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ABSTRACT

Problems can be categorized as fractured or unfractured
ones. A different set of characteristics are needed for learn-
ing algorithms to solve each of these two types of problems.
However, the exact characteristics needed to solve each type
are unclear. This article shows that the division of the input
space is one of these characteristics. In other words, a study
is presented showing that while fractured problems benefit
from a finer division of the input space, unfractured prob-
lems benefit from a coarser division of input space. Many
open questions still remains. And the article discusses two
conjectures which can be used to solve fractured problems
more easily.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Learning algorithms should impact how problems are solved

in many disciplines in the following years. In principle, any-
thing can be learned by a learning algorithm. They are
specially useful to solve complex problems which are either
too hard to code or too dynamic. But they can still provide
better as well as novel solutions to old hardcoded problems,
because they can experiment and discover solutions provided
that an environment with a fitness function and a simulation
(or trial and error environment) are given.

However, state of the art learning algorithms need most
of the time many adjustments in their parameters to work
on different environments, requiring a specialist to enable
its application. To make things worse, there are often some
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problems which do not work well no matter what parameters
are chosen. For example, NeuroEvolution of Augmenting
Topologies (NEAT) was shown to behave poorly on frac-
tured problems [19]. The design of algorithms which can
learn and adapt to widely different problems is a difficult
challenge. But as important as the development of new al-
gorithms is the study of which characteristics are necessary
to solve a given class of problems.

There are many characteristics that help a method to solve
fractured problems. Basically, the addition of local refine-
ment was shown to improve the quality of solutions for the
NEAT algorithm. In other words, by either adding local pro-
cessing nodes (such as the use of radial basis function neural
networks) [17] or adding constraints on the search focusing
on topologies that do local refinement (this can be achieved
by using an add cascade node mutation and freezing the
past hidden nodes similar to the original cascade correlation
algorithm) [18], NEAT was able to improve the performance
on some fractured problems.

The division of the input space characteristic can theo-
retically add local refinement to the model. Not only that,
it also facilitates the solution of the problem by a divide
and conquer process. Thus, here we present a study of
(un)fractured problems by varying the amount of division
of the input space with the type of problem. A relationship
is discovered between (un)fractured problems and the input
space division. For fractured problems a finer division of
the input space means a better quality of result, while the
inverse is true for unfractured problems. This hints at why
NeuroEvolution (NE) methods suffer with fractured prob-
lems while Learning Classifier Systems (LCS) do not. Natu-
rally, there is a trade-off between LCS and NE. And we are
not in any way arguing that an approach is better than the
other.

Many fractured problems, although challenging and expo-
nentially difficult with the increase of dimensions, still have
patterns that once understood enable the solution of the
same problem with an arbitrary dimension easily. More-
over, sometimes memorizing the input-output map is easier
and less error prone than trying to represent it. These open
questions and possible solutions are pointed out and dis-
cussed.

For the study the Novelty Organizing Team of Classi-
fiers (NOTC) algorithm is used [36, 37]. Therefore, a brief
overview of the method as well as the definition of fractured
problems are provided.
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5. NOTC’S BEHAVIOR
NOTC’s behavior is based on two concepts:

• Team - A team is a set of individuals that act until
the end of the episode. This concept enables the use
of common fitness functions for Pittsburgh-style LCS
in Michigan-style LCSs.

• Hall of Fame - Hall of Fame is a collection of the
best teams (e.g., teams that received the highest accu-
mulated rewards in reinforcement learning problems)
evaluated so far.

5.1 Behavior
When an input is received, the behavior descripted in Fig-

ure 2 is executed. The number shown in the arrows inside
the figure corresponds to a given step. In the following these
steps will be explained in detail:

1. Novelty Map Population receives the input. Its cells
compete for the input with the winning cell having
one of its individuals chosen to act. When a given
cell is first activated during an episode, an individ-
ual is chosen randomly to act. Afterwards, the same
individual is chosen everytime this cell activates dur-
ing this episode (notice that the constant use of the
same individuals in every cell implements the concept
of team in this algorithm and that the team changes
every episode).

2. The chosen individual and its fitness compose the ac-
tion set.

3. The chosen individual’s neural network is activated,
outputting the action to be performed.

4. The individual that composed the previous action set
has its fitness updated. The fitness update is done
using the Widrow-Hoff rule [38]:

F = F + η(F̂ − F ), (1)

where η is the learning rate, F is the current fitness
and F̂ is a new fitness estimate. The fitness estimate
of cell cell and individual c which were activated at
time t− 1 is given by the following equation:

F̂ (c, cell)t−1 = Rt−1 + γ max
c′∈cell′

{F (c′, cell′)}, (2)

where R is the reward received, γ is the discount-factor
and max

c′∈cell′
{F (c′, cell′)} is the maximum fitness of in-

dividual c′ inside the activated cell cell′ at the current
cycle t.

5. The current team fitness accumulates the rewards re-
ceived until the end of the trial.

NOTC’s behavior has a single exception to the description
above. After the evolution, the first trials are reserved for
the teams in the Hall of Fame. Therefore, each of the teams
in the Hall of Fame have a trial where it must act and have
its fitness updated. This is important, otherwise a lucky
team may stay for quite a long time as well as influence the
evolution negatively. Notice that a team enters in the Hall
of Fame if its fitness is better than the worst team in the
Hall of Fame. In this case, the worst team in the Hall of
Fame is replaced.

5.2 Evolution
When evolution trigger number of trials happened, the

evolution is triggered. The following equation defines the
evolution trigger:

evolution trigger = Ssize ∗ ι, (3)

where Ssize is the subpopulation size (best plus novel indi-
viduals) and ι is a parameter.

The evolution procedure consists of the following steps:

1. For each cell, the first half of the best individuals is
filled by the individuals present in the Hall of Fame
teams and the second half with the fittest individuals
according to their individual fitness. When a don’t
care symbol is present in the Hall of Fame team, a
random individual from the cell is used.

2. The remaining individuals are removed, resulting in an
empty group of novel individuals.

3. New novel individuals are created by using the dif-
ferential evolution genetic operator (DE operator) or
indexing with a chance of 50% each. Therefore, for
each novel individual a new individual is created with
either one of the following:

• Indexing - A random individual from the popula-
tion is copied;

• DE operator - Consider that the number of best
and novel individuals are the same. The DE oper-
ator takes as base vector the best individual with
the same index as the current novel individual to
be created, in this way all best individuals will be
used as base vectors of at least one novel individ-
ual. To build the DE’s mutant vector, three ran-
dom individuals from the entire population (i.e.,
any individual from any subpopulation) are se-
lected. The resulting trial vector is stored as the
new novel individual.

6. EXPERIMENTS
First the settings will be described, followed by the tests’s

results and discussions.

6.1 Settings
The parameters of NOTC are similar to the ones used in

[36, 37], see Table 1 for details. All results are averaged over
30 runs and only the best result among 100 trials is plotted.

7. EXPERIMENT 1 - MULTIPLEXER
Multiplexer is a challenging fractured problem where the

agent must learn to select the correct data bit for the output
by looking at the value provided in the address bits. Here
we use a very challenging problem setting with three bits of
address and eight bits of data. Notice that NEAT reported
less than 75% correct answers in an easier version of this
problem with six bits of data and three bits of address [19].

Figure 3 shows surprising results from applying NOTC on
the multiplexer problem. The more the algorithm divides
the input space the better the results, i.e., the higher the
number of cells from the Novelty Map the better the results.
What justifies the need for more divisions of the input? And
why does having a higher number of cells make it faster?
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Table 1: Parameters for Novelty-Organizing Team of Classifiers

Parameter Value

Differential Evolution
CR 0.2
F random ∈ [0.0, 2.0]

Novelty Map
Number of Cells variable
Novelty Metric Uniqueness

Novelty-Organizing Team of Classifiers

Widrow-hoff coefficient 0.1
Number of best individuals 10
Number of novel individuals 10
ι 10
Discount factor 0.99
Initial fitness for novel individuals −1
Initial fitness for best individuals 0
Number of hidden nodes 10
Hall Of Fame’s size 5
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Figure 3: NOTC applied to a multiplexer problem

with three bits of address and eight bits of data.

NOTC 20, 30 and 40 have respectively 20, 30 and

40 cells in the Novelty Map. The reward is zero

for correct answers and −1 for incorrect ones, with

all the 2048 possibilities being evaluated for every

episode.

the quality of the solutions. With the Novelty Map, it is
not hard to automatically adapt the division of the problem.
The simple addition of cells to the Novelty Map create a finer
division while the removal of cells make for a coarser one.
Notice that Novelty Map can have cells added or removed
on the fly without any problems. Moreover, the Novelty
Maps differing in number of cells can be compared, offering
a guidance to the best number of cells for a given problem.

Maybe another way around this problem would be to im-
prove computational models of individuals. As mentioned
before, merely increasing the complexity of the individuals
does not help, since the search space becomes wider and
harder to search. Therefore, improved learning algorithms
specific to the computational model used may be required.
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Figure 4: NOTC’s performance on the mountain car

problem. NOTC 20, 30 and 40 have respectively 20,

30 and 40 cells in the Novelty Map.

However, even if they do solve with similar quality, the ex-
ponentially increasing difficulty of the multiplexer with the
increase of dimensions might remain still.

Fractured problems are not just difficult problems, they
also bring interesting questions that challenges not only al-
gorithms but our way of thinking about them. We call at-
tention for two points.

First point, some of the fractured problems, like the mul-
tiplexer, possess a basic pattern that once understood makes
the problem trivial. This basic pattern also enables the solu-
tion of higher dimension versions of the same problem very
easily.

Second point, for some of these fractured problems it is
easier to memorize exhaustively the input-output map than
to represent it into a computational model. Therefore, it
raises the question of if a mixture of complementary com-
putational models should be used.
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10. CONCLUSIONS
To understand further the learning characteristics neces-

sary to solve different classes of problems, here, a study over
(un)fractured problems was conducted. We discussed the re-
lationship between (un)fractured problems and the division
of the input space. From the experiments. the following
conclusions were drawn:

• Fractured problems benefit from a finer division of the
input space, because classifiers such as neural networks
need a higher number of response regions in these prob-
lems. Notice that merely increasing the number of re-
sponse regions of a neural network by increasing its size
or depth does not help, since the search space becomes
too large and deceptive.

• Unfractured problems benefit from a coarser division
of input space, because too much breaks in the input
space cause responses to vary abruptly from one agent
to another, slowing the learning rate.

This article also incentives further work into the remaining
open questions regarding fractured problems. Complemen-
tary computational models or pattern discovery strategies
are the two ideas proposed to face the difficulties of these
types of problems.
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