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ABSTRACT
Visualising populations of solutions is an important aspect of evo-
lutionary computation (EC), allowing an algorithm user to evaluate
the performance of an algorithm and a decision maker to under-
stand the solution set from which they must choose an operating so-
lution. We present a novel approach to visualising multi-objective
data, employing treemaps to display both solutions and objectives.
We define a simple approach to constructing a tree that can repre-
sent a multi-objective population in terms of dominance, and illus-
trate several ways in which it can be used. Examples are provided
that reveal characteristics of objective space, as well as combin-
ing information about the parameter space component of the pop-
ulation. The paper concludes with a discussion about the further
potential of treemaps within EC.

CCS Concepts
•Human-centered computing→ Treemaps; •Applied comput-
ing→Multi-criterion optimization and decision-making;

Keywords
Treemaps; multi-objective optimisation; visualisation.

1. INTRODUCTION
Multi-objective evolutionary algorithms (MOEAs) abound, how-

ever there is still work to be done in designing useful visualisations
that relate the parameter and objective space components of solu-
tions. Visualisation within evolutionary computation often focuses
on the objective space component, as solution quality is often the
basis for the selection of a final operating solution. That said, pa-
rameter space also provides useful insight into the characteristics
of the evolved solutions. As such, it is important to present a visu-
alisation that illustrates the features of both spaces.

Some existing work has examined this area. Heatmaps have been
used to visualise many-objective solutions. Methods presented by
[16, 10, 21] showed how heatmaps can be reordered in order to
present a population of solutions in terms of parameters as well
as objectives. [14] described the visualisation of solutions using
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dimension reduction; they incorporated distances from parameter
space to ensure that individuals with similar parameters are close
together in the visualisation when the isomap [19] dimension re-
duction procedure is applied.

In this paper we use treemaps [13] to visualise multi-objective
populations. A treemap is a 2-dimensional visualisation technique
in which space is assigned to the nodes in a tree according to the
“value” of each node; a high-value node will receive more space
in the visualisation than a low-value node. Despite the prevalence
of tree-like structures within evolutionary computation, we are un-
aware of any instance in which a treemap has been used to visu-
alise data arising within evolutionary algorithms. In this work, we
present an investigation into the efficacy of treemaps for visualis-
ing the search population of an EA tasked with optimising multi-
objective benchmark problems. To facilitate this visualisation, we
present a simple method for casting a population of multi-objective
individuals as a tree.

This paper is structured as follows. Following a brief outline of
some relevant background material in Section 2 we present exam-
ples of treemaps used to visualise solutions in Section 3 and objec-
tives in Section 4. Some concluding remarks and pointers to future
and ongoing work are made in Section 5.

2. BACKGROUND

2.1 Population Visualisation
Beyond the simple case of 3-objective visualisation, methods

generally fall into one of two classes. In the first, the dimension-
ality of the population is reduced using either feature selection (in
which redundant objectives are identified and discarded) or feature
extraction, where a technique such as principal component analy-
sis or multidimensional scaling projects the objective vectors into
a low-dimensional space. In both cases, the population can then be
visualised using a standard two or three dimensional method. In
the second class, a visualisation is constructed in terms of the full
set of objectives. It is this class to which the work presented herein
belongs. Visualising a population in terms of all of its objectives is
advantageous, because employing dimension reduction inherently
results in a loss of information. It does, however, require thought
as to how the full set of objectives can be represented.

A basic visualisation is the pairwise coordinate plot, which pre-
sents a series of visualisations, each showing two objectives. The
difficulty with this, in addition to the potential combinatoric explo-
sion, is that relationships involving three or more of the objectives
will be lost. Parallel coordinate plots [12] are useful for illustrat-
ing the exact objective values, but can become cluttered and diffi-
cult to read. Rearrangement of objective ordering can ameliorate
this to some extent [3]. One possibility presented by [22] cast the
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population as a weighted directed graph constructed in terms of
dominance relationships between the objective vectors, and added
additional information through the use of many-objective ranking
schemes. Heatmaps have been employed, with work on arranging
solutions and objectives to enhance the clarity of the visualisation
including agglomerative clustering [16] and seriation [21].

As well as considering visualisation of (relatively small) many-
objective populations, we also seek to enhance the visualisation
with parameter space information. Some existing work has been
done in this area, for example [14] in which the isomap algorithm
was used to project individuals into a 2-dimensional space. This re-
quires the computation of geodesic distances, which was done with
parameter space distances using solution neighbourhoods obtained
in objective space.

2.2 Treemaps and Multi-objective Trees
Treemaps are a 2-dimensional space filling algorithm used to vi-

sualise hierarchical data [17]. They have been used widely to rep-
resent a plethora of data, and are particularly useful for revealing
clusters within data sets. They are a natural choice for visualisa-
tion within evolutionary computation, as data often arises that can
be represented as such a hierarchy (an example being solutions to
a genetic program or the structure of a population of dominating
solutions).

Treemaps can be constructed in a range of ways, but approaches
generally involve subdividing a space (often a rectangle, although
not necessarily) so that the amount of space allocated to a node in-
dicates its importance. [20] provides a good review with examples
of possible alternatives to the standard space filling approach. Ex-
actly how the space is divided depends on the algorithm chosen. A
popular example is the squarify algorithm proposed by [2]. In this
work we use a simple recursive algorithm so that the ordering of
individuals imposed by the dominance relation is retained.

The multi-objective optimisation literature contains earlier at-
tempts at representing populations of multi-objective solutions in
such a structure. Trees are a desirable data structure in which to
store multi-objective solutions because of the efficiency with which
they can be searched. An example of their use is [8] in which domi-
nated trees and non-dominated trees are proposed as efficient struc-
tures for archiving solutions. Work to improve the efficiency of
MOEAs presented in [15] resulted in a data structure called non-
dominated tree. Trees were also used in a recent endeavour to
improve the visualisation of many-objective populations. [3] pre-
sented an approach that used aggregation trees in order to identify
similar objectives so that parallel coordinate plots can be reordered
to enhance their clarity. We present an alternative approach to rep-
resenting problem objectives with a tree later in this paper.

3. SOLUTION VISUALISATION

3.1 Dominance-based Solution Trees
One of the novelties introduced in this work is an algorithm for

constructing a dominance-based tree with which to represent ob-
jective vectors. We present a scheme in which a tree is constructed
based on a combination of the well-known non-dominated sorting
procedure [18] and the dominance distance [21].

The procedure begins by inserting a new node which will form
the root of the tree. The construction of this node, which we denote
by nr can be arbitrary, however we constrain that it must dominate
the entire population. In this work we use the global best method
[9], whereby an objective vector formed of the best value obtained
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Figure 1: The process by which a dominance tree is constructed. In (a) a
Pareto sorting of the solutions is obtained. Node D has two parent nodes (A
and B). This tie is broken by examining the relevant dominance distances
and retaining the closest parent. In (b) the relationships have been updated
so that each node has exactly one parent node, and the pseudo root node has
been inserted.

by any solution on each objective is defined:

nr =
(
min

i
(yi1) ,min

i
(yi2) , . . . ,min

i
(yiM )

)
(1)

The next step of the tree construction process is to apply non-
dominated sorting to the population. The individuals in the first
Pareto shell can then be connected by edges to nr . The order-
ing resulting from non-dominated sorting can be represented as a
directed graph (which formed the basis of the many-objective vi-
sualisation scheme presented in [22]). The nodes of the graph are
the population’s solutions, which are connected by edges indicat-
ing dominance relationships. Considering only those dominance
relationships between nodes in adjacent shells, it is common for a
node to be dominated by multiple objective vectors. As we require
a tree, some of these relationships must be pruned.

In order to identify which dominating nodes should be removed
from the graph we employ the dominance distance [21]. This is
a proper metric used for computing distances between objective
vectors in terms of their dominance relationships. Two objective
vectors yi and yj are “close” in terms of the dominance distance if
they share dominance relationships with the rest of the population;
if they have few relationships in common with the other objective
vectors then they are distant. Here, we identify which is the closest
dominating node, and that node is retained as the parent node in the
tree while the other dominating dominance relationships are dis-
carded. Retaining the closes dominating node is intended to retain
the most important information about population structure. The
process of visualising the population is outlined in Figure 1.

3.2 Constructing the Treemap
A plethora of algorithms exist for arranging a treemap. In this

paper we use a simple layout algorithm that allocates space to a
node in the tree based on the “size” of that node. For the moment,
consider a node’s size to be a count of itself and its descendants.
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Figure 2: A simple 2-objective population of objective vectors. The top
panel shows the objective space, while the middle panel illustrates the cor-
responding treemap. The bottom panel shows the amount of space assigned
to the Pareto optimal individuals A, B and C.

We first demonstrate the operation of the visualisation using a
simple 2-objective example population (shown in Figure 2). Of the
three Pareto optimal individuals (A, B and C), B dominates the
most individuals, so it has the biggest proportion of the treemap. A
dominates no other individuals, so it has the smallest proportion of
the space. This is shown in the bottom panel of Figure 2.

The treemap is constructed by adding an individual’s child nodes
recursively. The direction in which nodes are added changes with
each layer of recursion. Thus, assuming that the current nodes are
being arranged horizontally, child nodes will be placed vertically,
grandchildren horizontally, and so on. Child nodes are added in the
same fashion as the Pareto optimal solutions, by dividing up the
region of the treemap assigned to their parent (thus the region B in
Figure 2 is divided between individuals D, E and F according to
their respective node sizes. Since individual E dominates I , while
D and F dominate nothing, E is allocated more space; some of
this space is then used to include I in the visualisation.

In addition to defining node size in terms of the number of in-
dividuals an individual dominates, we also scale the node in terms
of its Pareto shell. This has the effect of increasing the size of the
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Figure 3: DTLZ2 sample solutions. The top panel shows the objective
vectors corresponding to the treemap in the bottom panel. Solutions are
coloured according to average rank.

preferable, more highly ranked individuals, and reducing the size
of the more poorly ranked ones.

Figure 3 illustrates a treemap visualisation of a population of so-
lutions to the test problem DTLZ2 [5], a well-known multi-objective
test problem designed to scale to many-objective instances. A pop-
ulation of N = 50 solutions {xi}Ni=1 were sampled from the fea-
sible space (xp ∈ (0, 1), ∀p ∈ P ); each solution contains P pa-
rameters). The top panel shows the objective space correspond-
ing to these solutions for comparison. In both plots, the solutions
are coloured according to their average rank [1]. A low average
rank (and light colour) indicates a good solution and a high av-
erage rank (and dark red colour) indicates poorer solutions. The
average ranks have been normalised to the range (0,1). The place-
ment of the nodes in the treemap is arbitrary, in so far as no at-
tempt has been made to organise them beyond defining the layout
as described above. From examining this treemap, those solutions
with higher quality (the lighter coloured nodes) are easily identi-
fied by examining the size of the nodes. Dominated individuals are
given less relevance by the smaller nodes with which they are rep-
resented. We note that there are individuals in the treemap that ap-
pear to be Pareto optimal without dominating any other individuals
in the population, yet from observing the objective space visualisa-
tion we can see that there are no such individuals in the population.
This is because the relationships with the solutions they dominate
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have been pruned during the construction of the tree representing
the population.

Figure 4 shows three more treemaps for solutions to DTLZ2. The
top panel is the same population as is shown in Figure 3. This time,
however, the treemap has been arranged in terms of the solutions’
average rank. This causes the fitter solutions to be clustered in the
lower-left hand corner of the treemap, enhancing its clarity. The
nodes can be arranged in other ways, for example according to the
values of a specific objective (as is demonstrated later).

The second two examples are for three (centre) and five objec-
tive populations of 50 solutions to DTLZ2, generated in the same
fashion as the earlier example. This illustrates that a treemap can
be used to provide a simple indication of population quality with
a single visualisation for populations of three or more objectives.
When using traditional visualisations, such as scatter plots, it is of-
ten necessary to produce multiple views of the data in order to gain
a proper appreciation for its structure. That said, as the number of
objectives increases the amount of relative quality that can be dis-
cerned from the treemap decreases. This is an artefact of the use of
dominance to construct the tree; as is well known, as the number
of objectives increase the ability of dominance to discriminate be-
tween solution quality is impaired. As a result, for a mutually non-
dominating population (as would likely occur when visualising a
population comprising a large number of objectives), the treemap
would display a single row of vertical nodes. The tree would con-
tain no child nodes. This effect is visible in the 5-objective DTLZ2
case, where the right-hand side of the treemap largely consists of
childless nodes.

3.3 Visualising Population Diversity
In addition to generating high quality solutions, it is also nec-

essary for a MOEA to maintain population diversity and properly
cover the full extent of the Pareto front. We present two approaches
for visualising the diversity of a population using treemaps. The
first is based on the crowding distance operator used within NSGA-
II [4]. Therein, solutions are selected that maximise the diversity
of the next generation’s search population.

Figure 5 illustrates a treemap highlighting the diversity of a sam-
ple population. A set of 2-objective individuals are arranged along
the plane, such that the population sorts into two Pareto shells.
Those individuals at the edge of the population are close together,
and those at the centre are more sparse. The treemap highlights this
by colouring the central nodes in darker blue and the edge nodes in
a lighter colour, indicating that their crowding distance is smaller.

This is further demonstrated in Figure 6, which shows two pop-
ulations of solutions to DTLZ2. The solutions were generated by
sampling solutions from the Pareto front, then adding noise to the
parameters controlling the solutions’ distance from the true front;
this introduces dominated solutions to the population. In the left-
hand panel the solutions have been arranged so that they lie at the
edges of the Pareto front, resulting in a large space between two
clusters of individuals. The solutions on the edge of these clusters
have a large crowding distance. The treemap has been coloured ac-
cording to crowding distance (large distances are shown in blue)
and the discontinuity in the population is clearly visible by the
group of dark blue individuals in the centre of the visualisation.
The right-hand panel visualises a population with no such discon-
tinuity, and the node colouring is more uniform and light. Such in-
formation is useful in evaluating the performance of an optimiser,
as it would inform the algorithm user that the space has not been
properly explored.

As well as examining population diversity in terms of objective
space, we can also incorporate information from parameter space.
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Figure 4: DTLZ2 sample solutions; the populations shown are for M = 2
objectives (top panel), M = 3 objectives (centre panel) and M = 5 ob-
jective (bottom panel). The elements of the treemap are ordered according
to average rank, with the best average rank appearing in the lower left-hand
corner of the treemap.
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Figure 5: Visualising population diversity using a treemap. Those indi-
viduals in the centre of the population with a larger crowding distance are
shown in the centre of the treemap. Individuals are ordered according to
their objective value for the first objective.

Figure 7 illustrates this; this example takes the DTLZ2 population
with poor diversity from Figure 6 and modifies it by moving some
of the solutions to the middle of the population. In the visualisa-
tions, colour indicates the Euclidean distance to a solution’s nearest
neighbour, such that dark orange indicates a greater distance in pa-
rameter space. The dark orange individuals lying in the centre of
objective space here indicate a discontinuity in parameter space.
Should an optimisation problem feature a nonlinear mapping from
parameter to objective spaces, revealing information of this type is
extremely useful. These examples have demonstrated the use of
two distance measures (crowding distance and Euclidean distance)
however these could be replaced with arbitrary measures in order to
convey the type of information required for a specific task or type
of population.

4. OBJECTIVE VISUALISATION
In addition to visualising solutions, visualising objectives can

also provide useful insight into the structure of an optimisation
problem. This has received less attention in the literature, with a
recent example including [7] which uses Spearman’s footrule in
concert with multidimensional scaling to project the objectives into
a two-dimensional space for visualisation.

In order to visualise objectives with a treemap we must first rep-
resent them with a tree. Existing work has examined this issue,
with a recent study [3] using a aggregation trees to identify har-
mony and conflict between objectives for the purposes of enhancing

many-objective visualisations. Here we use a simple agglomerative
approach based on the characteristic that each of the objectives can
be placed in rank order by ranking the population M times, in terms
of the M objectives.

We begin by converting the population to rank coordinates, wher-
eby rim is the rank of the i-th objective vector on the m-th objec-
tive. Spearman’s footrule [6] is a metric for comparing such order-
ings, and is defined as follows:

Smn =

N∑
i=1

|rim − rin|. (2)

In the first step in constructing a tree we calculate Spearman’s foot-
rule for each pair of objectives in the population. Tree construction
is then a matter of identifying the two closest objectives, according
to Spearman’s footrule, and selecting one as the parent node and
one as the child node. This choice is made using the footrule dis-
tances between the two closest objectives and the other objectives
in the population. Given two objectives m and n with the small-
est footrule of any in the population, we examine the next nearest
footrule p for each of the objectives. The objective with the largest
p is the child, and the smallest is the parent node in the tree. Once
a tree has been assigned as a child node, it is removed from the
population for the purposes of further constructing the tree.

We demonstrate this procedure on two populations of 200 solu-
tions. The first is a population of 10-objective DTLZ2 solutions;
DTLZ2 is designed in such a way that there is little or no cor-
relation in the objectives. The other is a population of solutions
to a real-world 9-objective radar waveform design problem [11],
in which four objectives correspond to the range at which objects
can be detected using a candidate waveform, four correspond to
the velocity at which they can be detected, and the final objective
minimises waveform transmission time (this objective is known to
be well correlated with the velocity objectives). Objectives within
these classes are well correlated.

Figure 8 presents treemaps that visualise the objectives in the
three problems examined. The top panel shows the DTLZ2 popu-
lation; as can be seen, there is little structure to the objectives, since
all but one of the objectives are associated with the root node. The
utility of this approach can best be observed in the real-world test
case, shown in the bottom panel. There, the objectives have been
arranged such that the correct correlation between their objectives
can be seen. The range objectives are children of the root node,
and the velocity objectives, as well as the correlated transmission
time objective (objective 9) are grouped together. In the case of a
real world optimisation problem for which correlation information
was unavailable, as is often the case, this would reveal important
information about the nature of the problem.

5. CONCLUSIONS AND FUTURE WORK
This work has introduced the treemap to multi-objective popula-

tion visualisation within evolutionary algorithms. We have demon-
strated the efficacy of an algorithm for representing a population of
multi-objective solutions as a tree, before visualising the resulting
trees with treemaps. The technique was demonstrated on several
multi-objective populations, and as well as using them to convey
characteristics of objective space we incorporated parameter space
characteristics to extend their potential applications. The result is
a framework into which other quality measures and metrics can be
incorporated to suit a specific application. As well as visualising
solutions, we demonstrated the use of treemaps for revealing infor-
mation about a population’s objectives.
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Figure 6: Two examples of visualising population diversity with treemaps coloured according to crowding distance for samples drawn from the Pareto front
of DTLZ2. The left-hand treemap clearly shows the discontinuity in the population. In the right-hand figure, there is no such characteristic, so the nodes are
more uniformly coloured.

Beyond the applications demonstrated herein, we have several
aspects of future work to explore. A shortcoming of this work is
in the visualisation of many-objective populations. Such popula-
tions abound in optimisation, and in order to be widely applicable
the methods demonstrated here need to scale better, so that they
can represent such populations. This will require the investigation
of alternative layout algorithms, which is ongoing. Trees appear
elsewhere in evolutionary computation, notably when used as a so-
lution representation in genetic programming. We are currently ex-
tending this work to incorporate the visualisation of such solutions.

An issue with the visualisations shown throughout this paper is
that it is difficult to directly observe the dominance relationships
between individuals. While this is important, and is an area of
future investigation, we do not feel that this significantly detracts
from the potential of treemap visualisations, as various other vi-
sualisation methods also suffer from this disadvantage (heatmaps
and parallel coordinate plots are good examples, as are any of the
feature extraction methods). A potential approach to addressing
this issue would be to incorporate the ability to select an individual
and highlight its dominating individuals in an interactive setting.
We intend to investigate approaches for illustrating dominance re-
lationships in a static visualisation too.
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