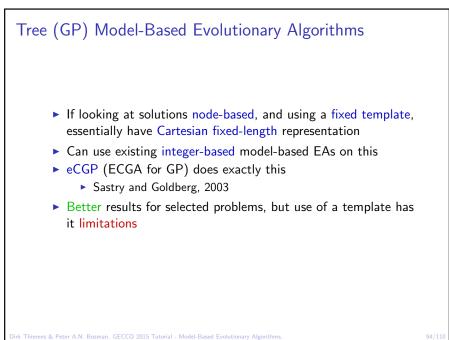
- Edge-histogram based sampling
 - Tsutsui, Pelikan and Goldberg, 2003
- Maps well to problems with neighboring variable relations
- Model is a matrix with probabilities of edges
- Matrix needs to be adjusted while sampling
- For problems with neighboring relations works better than random keys

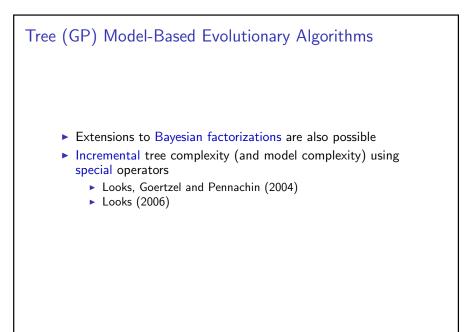
Permutation Model-Based Evolutionary Algorithms

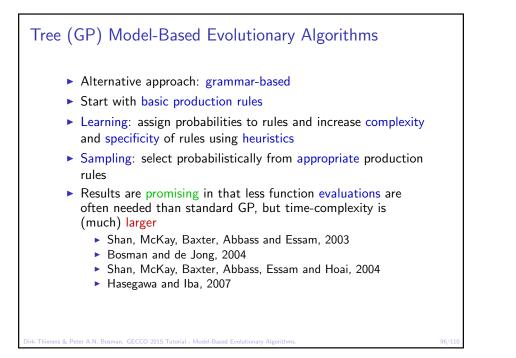
- Gaussian "equivalent" in permutation space: Mallows model
 Ceberio, Mendiburu and Lozano (2011)
- Requires a distance measure between permutations and a central permutation
- Also requires a spread parameter (not estimated from data)
- Most commonly used distance: Kendall- τ , allows factorization
- Finding central permutation is NP-hard however
- ► Fast heuristics are possible (linear in *l* and *n*)
- Final parameter estimation and sampling are not trivial and require dedicated algorithms
- First results are promising (permutation flow shop), outperforming Tsutsui







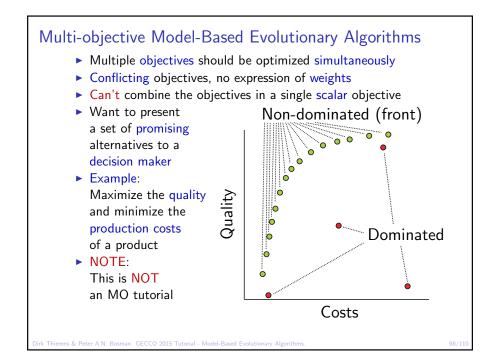


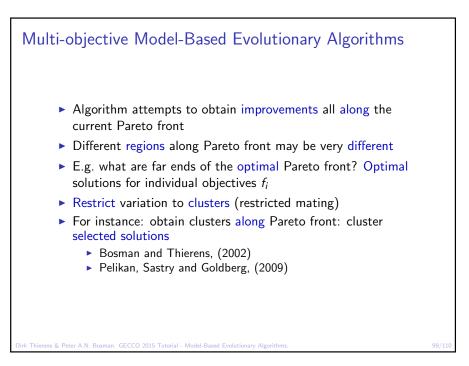


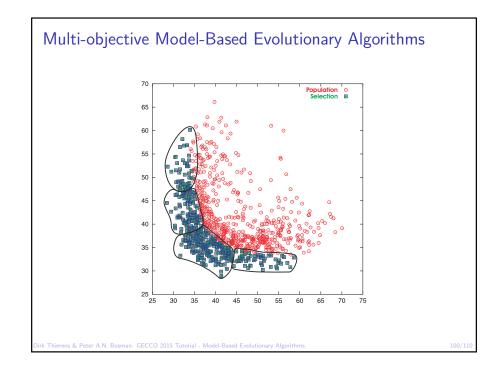
Tree (GP) Model-Based Evolutionary Algorithms

- ► Intermediate approach: *n*-grams
- Focus probabilities on most important relationships (local, e.g. with parents and grandparents)
- Enumerate all possible relationships beforehand
- ▶ Learning: estimate probabilities for the *n*-grams
- ► Sampling: recursively employ the *n*-grams
- Advantage: learning is much faster than with grammar transformations
 - Hemberg, Veeramachaneni, McDermott, Berzan and O'Reilly (2012)

Dirk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.







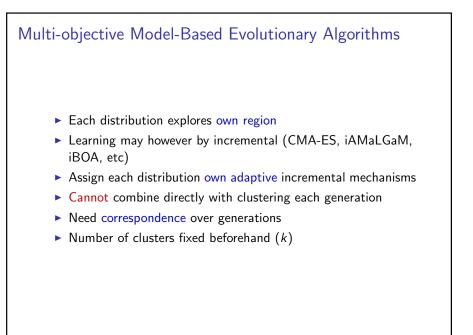
Multi-objective Model-Based Evolutionary Algorithms

 In EDAs, this clustering corresponds to use of mixture probability distributions

$$P_{(\varsigma,\theta)}(\boldsymbol{\mathcal{Z}}) = \sum_{i=0}^{k-1} \beta_i P_{(\varsigma_i,\theta_i)}(\boldsymbol{\mathcal{Z}})$$

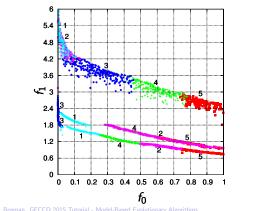
- Cluster solutions in objective space (e.g. k-means)
- Estimate a simpler distribution $P_{(S_i,\theta_i)}(\mathcal{Z})$ in each cluster
- Set all mixing coefficients to $\beta_i = \frac{1}{k}$
- Parallel, specialized exploration along front

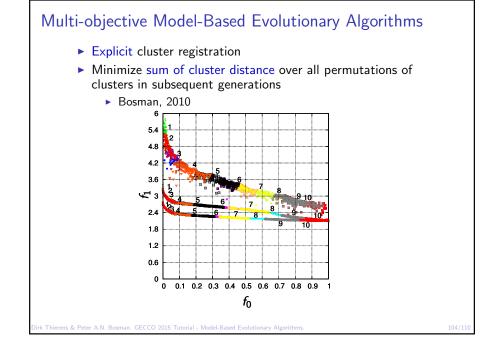
k Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.



Multi-objective Model-Based Evolutionary Algorithms

- Implicit cluster registration
- Keep clusters spatially separated during run.
- Assign new solution to its nearest, non-full cluster
- Can over time lead to inefficient cluster movement

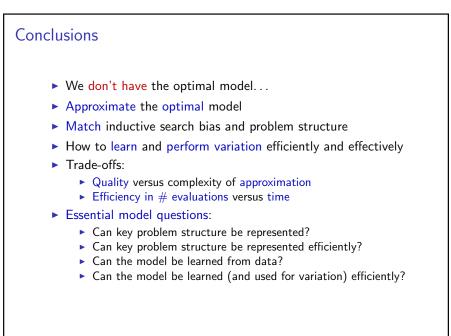




Conclusions

- "Blind" metaheuristics are limited in their capability to detect and mix/exploit/re-use structural features of an optimization problem (e.g. partial solutions, building blocks, promising search directions, etc).
- One requires luck or analyzing and designing ways of structure exploitation directly into problem representation and search operators.
- Having a configurable model can help "overcome" this / help to do this automatically.
- Algorithm then must learn to configure the model and thereby exploit structure online during optimization.
- Having an explicitly tunable model can really help

rk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.



Conclusions Efficient model-based evolutionary algorithms (EDAs/IDEAs/PMBGAs/OMEAs) exist Binary/Integer/Permutation/Real-valued/GP & multi-objective Research is ongoing Especially useful when optimizing from a black-box perspective (e.g. complex simulations) Also useful from a white-box perspective Can learn more about the problem through learnt models Models configurable by hand (remove "expensive" learning overhead)

Dirk Thierens & Peter A.N. Bosman. GECCO 2015 Tutorial - Model-Based Evolutionary Algorithms.

Books Larrañaga and Lozano (eds) (2001). Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer. Lozano, Larrañaga, Inza, Bengoetxea (2006). Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms, Springer. Pelikan, Sastry, Cantú-Paz (eds) (2006). Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, Springer.

Acknowledgements • Selected images were re-used from the 2012 GECCO tutorial "Probabilistic Model-building Genetic Algorithms" by Martin Pelikan.

