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ABSTRACT 

Much research has been conducted into the visualisation of 
objective space and decision space landscapes. This work moves 
away from this and investigates a 3D interactive method for 
linking EA decisions through time with the design of engineering 
systems.  The proposed system shows through an intuitive 
interface, the design space being explored by the algorithm 
including decision variable choices, locations that are fixed early 
on in the optimisation and those problem areas that are difficult 
for the algorithm to solve.  The paper presents a case study in 
water distribution network design, although the methods described 
are, in principle, generalisable to other design domains. 

Categories and Subject Descriptors 

G.1.6 [Optimization]: Global optimization  

Keywords 
Evolutionary algorithms; visualization; problem understanding; 
water distribution network optimisation 

 

 

 

 

1. INTRODUCTION 
1.1 EA Visualisation 

A great deal of previous research has focussed on the visualisation 
of objective spaces, both single objective, multi- and many 
objectives and in the visualisation of decision variable spaces as 
characterised by the search process.  This analysis has naturally 
tended to focus on the spaces in which an evolutionary algorithm 
operates in an effort to improve performance and understanding of 
the progress of an evolutionary algorithm (EA).  These 
visualisations often consider the problem statically e.g. in the 
visualisation of the final solution or Pareto front of an algorithm, 
or through temporal snapshots where the execution of the 
algorithm can be traced and the dynamics of the optimisation can 
be observed.    

Furthermore traditional visualisation can either be seen to be 
focussing on the developer of algorithms to aid in the algorithm’s 
development and tuning, or on the end user as a method to deliver 
the outcomes of an optimisation to its intended audience and to 
aid decision support in the real-world.  

In this paper we propose a method that takes elements of all these 
approaches and combines them into a single visualisation that can 
simultaneously visualise aspects of the best solutions discovered 
and the areas of activity of an evolutionary algorithm within the 
problem class of water distribution network optimisation, with 
additional problem domains also considered from a theoretical 
perspective. 
 

1.2 Water Distribution Network Optimisation 
1.2.1 Problem Description 

Water distribution network (WDN) optimisation is an important 
real-world application for optimisation techniques and 
evolutionary algorithms in particular.  These networks deliver 
fresh drinking water from reservoirs, tanks and water treatment 
works to households and businesses via a network of pipes and 
making use of a variety of other assets such as pumps and valves 
to regulate pressures and water supply.  Typically, the 
optimisation of these networks aims to design new networks or 
enhance existing ones, to deliver drinking water at an adequate 
pressure to all demand points for the minimum possible cost. 
Although this is the primary task for optimisation in this domain 
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(and the focus of this paper), there are many other objectives that 
can be considered including the minimisation of water age 
(improving water quality), adherence to velocity and pressure 
constraints (reducing the prospect of leakage) and increasing the 
robustness of the network to reduce the potential for supply 
outages.  In this particular problem set, only the simplest WDN 
optimisation problem is considered where the decision variables 
are a set of diameters for each pipe within the network and the 
objectives are to meet the required pressure (head) throughout the 
network and minimise the overall cost of constructing the 
network.    Though simplified, this problem is still one of high 
real-world importance and optimality in the solutions developed 
can have large scale financial, social and environmental impacts 
when applied to large-scale real-world examples. 
 

1.2.2 Computational Formulation 

The WDN optimisation problem is characterised as an NP-Hard 
combinatorial optimisation problem with large-scale multi-modal 
search landscapes.  The algorithm must select from a list of 
discrete diameter options for each pipe within the network which 
constitutes the set of decision variables for the algorithm.  A full 
set of decision variables describes a new network that is simulated 
by a hydraulic simulator, in this case Epanet 2 [1], which provides 
the information necessary to calculate the hydraulic values and to 
determine to what extent the network meets the hydraulic 
constraints.   In this formulation, the two objectives are: 

ݐݏ݋ܿ ൌ  ∑ ሺܿ௜ ൈ ݈௜ሻ௞
௜ୀଵ     (1) 

Where i represents one of the total number of pipes k in the WDN, 
and c represents the cost of the selected diameter of pipe i and l 
represents its length (in feet or metres), and:  

ݐ݂݅ܿ݅݁ܦ݄݀ܽ݁ ൌ ∑ ሺሺ݄௧ െ ݄௡ሻ ൐ 0ሻ௠
௡ୀଵ    (2) 

Where n represents one of the total number of demand nodes m in 
the WDN and h represents the hydraulic head (in feet or metres) at 
that node, ht represents the target head for each node which is 
usually, but not necessarily, set as a uniform value for all nodes 
within the network.  Only those nodes for which a deficit is 
recorded are considered to remove the possibility of nodes with 
head excess compensating for those with deficit. 

Cost and head deficit can be treated as separate objectives in a 
multi-objective formulation or combined into a single objective in 
the standard fashion: 

݁ݒ݅ݐ݆ܾܿ݁݋ ൌ ൈ ݐݏ݋ܿ  ሻ   (3)ݐ݂݅ܿ݅݁ܦሺ݄݁ܽ݀ߙ

Where α can be used to balance the optimisation between the cost 
and head deficit elements of the optimisation. This factor will be 
required as most WDN problems have costs in the millions and 
head deficits typically are in the range of small hundreds.  α is 
usually set on a case-by-case basis for each problem and has been 
determined manually here to ensure balance between the 
objectives.  A detailed analysis of this process is out of the scope 
of this paper. 

 

1.2.3 Computational Complexity 
The WDN optimisation problem necessitates a metaheuristic 
approach to optimisation (such as an EA) through the 
computational complexity of its search space.  Each change in 
pipe diameter changes the hydraulic conditions in the network for 
surrounding elements and potentially for all elements in the 

network.  Therefore the problem is combinatorial in nature and as 
such the number of possible combinations of diameters is: 

ݏ݇ݎ݋ݓݐ݁݊ ݈ܾ݁݅ݏݏ݋݌ ൌ  ௉    (4)ܦ 

Where D is the number of diameters in the network and P is the 
number of pipes.   Even small networks such as the New York 
Tunnels [2] problem that has 16 diameter choices and just 21 
pipes to select from has 1.934x1025 possible network 
combinations.  In addition, hydraulic simulations typically incur a 
non-trivial computational load and can require up to several 
seconds to run. 

Clearly problems of this nature, particularly in real world 
scenarios necessitate a stochastic or metaheuristic based search to 
efficiently search these large spaces. 

 

1.3 Water Distribution Network Optimisation 
with Evolutionary Algorithms 
A large body of research exists within the literature relating to the 
optimisation of water distribution networks.  This ranges from the 
early work with single-objective evolutionary algorithms [3], 
through multi- [4] and many- [5] objectives to recent work on 
multi-method search and hyperheuristics [6].  This work has 
concentrated on generating new algorithms and producing results 
on various benchmark problems and for large-scale real-world 
problems taken from the industry.  Although there is some work 
on decision support within the industry, there has not as yet, been 
extensive development of tools for industrialists to interact with 
the algorithms and solutions created to better understand their 
networks.   

1.4 Water Distribution Network Visualisation 
Rudimentary visualisations of networks are available in Epanet 2 
which show a plan view of the layout of the network along with 
colour coding to show a selected aspect of the network, e.g. 
pressures, velocities, heads, diameters etc. 

 
Figure 1: Epanet 2 visualisation of the New York Tunnels 

network. 

Although more sophisticated visualisations exist within 
commercial packages in the industry, this plan view of the 
network is typical of the visualisations of WDNs. 

There have also been efforts to visualise outputs in this area 
though.  For example [7] has implemented various methods for 
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the visualisation of the cloud of points in objective space 
generated by multi-objective methods through time.  This work 
has focussed on supporting decision makers by allowing them to 
interact with the Pareto-surfaces generated by multi-objective 
algorithms.  By allowing the manipulation of these surfaces, 
decision makers can be guided through N-dimensional clouds of 
points without imposing constraints and allowing ‘what if’ 
scenarios to be investigated.  A further study, also in multi-criteria 
decision making, although not in the evolutionary optimisation 
area, uses the ‘power index’ to visualize the ranks of various key 
performance indicators in the water industry [8] and again shows 
the power of visualisation for complex datasets in this domain.   

The above approaches show that there is interest in the industry 
for visualisations of networks and their potential to aid decision 
makers particularly in complex multi-dimensional objective and 
decision spaces.   

 

2. METHOD 
2.1 WDNet3D 
As described in [9] a 3D approach to the visualisation of WDNs 
has been implemented using the open source Panda 3D 
visualisation libraries1.  Each network is comprised of the same 
set of elements as would be visible in the plan view but uses a 3D 
perspective (as shown in Figure 2) to provide important extra 
functionality. 

 

 
Figure 2: 3D visualisation of water distribution network 
components (visualized from left to right – pipes, a reservoir, 
a tank and a pump). 

 

The notable extra functionality is that spatial elements such as 
distances, pipe diameters, lengths and crucially the elevation of 
elements, are visualized implicitly without recourse to colour 
coding or other artificial mechanisms.  This effect is illustrated in 
Figure 3, a 3D visualisation of the Hanoi benchmark network.  
Although the pipe network grid appears flat, the elevated position 
of the reservoir can be seen implicitly and is a common 
arrangement in this type of network known as a ‘gravity fed’ 
system.   Also notable is that the diameters of the pipes can be 
seen in the visualisation.  This implicit visualisation allows the 
user to see potential bottlenecks and oversizing of mains within a 
network.  As can be seen from Figure 3, the colour of the pipes 
has not yet been used to convey any information and so additional 
functionality is gained from visualizing velocity, pressure, water 
quality and other variables within the network.   Of course, this is 
possible whilst also visualizing the implicit aspects of the pipe 
assets within the system.   

The system is fully interactive and for larger networks the user 
can pan around the network and zoom in on particular areas of 
interest. 

 

                                                                 
1 https://www.panda3d.org/ 

 
Figure 3: WDNet3D Visualisation of the Hanoi Benchmark 
WDN. 

2.2 Incorporating EA Optimisation 
By visualizing network construction implicitly, the colour of 
elements is available to visualize other aspects of the system and  
this work focuses on this to visualize evolutionary progress.  In 
particular, the colour of pipes is used to represent the number of 
times that the EA has modified that variable in the best solution 
for the most recent N generations.  This allows the end user to 
understand the interaction of the EA with the network on a spatial 
level and to better understand which pipes are requiring most 
effort from the EA to resolve. 

2.3 Evolutionary Algorithm 
A standard steady state, single objective evolutionary algorithm is 
used to produce solutions for visualisation.  It uses a binary 
representation with each pipe represented by the requisite number 
of bits for the number of available pipe diameters, e.g. a pipe with 
16 possible diameters requires 4 bits for each pipe.  Simple 
random mutation and single point crossover are also used.  This 
algorithm is popular in the application area and is sufficient to 
illustrate the proposed visualisation method.  In practice, any EA 
formulation (including multi-objective formulations), or iterative 
optimisation algorithm for that matter could be used.  The 
objective function was calculated as shown in equation 3.   

2.4 Benchmark Networks 
The system is applied to a number of publicly available 
benchmark networks2.  The problems have the following 
characteristics: 

Hanoi – A simple network with 32 nodes and 34 pipes with 6 
possible diameters.  Possible combinations: ~2.8x1023. 

Anytown – 35 existing pipes and 6 possible new pipes with 10 
possible pipe diameters.  19 nodes with varying demands.  It 
should be noted that the original version of this problem includes 
a number of operational aspects that have been fixed in this 
formulation where only pipe sizing is considered. Possible 
combinations: ~1.0x1041. 

Epanet Example Network 3 – Larger real-world inspired network 
with 117 pipes and 92 nodes.  16 pipe diameters are used in this 
formulation. Possible combinations: ~ 7.6x10140. 

                                                                 
2http://emps.exeter.ac.uk/engineering/research/cws/resources/benc

hmarks/ 
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3. RESULTS 
In each of the following, a network has been visualised with the 
WDNet3D system at points throughout the optimisation process.  
In each case, the period of the optimisation can be seen in the left 
panel highlighted in blue and network, which EA changes to pipe 

diameters shown in the right panel.  The legend (which changes 
for each ‘snapshot’) shows the relationship between colour and 
the number of changes made to the best solution in the selected 
period of optimisation.  This could also be visualised in video. 

 

3.1 Hanoi 
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3.2 Anytown 
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3.3 Example Network 3 
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4. DISCUSSION 
In the previous section, EA behaviour for three networks has been 
visualised for various windows over the optimisation run.  The 
colours of the pipes indicate the number of times that these have 
been changed in the best solution.  Cooler colours represent fewer 
modifications and warmer colours indicate larger numbers of 
changes by the algorithm over time.  It should be noted that the 
colour range is reset and normalised for each timeslice to allow 
for easier interpretation. 

4.1 Hanoi 
For this simple network it is clear that the algorithm has decided 
the pipe sizes for the main transmission elements of the system 
(the ‘trunk’ mains) very early on in the optimisation as shown by 
the larger blue pipes emanating from the reservoir.  The following 
snapshots show an increasingly fixed backbone of a network with 
only the extremities being modified later in the optimisation. 

4.2 Anytown 
From this visualisation it is clear that Anytown presents a more 
difficult problem to the EA, with very few pipes achieving ‘fixed’ 
status over the first 2000 iterations.  From thereon, the story is 
somewhat similar with infrastructure emanating from the main 
reservoir being progressively fixed along with some close to the 
tanks.  It is clear that the majority of effort is being expanded 
along the more ‘looped’ sections of the network where small 
improvements can be made. 

4.3 Network 3 
Network 3 is much closer to a real-world style network and has 
more variables than the other two examples.  In this example, the 
EA first optimises the important infrastructure between the two 
reservoirs and tank towards the North of the network.  It then 
proceeds to identify and ‘fix’ the central ‘trunk’ mains that link 
the reservoirs to the North with the rest of the network in the 
South.  By the final snapshot, as with the two previous examples, 
the algorithm is concentrating on other sections and the majority 
of refinement appears to be taking place in the smaller mains 
parallel to the trunk. 

4.4 Conclusion 
The three example networks all show that the evolutionary 
algorithm tends to size and ‘fix’ the trunk main infrastructure 
(effectively the macro-level problem) early on in the optimisation. 
However, it would appear that the extent to which this occurs is 
dependent on the size of the problem but also its’ 
interconnectedness.  Despite its relatively modest size, Anytown 
shows a resistance to this fixing behaviour, that is likely to be due 
to its lack of a central set of trunk mains and highly looped 
structure.  The larger ‘real-world’ Network 3 experiences more 
fixing despite its larger number of assets because it has a more 
traditional ‘trunk main’ style layout.   

As these changes are made to the best solution in each generation, 
there may be a case for fixing these parameters during the EA 
optimisation to reduce running times and to allow the algorithm to 
focus on those areas of the network that require modification.  The 
relatively small number of changes seen in the latter stages of the 
optimisation belie the fact that, through the uniform random 
mutation operator, many thousands of alternative ‘trunk main’ 
configurations will have been tried and discarded. 

5. CONCLUSION 
A system , WDNet3D has been shown to provide 3-dimensional 
visualisations of water distribution networks.  It has been 
demonstrated that these visualisations can provide more 

information to the end user than the typical plan view of the   
network. Furthermore it has been shown that these visualisations 
can be used to provide information on the decisions being made 
by the evolutionary algorithm throughout the optimisation.  This 
has revealed that the algorithm tends to concentrate on the central 
supply mains first and fine tunes this configuration in loops and 
more extraneous areas later on in the optimisation run.  Key 
differences among the optimized networks show that the extent to 
which the algorithm ‘fixes’ the infrastructure is dependent on the 
degree to which the network possesses a trunk main style of 
system.  This raises the possibility of potentially ‘fixing’ these 
decision variables and removing them from consideration for the 
EA, although this is not trialled here.  Finally, by viewing the 
visualised networks throughout the optimisation, it is possible for 
the end user and EA developer to gain a greater understanding of 
which parts of the network are more difficult for the algorithm to 
optimize.  This is likely to lead to greater understanding of the 
interface between the optimisation algorithm and the problem 
domain for this important class of real-world problems. 

5.1 Application to Other Problem Domains 
The approach applied here to water distribution network 
optimisation could be implemented in other problem domains to 
aid developer and end-user understanding of the optimisation 
process. A number of such application domains are discussed 
here. 

5.1.1 Network-Based Problems 
It is simple to envisage how this approach could be adapted to 
other network-based problems such as the travelling salesman 
problem or gene regulatory network optimisation.  However, as 
these problems require the discovery of routes/subnetworks which 
represent a subset of all possible routes or the fully connected 
network, the approach would need to be adapted to this problem 
type.  In this adaptation, edges in the final solution could be 
coloured according to the number of times they have featured in 
the best solution discovered by the algorithm over time in a 
similar fashion to the method presented here, although it would be 
possible to colour the entire network search space (e.g. every edge 
in the TSP) problems to provide more information on which edges 
have been visited most often.  

5.1.2  Operations Research Problems 
Operations research problems typically include problems such as 
resource allocation, scheduling and routing.  In each case, the 
colouring of the resource being allocated, the event being 
scheduled or route fragment being selected (e.g. as in 5.1.1) could 
be adopted.  An example of the former is the bin packing problem, 
an operations research problem that is not network-based.   The 
application of the approach to this problem is illustrated here.   

 
Figure 4: Bin packing illustration 

Figure 4 illustrates a (non-optimised) solution to the bin packing 
problem where items of differing size are being packed into the 
various bins available.  To adapt the proposed approach, each item 
would be coloured according to the number of times it has moved 
between bins in the best solution discovered by the algorithm.  It 
is anticipated that this would yield similar results to the water 
distribution network optimisation problem in that certain items 
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would be ‘fixed’ within the solution early in the optimisation and 
the algorithm would then seek to optimise around these fixed 
blocks, possibly highlighting those items that are more difficult 
for the algorithm to place. 

5.1.3 Benchmark and Continuous Problems 
Many EA benchmark problems contain decision variables that are 
not mapped to a physical construct in the same way that those in 
the above problems are.  In this case, a potential adaptation could 
visualise the optimisation as a heatmap where rows represent 
decision variables and columns represent the ‘snapshots’ of the 
optimisation through time.  The colour of each cell in the heatmap 
would represent the number of times that each decision variable 
has changed in the best solution discovered by the algorithm to 
that point in time.   

One further adaptation to the method, regardless of optimisation 
domain, and a prospect for further work, would investigate not 
simply the number of changes to the network for each variable but 
also the magnitude and direction of those changes.  This revised 
colouring would then provide more information for all the 
problem domains thus far described and would make the approach 
more amenable to real-valued optimisation problems where the 
magnitude and direction of change in the best solution variables is 
more important than simply whether the variable has changed.  
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