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ABSTRACT
Our ongoing work focuses on improvements to the explo-
ration behaviour of heuristic search techniques in fragment-
assembly methods for protein structure prediction. Analysing
and improving exploration in fragment-assembly can be dif-
ficult due to the complexity of measuring diversity between
decoys in a meaningful manner. Here, we define a set of
local and global features of decoy structures generated by
Rosetta, and we use Machine Learning to explore the extent
to which these are predictive of the final prediction results
achieved by individual runs. The aim is to identify those
feature subsets that show a significant correlation with final
prediction outcome, and identify when they become fixed
during the search. It is thought that such features may help
in the formulation of new diversity measures that can be uti-
lized in the context of explicit diversity mechanisms such as
crowding, external archives etc. The time of fixture can help
in deciding at what stage of the search the implementation
of diversity mechanisms may be the most relevant.

Keywords
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1. INTRODUCTION
Fragment-assembly techniques employ heuristic search ap-

proaches to explore the space of possible conformations of
a protein. Analysis of the search trajectories of current
methods shows that the balance between exploration and
exploitation breaks down with an increase in the length and
the complexity of protein structures. Attempts at incorpo-
rating more advanced search mechanisms (such as estima-
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tion of distribution algorithms or landscape learning [12, 2])
into the search have typically been disappointing. One of the
most successful approaches to fragment-assembly continues
to be the Rosetta ab initio [9], which uses large numbers of
independent restarts of a local search heuristic.

Rosetta ab initio consists of two protocols, a low-resolution
part and a full-atom component. The low-resolution proto-
col is responsible for conformational search and is the com-
ponent that employs the fragment-assembly paradigm. In
other words, this phase assembles candidate (“decoy”) struc-
tures through the iterative insertion of small structural seg-
ments that are obtained from other known protein structures
in the Protein Database (PDB). Sampling is guided by the
Metropolis Monte Carlo algorithm using a default temper-
ature of T=2 (with a possibility to re-heat when insertion
attempts become unsuccessful). More specifically, this low-
resolution protocol consists of four stages that differ in the
size of the fragments and the energy functions used. The
first three stages use a fragment size of 9 residues (“9mer”),
while the last stage uses just 3 residues (“3mers”). The en-
ergy function consists of a sum of ten separate energy terms,
which are progressively switched on and / or weighted more
heavily over the course of the protocol (the first stage uses
a van der Waals term only, while all energy terms are active
in the last stage of the search). The decoys generated at this
low-resolution stage are passed forward to the full-atom pro-
tocol, which serves the primary purpose of (locally) refining
structures and identifying the most promising predictions.

The standard approach to running Rosetta is to use thou-
sands or tens of thousands of restarts, and this has been
observed to outperform the use of fewer but longer runs.
Unfortunately, this brute-force breaks down as protein size
(and complexity) increases, as evidenced by the deteriora-
tion of prediction performance [8] as well as the analysis of
sampling trajectories, which indicates a rapid convergence
of each trajectory and an inability to access relevant parts
of the search space [4]. For this reason, our current work fo-
cuses on the development of sampling approaches that can
improve the exploratory behaviour of the search.

One of the difficulties in this lies in measuring meaning-
ful diversity in the conformational search space. Measures
of diversity are important both for assessing sampling be-
haviour and for implementing mechanisms that encourage
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exploration [10, 7]. Furthermore, as decoy structures un-
dergo a progressive folding progress (as detailed above), we
need to understand at which stage of the search exploratory
behaviour is of primary importance. Recent work [11, 5]
suggests that certain features of a structure become “fixed”
early on during the search, and can then present decisive
factors for the success of a run. More accurate insight into
this behaviour may help in the design of search protocols
that strategically encourage diversity at specific stages of
the search. Here, we aim to foster our understanding of
these aspects by employing a machine learning approach.

2. FEATURES
We implemented a set of different features to describe var-

ious aspects of decoy structures that have or may be con-
sidered in the development of advanced search protocols.
These measures can be broadly classified either as global fea-
tures, accounting for general characteristics of a structure as
a whole, or as residue-level features, accounting for specific
properties of amino acid residues in the folded conformation.

2.1 Global features

• Energies

– Total energy score. The energy of a given confor-
mation is evaluated using a knowledge-based en-
ergy function, which consists of a linear weighted
sum of ten energy terms. Different terms and
weights are used at different stages of the search
process. For the purposes of this study, the en-
ergy function as used in stage 4 was adopted.

– The 10 individual energy terms of the energy func-
tion. These terms involve descriptions of steric
repulsion and compactness, as well as a statis-
tical potential and interactions between specific
elements of secondary structure.

• Contacts

– Total number of contacts in the folded conforma-
tion. In this study, two amino acid residues are
said to be in contact if the distance between them
is at most 8 Å.

– Number of local contacts and non-local contacts.
A given contact can be classified as local or non-
local depending on whether the sequence distance
between the interacting amino acids is within a
given cutoff. A cutoff of 5 Åwas used in this study.

• HP model-based features The Hydrophobic-Polar
(HP) model is a simplified version of the protein struc-
ture prediction problem [3]. This model is based on the
fact that the hydrophobicity of amino acids is an im-
portant force determining the folded state of a protein
chain. Based on this model, some features describing
a folded conformation can be investigated:

– Number of H-H, H-P, and P-P contacts. Contacts
(as defined above) can be further classified based
on the hydrophobic properties of the interacting
amino acid residues.

– H-exposure. The radius of gyration (RG), which
accounts for the compactness of a protein con-
formation, is computed separately for H and P
residues. If H residues are more exposed than P
ones (higher RG), the difference in RG values is
reported, 0 otherwise. A similar measure has also
been investigated in [6].

• Distance-based features

– Distance between the first and last amino acid
residues in the protein chain, commonly referred
to as the N (left) and C (right) terminus in the
specialized literature.

– Distance between each pair of secondary struc-
ture chunks. The central amino acid in the corre-
sponding sequence segment is selected as the rep-
resentative reference element for each secondary
structure chunk. By using these representative
elements, it is possible to capture the relative po-
sition between each pair of secondary structure
chunks using a reduced set of features.

2.2 Residue-level features

• Torsion angles. The ψ, φ and ω torsion angles de-
scribing the backbone configuration for each amino
acid residue.

• ABEGO classification. The configuration of a tor-
sion angle triplet (as described above) can be classified
either as ”A”, ”B”, ”E”, ”G”, or ”O”, based on its cor-
responding region in the Ramachandran plot.

• Fragment identifiers. These identifiers encode in-
formation related to which specific fragment is a given
residue taking its torsion angle values from. Numeric,
consecutive identifiers have been assigned to all avail-
able fragments in the fragment libraries.

The use of residue-level information considering all
amino acid residues results in very high-dimensional
data. In order to reduce the cardinality of the con-
sidered feature sets, we therefore decided to focus our
attention on only those residues that, based on sec-
ondary structure predictions, are believed to be part
of loop regions in the protein chain; we consider these
loop regions to be of crucial importance for describing
the overall folded state of a protein conformation.

3. EXPERIMENT DESIGN
In our experiments, we generated decoy structures for six

different proteins and used a machine learning technique,
random forests, to ask questions regarding the importance of
particular features at different stages of the search. Random
forest works by growing an ensemble of classification trees.
Then, the classification provided by all the constructed trees
is taken into consideration in order to make a final decision
at the moment of classifying a new instance [1].

Below we describe the most relevant details of the con-
ducted experiments:

• Data. Mapping from feature space (structures at the
end of stages 1, 2, 3, or 4 ) to final (stage 4) energy
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Energies • • • • •
Contacts • • • • • •

HP model • • • •
Distances • • • • • • •

Torsion • • • • •
ABEGO • • • • •

Fragments • • • • •

Table 1: Summary of the specific features considered
in the different investigated feature subsets.

or RMSD value. Target classes were defined for ”suc-
cessful” or ”unsuccessful” Rosetta runs, depending on
whether the final prediction quality (energy or RMSD)
of each trajectory was below or above the median of a
sample of 10, 000 runs.

• Test proteins. A total of 6 different proteins of vary-
ing size and structural properties were studied: 1acf
(125, α+β), 1bk2 (57, β), 1enh (54, α), 1fna (91, β),
1lis (125, α), 1pgx (55, α+β).1

• Features. A total of 12 different subsets of features
were considered (summarized in Table 1).

• Parameters of learning process/random forest
technique. The prediction performance of random
forest is sensitive to some important parameters. We
therefore investigated different settings by varying the
size of the set of training data, the number of trees
in the forest, the number of features considered when
looking for the best split at each node of the tree, as
well as the number of samples required to split an inter-
nal node. In all the cases, a test set of size 1, 000 was
used, and several repetitions of the training/testing
process for each of the investigated parameter config-
urations were performed.

4. RESULTS
Results obtained for the prediction of energy are shown

in Figure 1, with the results for the prediction of RMSD in
Figure 2. Each plot in these figures presents results for a par-
ticular protein with regard to the prediction of the success of
individual Rosetta trajectories (refer to Section 3 for further
details). Prediction accuracy is computed as the fraction of
predictions that were correctly classified. Unsurprisingly,
those feature sets that include energy (e.g. the feature set
F7 which includes energy only) outperform other feature sets
during the prediction of final energy, and this is consistent
across all four stages. Also unsurprisingly, the prediction of
final energy becomes easier (close to 100% accuracy) as the
features of decoys from later stages are considered. In gen-
eral, the relative performance advantage of those features
that contain energy also becomes more pronounced for later
stages; interesting exceptions to this are the two alpha he-
lical proteins 1pgx and 1acf, and the beta protein 1bk2, for
which the energy values after Stage 1 already contain some
information regarding the final outcome of the search.

As the low-energy function in Rosetta is known to be in-
accurate, the results related to the prediction of RMSD are
potentially more relevant. Interestingly, energy is seen to be

1α, β, and α+β, stand respectively for the alpha helical,
beta, and alpha-beta structural classes of proteins.
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Figure 1: Average prediction accuracy obtained,
where classification is based on energy values.

a fairly poor predictor of final distance to the native. For
most proteins (the exception to this is 1pgx), some of the
worst prediction accuracies are seen for the feature set F7,
and this effect is present throughout all stages. One of the
most relevant feature sets for final RMSD appears to be the
global distance-based features, with the feature set F8 show-
ing a robust performance across all six proteins. For alpha-
helical proteins this feature becomes relevant from Stage 3
onwards only, while, for alpha-beta and beta proteins, it
carries information from Stage 2 onwards. This confirms
two different aspects about Rosetta’s search protocol: the
fact that the relative arrangement of secondary structure is
indicative of different folds and may provide a meaningful
descriptor of structural diversity. In addition, these results
also confirm our experience that Rosetta trajectories tend
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Figure 2: Average prediction accuracy obtained,
where classification is based on RMSD values.

to collapse quickly, with key aspects of the fold becoming
fixed from Stage 2 onwards.

The results regarding local feature sets are somewhat dis-
appointing, as we expected (following the work of [5]) that
certain key loop regions may play a more significant role in
determining the final success of Rosetta trajectories. Our
results indicate that, especially for the larger proteins (1acf,
1fna and 1lis), these features have relatively little influence
on the final quality of the structure.

4.1 Conclusions
The results from our preliminary analysis are consistent

with previous findings regarding the dynamics of conforma-
tional search in Rosetta, although we were expecting a more
significant contribution of local “linchpin” features. In our

future work, we will expand this analysis to integrate addi-
tional features, consider the ranking returned by the clas-
sifier, and consider results across a larger number of pro-
teins. We are also exploring the possibility that a more
meaningful formulation of this classification problem may
require the separation between near-native and non-native
structures, rather than our current differentiation between
above-average and below-average performance.
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