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ABSTRACT 
Dynamically adding sensors to the Extended Classifier System 
(XCS) during its learning process in multistep problems has been 
demonstrated feasible by using messy coding (XCSm) and 
s-expressions (XCSL) as the representation of classifier 
conditions. XCSm and XCSL shown improved performance when 
new sensors were dynamically added to the agent of these systems 
in addition to the original available sensors during the learning 
process. However, these systems may suffer from overspecified 
problem and some logical operators (or clauses) could lead 
instability of the performance. Despite studies have suggested that 
these issues can be solved by appropriate parameter tuning, in the 
last study, we introduced a novel representation of classifier 
conditions for the XCS, named Sensory Tag (ST) (called XCS 
with ST condition, XCSSTC) to achieve the same goal as XCSm 
and XCSL, but inherent most of the mechanisms of the XCS to 
solve those issues that the XCSm and XCSL encountered without 
any parameter tuning. The experiments of the proposed method 
were conducted in the multistep problems (i.e. Woods1 and 
Maze4). The results indicate that the XCSSTC is capable of being 
dynamic added additional sensors to improve performance during 
the learning process, and moreover, the XCSSTC shown a better 
performance in regard to learning speed than the other methods. 

Categories and Subject Descriptors 
F.1.1 [Models of Computation]: Genetics-Based Machine 
Learning, Learning Classifier Sysytems 

Keywords 
Learning Classifier Systems; XCS, Scalability; Machine Learning 

1. INTRODUCTION 
Researchers have developed various intelligent systems and 
algorithms inspired from the nature. For instance, John Holland 
invented the Genetic Algorithms (GA) and tried to apply them to 
the Machine Learning (ML) field. He put forward the architecture 
of a rule-based system called Learning Classifier System (LCS) in 
1976[1]. Nowadays, LCS has become one of the research 
mainstreams in the field of intelligent system. Various LCSs have 
been proposed, the Extended Classifier System (XCS) is one of 
the most popular ones in the application domain. The XCS is a 
LCS that learns to solve a given task by using a set (called 
population set [P]) of “IF condition THEN action” rules called 
classifiers. The XCS interacts with the environment to extract an 
optimal policy for collecting maximum reward from the 
environment by continuously update the parameters of the 
classifiers [2]. The XCS has been proved to be capable of learning 
accurate and general rules and has excellent performance in a 
wide range of real world applications which includes security [3, 
4], finance [5-7], medical research [8, 9], and chip design [10]. 
Numerous studies have shown that the XCS is competitive to the 
traditional ML techniques [11]. An ordinary LCS uses binary 
strings of fixed-length as its classifier conditions. The limitation 
of the learning paradigm of using binary strings as representation 
of classifier conditions has not been aware until the research path 
moved from seeking for optimal performance to generalization 
[12-14]. Different types of representation of classifier conditions 
were proposed since then to apply the XCS to different problem 
domains. For instance, Wilson [15] modified the classifier 
condition of the XCS by adopting real-value representation (i.e. 
the version of XCS taking real inputs, called XCSR). This 
modification enable the XCS to cope with continuous input 
attributes such as stock index, temperature, height and weight. 
Lanzi [16], [17] implemented XCS with two types of 
representations of classifier conditions, they are variable length 
messy coding and S-expressions representation of classifier 
conditions. The messy coding scheme adopts binary encoding 
without the restriction of position linkage between the input 
attributes of the classifiers. The S-expressions is a more complex 
representation that was introduced to generalize classifier 
conditions. The S-expressions enable the XCS to cope with 
dynamic types of input variables. The advantage of variable 
length messy coding and S-expressions representation are that the 
method does not required the system to bind classifier syntax to a 
specific sensory configuration. Accordingly, the XCS with these 
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types of representations of classifier conditions can automatically 
adjust or replace its input attributes. The messy version of XCS 
(XCSm) and XCS with LISP s-expressions (XCSL) shown 
improved performance when new sensors were dynamically 
added to it in addition to the original available sensors during the 
learning process [16, 17]. 

This capability could make XCS more flexibility to solve more 
general problems. However, the XCSm and XCSL are slower than 
the ordinary XCS, and moreover, the XCSm may suffer from 
overspecified problem, and furthermore, some logical operators 
(or clauses) could cause instability in XCSL’s performance. 
Despite the former studies have suggested that these issues can be 
solved by appropriate parameter tuning, in the current study, we 
introduced a novel representation of classifier conditions for the 
XCS, named Sensory Tag (ST), by inheriting most of the 
mechanisms of the original XCS, to achieve the same goal as the 
XCSm and XCSL with a better performance in regard to learning 
speed, and without having those issues which XCSm and XCSL 
encountered. The concept of the proposed representation is 
inspired by the messy coding representation proposed by Lanzi in 
[16]. The concept of messy coding introduced in [16] was to tag 
each sensor (i.e. the input attribute) with a tag. However, for the 
messy coding representation of classifier conditions proposed in 
[16], the tags were not unique in the classifier conditions. This 
lead the proposed system to suffer from overspecified problem 
and the instability of the system. In the current study, we argue 
that such the mechanism can be simplified in which the tags can 
be unique. Hash Table (HT) [18] was used in the current study to 
achieve this goal. We proposed an XCS with ST condition called 
XCSSTC [23], and its effectiveness has been verified in the 
Multiplexer (MUX) problem domain [21] and it can dynamically 
learn multiple problems [24]. This paper validated that the 
performance of the XCSSTC in the multistep problem domains 
(i.e. Woods1 and Maze4). The remainder of the article is divided 
into four main sections. Section 2 describes the components of an 
ordinary XCS and the algorithmic description of the proposed 
XCSSTC. The description of the applied problem domain and 
experimental design are also provided in this section. The result 
and discussion of this study are presented in Section 3. And 
finally, the conclusion is presented in the last section. 

2. THE METHOD AND MATERIALS 
2.1 Components of the XCS 
The XCS is a rule-based LCS which classifier fitness is based on 
prediction accuracy but not prediction payoff [2]. This feature 
makes the XCS keeps both correct and incorrect rules and each 
rule represent a form of “IF condition THEN action”. In the 
original XCS, each rule is divided into three parts as follows: a 
ternary alphabet [0, 1, #] representing condition (# indicates a bit 
can be ignored, also called “don’t care”), a binary string 
representing an action, and three parameters for each classifier. 
Three parameters representing as: (i) p represents the classifier 
prediction which evaluates a value to predict the expected reward 
gaining from environment; (ii) � represents prediction error 
which evaluates the error of the prediction p; (iii) F represents 
fitness value which evaluates the accuracy of the prediction p. 
Moreover, GA is applied to the XCS to enable it in discovering 
new classifiers by evolving the rule set to search for the classifiers 
which are maximal general and accurate. The detailed procedure 
of the XCS is described as the following. First, the XCS encodes 
the status of environmental input to binary string for the detector 
and uses it in matching operation.  Second, the XCS builds an 
empty match set [M]. Third, the XCS searches the population set 

[P] for classifiers whose condition matches the environmental 
input, and places all the matched classifiers into the [M]. After 
that, if the [M] is empty, the XCS will apply an operation called 
“covering” to create a new classifier whose condition matches the 
environmental input and the action of the classifier is chosen 
randomly. Fourth, after the [M] has been generated, the XCS then 
calculates the weighted fitness from the sets of classifiers that 
each set of classifiers has same action. The following step is 
formed a Prediction Array (PA) and all weighted fitness values of 
each action will place into the PA. Fifth, the XCS then picks out 
an action which has maximal predicted payoff and occasionally 
selects an action randomly as output. Sixth, the Q-learning style 
reinforcement learning occurs after receiving payoff from the 
environment. After the effectors has performed the selected action 
to environment. The environment will give a feedback to the 
system. The system interprets the feedback in numeric which is 
generated through a payoff function predefined by user and the 
parameters (p, F) of each classifier are then updated based on the 
obtained payoff. The update procedure occurs in action set [A]. 
The [A] is the set of classifiers with same action that responsible 
for the environmental feedback. The XCS discovers the possible 
classifiers to adapt the environment state by using GA. GA is 
triggered occasionally to search for accurate classifiers in the 
solution space. During the process of updating parameters and 
rule discovery, there are two important mechanisms enable the 
XCS to generalize the learned rules. They are macroclassifiers and 
Subsumption.  

The concept of macroclassifier is to add an additional numerosity 
parameter num to the classifiers in the XCS. A classifier with num 
= n can be considered as n regular classifiers. When XCS created 
a new classifier at the stages of covering operation or GA, XCS 
will scan the [P] to examine whether a macroclassifier exists with 
the same condition and action as the new classifier. If [P] has 
classifiers with the same condition and action, the numerosity of 
the existing macroclassifier with the same condition and action is 
incremented by one instead of inserting the new classifier into [P]. 
Otherwise, the new classifier is added to the population with its 
own numerosity field set to one. Similarly, when the 
macroclassifier experiences a deletion, its numerosity is 
decremented by one instead of being deleted and then any 
macroclassifier with numerosity num = 0 is removed from the 
population. The use of the macroclassifiers technique reduces 
redundant classifiers and allows XCS extract generalized 
classifiers from population. The macroclassifiers technique can 
also reduce the time of searching classifiers to speed up the 
matching process. Subsumption deletion occurs after the update 
process of [A] and GA, also called action set subsumption and GA 
subsumption respectively.  Action set subsumption will select an 
experienced classifier cl with � < �0. Next, cl subsumes all 
classifiers in [A] for whose classifier condition are less general 
than cl by deleting them and the numerosity of cl is increased at 
the same time. GA subsumption occurs when new classifiers 
(children) are generated through GA; the children are compared to 
their parent classifiers and subsumed as well if the parent 
classifiers are experienced (exp, the number of times of being in 
an [A], larger than θsub) and more general. Simultaneously, the 
numerosity of the subsuming classifier is incremented. Otherwise, 
XCS inserts the generated new classifiers into [P]. Results 
reported in [14] has shown the effectiveness of this technique in 
the XCS. For further details of the XCS, readers are recommended 
to see Butz’s algorithmic description of the XCS [19]. 
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2.2 ST as the Representation of Classifier 
Conditions in Multistep Problems 
The method we proposed here is to use the HT to implement the 
concept of STs as the representation of classifier conditions. The 
HT stores a collection of (ST, SV) pairs in which each pair has a 
key and a value. The keys in an HT are unique, and the HT is 
capable of retrieving a value by using its corresponding key 
efficiently from itself based on an implementation of a hash 
function. HT may suffer memory hungry, however, the memory 
size of HT is decided by the dimensions of input condition. Unlike 
messy coding and s-expression representation, HT will not 
produce duplicated dimensions and suffer bloating problem. HT 
can dynamically extended its array size to fit the dimensions of 
input condition and it is very suitable extended to large real-world 
problems. In the proposed XCSSTC, the ST of a sensor is taken as 
a key whereas its Sensory Value (SV) is taken as the value 
corresponds to the key.  Each classifier has its own HT as the 
representation of classifier conditions. The HT includes all the 
(ST, SV) data pairs. The condition bit which is # in a classifier of 
an ordinary XCS is simply ignored from the HT for the classifiers 
in the XCSSTC. For instance, in Woods1 problem, the agent has 
eight sensors to perceive the adjacent situation of corresponding 
cell in the environment. Each cell in the grid can be an obstacle 
(an “O” symbol with sensor codes “01”), a food (an “F” symbol 
with sensor codes “01”), or it can be empty (a “*” symbol with 
sensor codes “00”). When a condition of a classifier in an ordinary 
XCS is 00##0000##010111, the left-hand two bits are always 
those due to the object occupying the cell directly north of “*”, 
with the remainder corresponding to cells proceeding clockwise 
around it. The classifier in XCSSTC stores only the set of data 
pairs {(D0, 00), (D2, 00), (D3, 00), (D5, 01), (D6, 01), (D7, 11)} in 
its HT. The detail mechanisms of the XCSSTC that are different 
from the original XCS are described as follows. 

2.2.1 Matching Classifiers in the XCSSTC 
In the XCSSTC, a matching process decides whether a classifier 
is matched by enumerating all the SVs in the HT of the cl. and 
compare them to the compared to the corresponding bit position 
(by using the ST) in the input string and the absent (ST, SV) pairs 
are considered as “don’t care” and hence ignored. The pseudo 
code of the procedure of the XCSSTC to match a classifier cl 
from the population [P] whose conditions match against the 
environment input s will return true, otherwise return false is 
presented below: 

 

 1:  procedure DOES_MATCH(cl, s) 

 2:      STs ← enumerate all STs in cl.cond  

               and put all STs into the list  

 3:      n ← total number of STs in STs   

 4:      for i =  1 to n do   

 5:          cl.val ← get the value from STs[i] in  

                    cl.cond 

 6:          val ← get binary bit from the state s with  

                  corresponding STs[i] 
 7:          if cl.val ≠ val  then 

 8:              return false 

 9:          end if 

10:      end for 

11:      return true 

12:  end procedure 

2.2.2 Covering in the XCSSTC 
In the covering process of the XCSST, a random classifier whose 
condition matches the current environmental state s and each (ST, 
SV) pair in the HT has probability P# to be taken as “don’t care” and 
removed is created. The pseudo code of the covering operation to 
create a new classifier that match the current input state s and 
advocate an action a missing in the match set [M] is provided below: 
 

1:  procedure COVERING_OPERATION(s, a) 

 2:      initialize classifier cl 

 3:      initialize condition cl.cond  with length n 

 4:      for i = 1 to n do 

 5:        if RandomNumber[0, 1) < P# then 

 6:          cl.cond[i] ← null as “don't care” 

 7:        else  

 8:          val ← get binary bit from the state s with  

                  corresponding cl.cond[i] 
 9:                cl.cond[i] ← put (i, val) into hash table 

10:         end if 

11:      end for 

12:      cl.action ← a 

13:      return cl 

14:  end procedure 
 

2.2.3 Rule Discovery in the XCSSTC 
The rule discovery process of the XCSSTC first selects two parent 
classifiers from the [A] based on their fitness and produces two 
offspring by the parents. Then the conditions of two offspring are 
crossed with probability �. Uniform Crossover (UX) [26] is used 
for the GA in the XCSSTC. The UX, unlike one- and two-point 
crossover, evaluates each bit in the parent strings for exchange 
with a probability �. Empirical evidence suggested that it is a 
more exploratory approach to crossover than the traditional 
exploitative approach that maintains longer schemata. This may 
result in a more complete search of the design space with 
maintaining the exchange of good information. The procedure of 
the crossover operation is shown below: 

 1:  procedure CROSSOVER_OPERATION(cl1, cl2) 

 2:      STs ← enumerate all STs in  

                cl1.cond and cl2.cond, put all STs  

                into the list and remove the  

                duplicated STs. 

 3:      n ← the total number of ST in STs 

 4:      for i = 1 to n do 

 5:        if RandomNumber[0, 1) < x then 

 6:            cond1 ←  get the cl1.cond which ST  

                         corresponding to STs[i].  

 7:            cond2 ←  get the cl2.cond which ST  

                         orresponding to STs[i].  

 8:            swap cond1 and cond2  

 9:        end if 
10:      end for 

11:  end procedure  
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After the crossover operation, each (ST, SV) pair has a probability 
 to be removed in the mutation operation. The absent STs are 
considered as “don’t care” attributes. Then, with probability �, 
the XCSST randomly chooses an action for child. The pseudo 
code of the used mutation operation is presented below. The value 
of the prediction payoff of a child is the average of its’ parents’ 
prediction payoff.  The prediction error and fitness are the 
average of the parents’ values reduced by constants 
predictionErrorReduction and fitnessReduction respectively. 

 

 1:  procedure MUTATION_OPERATION(cl, s) 

 2:      for i = 1 to n do 

 3:        if  RandomNumber[0, 1) < � then 

 4:            if cl.cond[i] = null then 

 5:              val ← get binary bit from the state s with  

                      corresponding cl.cond[i] 
 6:              cl.cond[i] ← replaced by (i, val) 

 7:            else 

 8:              cl.cond[i] ← null as “don't care” 

 9:            end if  

10:        end if 

11:      end for 

12:      if  RandomNumber[0, 1) <  then 

13:         a ← cl.action 

14:         cl.action ← randomly chosen action other than a 

15:      end if 

16:  end procedure 

 

2.2.4 Subsumption Deletion in the XCSSTC 
Subsumption deletion occurs when a classifier rule is sufficiently 
accurate and more general than the other classifiers. For instance, 
if a classifier cl1 has the same action as the other classifier cl2. cl1 
is more general than cl2 while both of classifier condition match 
against the environmental inputs and has the same accuracy, but 
cl1 has more “don’t care” symbol. Then cl2 will be deleted and the 
num of cl1 is increased by one. In the XCSSTC, there are two 
steps to determine which classifier rule is more general than the 
other classifier rule that can subsume the other. The first step is to 
count the number of the (ST, SV) pairs in the HT. The number of 
the absent STs is equivalent to the number of “don’t care” bit. 
This action determines whether the classifier is general or not 
efficiently. For instance, determining whether classifier cl1 is 
more general than classifier cl2 or not, if cl1 has more paired 
number of STs than cl2, cl1 will not be identified as general one. 
The second step is to compare the SVs of the classifiers 
corresponds to their STs. If cl1 has a ST that cl2 does not have, 
then cl2 cannot subsumed into cl1. On the other hand, if each 
corresponding ST has different SV between cl1 and cl2, then cl1 
also cannot be considered as general one. The procedure to 
determine whether a classifier cl1 is more general than another 
classifier cl2 is shown below: 

 

  1:   procedure IS_MORE_GENERAL(cl1, cl2) 

  2:      x ← total number of STs in cl1.cond 

  3:      y ← total number of STs in cl2.cond 

  4:      if x ≥ y then 

 5:          return false 

 6:      end if 

 7:      X ← set of STs in cl1.cond 

 8:      Y ← set of STs in cl2.cond 

 9:      if X  Y then 

10:          return false 

11:      end if 

12:      STs ← enumerate all STs in  

               cl1.cond and put all STs into  

               he list 

13:      n ← the total number of ST in STs 

14:      for i = 1 to n do 

15:          cl1.val ← get the value from STs[i] in  

                     cl1.cond 

16:          cl2.val ← get the value from STs[i] in  

                     cl2.cond 

17:          if cl1.val ≠ cl2.val then 

18:              return false 

19:          end if 

20:      end for 

21:      return true  

22:  end procedure 

 

2.2.5 Encapsulating and Reusing the Learned 
Knowledge When Adding New Sensors to the XCSSTC 
Reusing the past learning experience is similar to the learning 
process of human beings by utilizing knowledge extracted from 
past learning experience to solve more complex problem in the 
same or related domains. Suppose we have a robot can move into 
eight adjacent cells to find the food. In the beginning, for a robot 
that only have four cardinal sensors to perceive the environment. 
After learning a period of time, we add four more sensors to the 
robot. In the XCSSTC, the robot can keep the learned building 
blocks of knowledge that were learned from the environment by 
using the original four sensors. We realized this capability of the 
XCSSTC by using a manner similar to the one proposed in [20]. 
The anterior classifier rules learned from solved problems is 
considered as a “last” population set [P]-1 and the new empty 
population set is [P]0 (also abbreviated as [P]). For instance, when 
applying the XCSSTC to the Maze4 problem, in the first 5000 
problem instances, the agent learn from the environment with only 
four sensors and the learned population set was taken as the [P]-1.  
Later, when adding the additional new four sensors to the 
XCSSTC, the covering process of the XCSSTC is then altered to a 
two-step procedure. The first step is to use the ordinary matching 
process to match the classifier rules in the [P]-1 and pick out an 
experienced classifier (exp > θsub) which has the highest fitness 
value. The second step is to apply the covering operation for the 
additional new STs for the classifier selected from the [P]-1. Each 
ST paired with a SV consistent with the environmental input. For 
a probability of P# the new (ST, SV) is not inserted into the 
classifier’s HT. Thus, part of the “learned knowledge” which has 
been learned from the environment when only four sensors were 
available is used when new sensors are added to the agent. On the 
other hand, if there is no classifier matches the environmental 
input in the [P]-1, the XCSSTC applies the ordinary covering 
operation to create a new classifier. 
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2.3 Experiment Design 
2.3.1 Multistep Problems  
The environment of multistep problems is a grid in which an 
agent is placed in the grid to find a food. The agent has a number 
of sensors (e.g., four or eight) to perceive the adjacent situation of 
corresponding cell in the environment. Each cell in the grid can be 
an obstacle (an “O” symbol with sensor codes 01), a food (an “F” 
symbol with sensor codes 01), or it can be empty (a “*” symbol 
with sensor codes 00). The agent can move into any of adjacent 
cell. If the adjacent cell is an obstacle, the agent unable to move 
into this cell, the agent must be left in the original place; if the 
adjacent cell is empty then the agent can move into the cell; 
finally, if the adjacent cell is a food, the agent will move into the 
cell and receive a constant reward to end the problem. 

The experimental environments used here are Woods1 and Maze4 
as show in Figure 1 and Figure 2 respectively. Each experiment 
consists of number of problem instance for the agent to solve. For 
each problem instance the agent is put to a randomly selected 
empty cell of the environment. Then the agent is controlled by the 
XCSSTC to keep moving until it reaches the food and receive a 
constant reward to end the problem. The experiment of the 
XCSSTC on each experiment was repeated for 30 times with a 
different random seed and all the reports are average result of the 
30 runs. 

 

 
Figure 1 The Woods1 environment 

 

 
Figure 2 The Maze4 environment 

 

2.3.2 Parameter Setup 
This study adopted the setting of parameters mostly based on the 
suggestion provided in [19] and [16] as follow: fitness fall-off rate 
α = 0.1; learning rate β = 0.2; the threshold of prediction error ε0 = 
0.01; fitness exponent v = 5; the threshold for GA application in 
the action set θGA = 25; the probability of crossover operation � = 
0.8; mutation with probability μ = 0.01; experience threshold for 
classifier deletion θdel = 20; the fraction of mean fitness δ = 0.1; 
the threshold for subsumption θsub = 20;  probability of “don’t 
care” symbol in covering P# = 0.3; reduction of the prediction 
error predictionErrorReduction = 0.25; reduction of the fitness 
fitnessReduction = 0.1; The number of classifiers used, denoted by 
N, is 800 and 1600, for the Woods1 and Maze4 multistep 
problems respectively.  

3. RESULT AND DISCUSSION 
3.1 Comparing the XCSSTC to the XCSm 
and XCSL 
Figure 3 shows that for Woods1 problems, when P# was set to 0.3, 
the XCSSTC reached accuracy rate 100% at about 500 problem 
instances. Although not shown in Figure 3, the XCSSTC also 
reached its minimum system error at the same point, and the 
number of macroclassifiers of the XCSSTC in Woods1 problem 
reduced to approximately 185 at the end of the learning process. 
Notably the original XCSm [16] cannot reach optimal 
performance in Woods1 problem and after tuning parameters, the 
enhanced version of XCSm reached accuracy rate 100% at about 
3,000 problem instances which is slower than XCSSTC. 

 
Figure 3 Result of XCSSTC for the Woods1 problem 

Figure 4 shows that for the Maze4 problem, when P# was set to 
0.3 the XCSSTC reached accuracy rate 100% at about 750 
problem instances. Although not shown in Figure 4, the XCSSTC 
also reached its minimal system error at the same point, and the 
number of macroclassifiers of the XCSSTC in Maze4 problem 
reduced to approximately 400 at the end of the learning process. 
Notably the original XCSm cannot reach optimal performance in 
Maze4 problem.  

After parameter tuning, the XCSm reached accuracy rate 100% at 
about 4,500 problem instances [16] and the XCSL can reach 
accuracy rate 100% at about 1,000 problem instances [17] when 
an additional sensor that provide the “distance between the agent 
and the food” information was given. However, the number of 
problem instances required for the XCSSTC to learn the problem 
is smaller than both of them. 
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Figure 4 Result of XCSSTC for the Maze4 problem 

 

Unlike the XCSm, the STs in the XCSSTC are unique in the 
classifier conditions and this lead the proposed system avoid 
overspecified problem and hence do not need to change the way 
that the rule-discovery component operates in the original XCS. 
We believe that is the reason why XCSSTC outperforms XCSm in 
the multistep problem without tuning parameters of the results. 
The reason of the XCSSTC for outperforming the XCSL may be 
due to the difference in degree of freedom since the S-expression 
enabled a more complex solution space. More problem instances 
is required for the XCSL to evolve appropriate operators in its 
classifier conditions than the XCSSTC to evolve appropriate 
classifier conditions. 

3.2 The Effect of Encapsulating and Reusing 
Building Blocks of Knowledge 
We’ve also tested the effect of dynamically adding new sensors to 
the XCSSTC, and examined the effect of encapsulating and reusing 
the building block of knowledge when adding new sensors to the 
XCSSTC. The experiment was also conducted in the Woods1 and 
Maze4 problem domains. During the experiments we provided the 
agent with the tags correspond to only four cardinal sensors in the 
first 5,000 problem instances. After the 5,000 problem instances, we 
added four more sensors to the agent to observe the performance 
changes in the agent. We also specifically reused the [P]-1 learned 
by the XCSSTC in the first 5,000 problem instances by using the 
technique described in Section 2.2.5. 

The results of our first experiment in both Woods1 (see Figure 5) 
and Maze4 (see Figure 6) can be divided into two parts. First, in the 
first 5,000 problem instances where the XCSSTC only had 4 
sensors, the performance improved over problem instances, but 
does not reached the optimal performance since it did not have 
sufficient sensors to build a complete payoff map of the 
environment. Second, after the first 5,000 problem instances, the 
result indicates that by reusing the learned [P]-1, the problem 
instances required for the XCSSTC to reach the optimal 
performance was reduced compare to the XCSSTC without reusing 
the [P]-1. However, this improvement was small. XCSSTC with 
reusing the [P]-1 (365±231.71) is not significantly (t(58) = 4.258, p 
> .05) faster than XCSSTC without reusing the [P]-1 

(603.33±192.75) in the Woods1 problem. XCSSTC with reusing the 
[P]-1 (1093.33±838.92) is not significantly (t(58) = 0.081, p > .05) 
faster than XCSSTC without reusing the [P]-1 (1108.33±547.88) in 
the Maze4 problem. We investigate the population set of the 
XCSSTC at the 5,000th problem instance and we found that there 
were too many experienced classifiers with high fitness value that 
were overgeneral. The final [P] of the XCSSTC at the 5,000th 

problem instance in Maze4 is show in Table 1. If the reused 
classifier’s classifier condition is empty (i.e. overgeneral), the 
mechanism of reusing the learned knowledge will become 
meaningless and even misleading in certain circumstances.  

To avoid this issue, we modified the procedure described in 2.2.5 
which reuses the building blocks of knowledge during the covering 
procedure. The modified procedure picks out an experienced 
classifier (exp > θsub) which has the highest fitness value and also 
not empty in its condition (i.e. the HT). Figure 7 and Figure 8 show 
the effect of the modification in the procedure of reusing [P]-1. 

It is obvious that the modification of the procedure greatly improved 
the effectiveness of reusing the learned [P]-1 in Maze4 problem. 
XCSSTC with reusing the [P]-1 (241.66±141.47) is not significantly 
(t(58) = 8.146, p > .05) faster than XCSSTC without reusing the 
[P]-1 (603.33±192.75) in Woods1 problem. XCSSTC with reusing 
the [P]-1 (433.33±200.55) is significantly (t(58) = 6.230, p < .05) 
faster than XCSSTC without reusing the [P]-1 (1108.33±547.88) in 
Maze4 problem.  Furthermore, the final [P] of the XCSSTC is 
shown in Table 2. It is found that in the end of the learning process, 
the classifiers that are both accurate and general were evolved. After 
the examination of the [P]-1 and [P] we found that the reuse of the 
[P]-1 has been effective in Woods1 and Maze4 problems because of 
the non-overgeneral learned rules that were related to the end of the 
path (i.e. last step near the food). 

 
Figure 5 Result of XCSSTC by reusing the four cardinal 
sensors and without reusing the four cardinal sensors in 
Woods1 problem 

 
Figure 6 Result of XCSSTC by reusing the four cardinal 
sensors and without reusing the four cardinal sensors in 
Maze4 problem 
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Although the agent here was given only 4 sensors and cannot 
accurately identify the environment, the agent can still be accurate 
about the “next step” when the food is sensed in the given 4 
sensors. On the other hand, in the environmental states those 4 
sensors were insufficient to identify the state and cannot suggest a 
promising classifier action, the [P] would lead to more 
“overgeneral” classifiers with high fitness value. The “overgeneral” 
here means empty in HT. 

We’ve conducted another experiment described below to validate 
to support this finding about the reason of why reused [P]-1 being 
effective. We were curious about the performance changes when 
the agent already has its own [P]-1 but was learned from different 
problem domain. The experiment was conducted by applying the 
XCSSTC (with only four cardinal sensors) to Woods1 problem 
for 10k problem instances then store the [P]-1, then reuse the 
learned [P]-1 with full eight cardinal sensors, in the Maze4 
problem for the later 10k problem instances. We suspected that if 
the statement about the reason of why the reuse of [P]-1 being 
effective was true, we hypothesize that this reuse of building 
blocks of knowledge should lead to “no improvement” at least in 
learning performance. Since the direction of the food in the end of 
the problem is totally different in Woods1 and Maze4 problems, 
proved that when prior learning creates behaviors that reduce or 
eliminate necessary experience in the new context, the past 
experience will not help [22]. 

The result of the experiment is shown in Figure 9. The result 
indicate that the misuse of the [P]-1 not only did not enhance the 
performance of learning in the later 10k problem instances, it 
furthermore lead to the restriction of learning in the later problem. 
This may be due to that the reuse of [P]-1 since it may be 
misleading and hard to re-learn. The reason of classifiers in [P]-1 
for being hard to re-learn is that the SV of the STs (or being 
empty) related to the 4 sensors given in the first 10k problem 
instances were incorrect should be revised. The only way to revise 
them was through global search. However, there is only the 
mutation operator and no covering process involved. 

We also found the without the reuse of the learned [P]-1, the 
performance of the XCSSTC was slightly slower than the XCS 
[19]and equal to the XCS when the [P]-1 was reused. It is worth to 
mention that this is caused by that in the current study we applied 
two-bit encoding for the SVs of classifiers in the XCSSTC. While 
the XCS applies the mutation operator in a one-bit level, the 
XCSSTC applies the mutation operator in a two-bit encoding. 

 

Table 1 The [P] of the XCSSTC for learning first 5,000 
problems with 4 cardinal sensors in Maze4 

condition a p � F n exp as 
{(D0, 11)} 0 1000 0 1 33 1117 38.69
{(D2, 11)} 2 1000 0 1 35 662 40.44
{} 5 100.23 15.40 .99 146 37197 149.50
{} 4 120.50 32.98 .98 116 37946 130.37
{} 6 123.47 36.46 .97 132 38731 139.91
{} 7 96.046 13.94 .96 87 37524 113.51

(...) 
{(D2, 01), (D0, 00)} 1 142.49 103.89 0 1 19 93.24
{(D0, 01)} 5 67.43 24.36 0 1 129 102.52
{(D6, 01), (D2, 00)} 1 190.25 304.00 0 1 24 88.55

a: action, p: predicted payoff, �: system error, F: fitness value, n: 
numerosity, exp: exp, as: estimated action set size 

 
Figure 7 Result of XCSSTC by reusing the four cardinal 

sensors without overgeneral classifier for Woods1 problem 

 
Figure 8 Result of XCSSTC by reusing the four cardinal 
sensors without overgeneral classifier for Maze4 problem 

 

Table 2 The final [P] of the XCSSTC for learning 15,000 
problems with 8 cardinal sensors in Maze4 

condition a p � F n exp as 
{(D0, 11)} 0 1000 0 1 5 2669 7.31
{(D2, 11)} 2 1000 0 1 11 2015 8.12
{(D1, 11)} 1 1000 0 1 18 5433 16.82
{(D5, 00), (D4, 01), (D0, 01)} 1 502.24 5.59 1 24 1914 23.58
{(D7, 00), (D6, 00), (D5, 01), 
(D4, 00), (D3, 01), (D1, 01)} 

7 356.83 1.12 1 11 119 12.40

{(D5, 01), (D4, 01), (D3, 01)} 3 181.39 .47 1 19 7628 22.64
(...) 

{(D6, 01), (D4, 00), (D1, 00)} 2 324.73 109.48 0 1 15 15.02
{(D5, 01), (D2, 01), (D0, 00)} 0 283.16 52.95 0 1 14 22.15
{(D5, 01), (D4, 00)} 1 437.92 138.36 0 1 17 16.44

a: action, p: predicted payoff, �: system error, F: fitness value, n: 
numerosity, exp: exp, as: estimated action set size 

 
Figure 9 Result of XCSSTC by reusing the four cardinal 
sensors without overgeneral classifier for Woods1 problem in 
the Maze4 problem. 
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This will lead to the increase of the number of problem instances 
required to learn the problems. Hence, the comparison between 
the learning speeds between the XCS and the XCSSTC in the 
Woods1 and Maze4 should not be considered as a proof that the 
reuse of learned [P]-1 cannot lead to better performance. In the 
feature, the authors will test XCSSTC in a more complex domain 
and its scalability. 

4. CONCLUSIONS 
The current study has demonstrated the capability of the XCSSTC 
in being dynamically added sensors to learn multistep problems. 
The results indicate that the XCSSTC solved the instability issues 
of systems reported in related previous studies and furthermore 
improve the learning speed. Moreover, we have develop and 
tested a technique of encapsulating and reusing the learned [P]-1 
and proved the effectiveness of it in improving the learning speed. 
We believe that the proposed approach can lead to building 
intelligent systems that can reuse the learned building blocks of 
knowledge and also automatically adjust / replace its input 
attributes and learn to perform complex tasks in larger scale. 
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