
The Relationship Between (Un)Fractured Problems and
Division of Input Space

Danilo Vasconcellos
Vargas

Kyushu University
Fukuoka, Japan

vargas@cig.ees.kyushu-
u.ac.jp

Hirotaka Takano
Kyushu University
Fukuoka, Japan

takano@cig.ees.kyushu-
u.ac.jp

Junichi Murata
Kyushu University
Fukuoka, Japan

murata@cig.ees.kyushu-
u.ac.jp

ABSTRACT

Problems can be categorized as fractured or unfractured
ones. A different set of characteristics are needed for learn-
ing algorithms to solve each of these two types of problems.
However, the exact characteristics needed to solve each type
are unclear. This article shows that the division of the input
space is one of these characteristics. In other words, a study
is presented showing that while fractured problems benefit
from a finer division of the input space, unfractured prob-
lems benefit from a coarser division of input space. Many
open questions still remains. And the article discusses two
conjectures which can be used to solve fractured problems
more easily.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

Keywords

Fractured Problems, Machine Learning, Reinforcement Learn-
ing, Self Organizing Classifiers, Novelty Organizing Classi-
fiers

1. INTRODUCTION
Learning algorithms should impact how problems are solved

in many disciplines in the following years. In principle, any-
thing can be learned by a learning algorithm. They are
specially useful to solve complex problems which are either
too hard to code or too dynamic. But they can still provide
better as well as novel solutions to old hardcoded problems,
because they can experiment and discover solutions provided
that an environment with a fitness function and a simulation
(or trial and error environment) are given.

However, state of the art learning algorithms need most
of the time many adjustments in their parameters to work
on different environments, requiring a specialist to enable
its application. To make things worse, there are often some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’15 Companion, July 11–15, 2015, Madrid, Spain

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768447

problems which do not work well no matter what parameters
are chosen. For example, NeuroEvolution of Augmenting
Topologies (NEAT) was shown to behave poorly on frac-
tured problems [19]. The design of algorithms which can
learn and adapt to widely different problems is a difficult
challenge. But as important as the development of new al-
gorithms is the study of which characteristics are necessary
to solve a given class of problems.

There are many characteristics that help a method to solve
fractured problems. Basically, the addition of local refine-
ment was shown to improve the quality of solutions for the
NEAT algorithm. In other words, by either adding local pro-
cessing nodes (such as the use of radial basis function neural
networks) [17] or adding constraints on the search focusing
on topologies that do local refinement (this can be achieved
by using an add cascade node mutation and freezing the
past hidden nodes similar to the original cascade correlation
algorithm) [18], NEAT was able to improve the performance
on some fractured problems.

The division of the input space characteristic can theo-
retically add local refinement to the model. Not only that,
it also facilitates the solution of the problem by a divide
and conquer process. Thus, here we present a study of
(un)fractured problems by varying the amount of division
of the input space with the type of problem. A relationship
is discovered between (un)fractured problems and the input
space division. For fractured problems a finer division of
the input space means a better quality of result, while the
inverse is true for unfractured problems. This hints at why
NeuroEvolution (NE) methods suffer with fractured prob-
lems while Learning Classifier Systems (LCS) do not. Natu-
rally, there is a trade-off between LCS and NE. And we are
not in any way arguing that an approach is better than the
other.

Many fractured problems, although challenging and expo-
nentially difficult with the increase of dimensions, still have
patterns that once understood enable the solution of the
same problem with an arbitrary dimension easily. More-
over, sometimes memorizing the input-output map is easier
and less error prone than trying to represent it. These open
questions and possible solutions are pointed out and dis-
cussed.

For the study the Novelty Organizing Team of Classi-
fiers (NOTC) algorithm is used [36, 37]. Therefore, a brief
overview of the method as well as the definition of fractured
problems are provided.

981

982

5. NOTC’S BEHAVIOR
NOTC’s behavior is based on two concepts:

• Team - A team is a set of individuals that act until
the end of the episode. This concept enables the use
of common fitness functions for Pittsburgh-style LCS
in Michigan-style LCSs.

• Hall of Fame - Hall of Fame is a collection of the
best teams (e.g., teams that received the highest accu-
mulated rewards in reinforcement learning problems)
evaluated so far.

5.1 Behavior
When an input is received, the behavior descripted in Fig-

ure 2 is executed. The number shown in the arrows inside
the figure corresponds to a given step. In the following these
steps will be explained in detail:

1. Novelty Map Population receives the input. Its cells
compete for the input with the winning cell having
one of its individuals chosen to act. When a given
cell is first activated during an episode, an individ-
ual is chosen randomly to act. Afterwards, the same
individual is chosen everytime this cell activates dur-
ing this episode (notice that the constant use of the
same individuals in every cell implements the concept
of team in this algorithm and that the team changes
every episode).

2. The chosen individual and its fitness compose the ac-
tion set.

3. The chosen individual’s neural network is activated,
outputting the action to be performed.

4. The individual that composed the previous action set
has its fitness updated. The fitness update is done
using the Widrow-Hoff rule [38]:

F = F + η(F̂ − F), (1)

where η is the learning rate, F is the current fitness
and F̂ is a new fitness estimate. The fitness estimate
of cell cell and individual c which were activated at
time t− 1 is given by the following equation:

F̂ (c, cell)t−1 = Rt−1 + γ max
c′∈cell′

{F (c′, cell′)}, (2)

where R is the reward received, γ is the discount-factor
and max

c′∈cell′
{F (c′, cell′)} is the maximum fitness of in-

dividual c′ inside the activated cell cell′ at the current
cycle t.

5. The current team fitness accumulates the rewards re-
ceived until the end of the trial.

NOTC’s behavior has a single exception to the description
above. After the evolution, the first trials are reserved for
the teams in the Hall of Fame. Therefore, each of the teams
in the Hall of Fame have a trial where it must act and have
its fitness updated. This is important, otherwise a lucky
team may stay for quite a long time as well as influence the
evolution negatively. Notice that a team enters in the Hall
of Fame if its fitness is better than the worst team in the
Hall of Fame. In this case, the worst team in the Hall of
Fame is replaced.

5.2 Evolution
When evolution trigger number of trials happened, the

evolution is triggered. The following equation defines the
evolution trigger:

evolution trigger = Ssize ∗ ι, (3)

where Ssize is the subpopulation size (best plus novel indi-
viduals) and ι is a parameter.

The evolution procedure consists of the following steps:

1. For each cell, the first half of the best individuals is
filled by the individuals present in the Hall of Fame
teams and the second half with the fittest individuals
according to their individual fitness. When a don’t
care symbol is present in the Hall of Fame team, a
random individual from the cell is used.

2. The remaining individuals are removed, resulting in an
empty group of novel individuals.

3. New novel individuals are created by using the dif-
ferential evolution genetic operator (DE operator) or
indexing with a chance of 50% each. Therefore, for
each novel individual a new individual is created with
either one of the following:

• Indexing - A random individual from the popula-
tion is copied;

• DE operator - Consider that the number of best
and novel individuals are the same. The DE oper-
ator takes as base vector the best individual with
the same index as the current novel individual to
be created, in this way all best individuals will be
used as base vectors of at least one novel individ-
ual. To build the DE’s mutant vector, three ran-
dom individuals from the entire population (i.e.,
any individual from any subpopulation) are se-
lected. The resulting trial vector is stored as the
new novel individual.

6. EXPERIMENTS
First the settings will be described, followed by the tests’s

results and discussions.

6.1 Settings
The parameters of NOTC are similar to the ones used in

[36, 37], see Table 1 for details. All results are averaged over
30 runs and only the best result among 100 trials is plotted.

7. EXPERIMENT 1 - MULTIPLEXER
Multiplexer is a challenging fractured problem where the

agent must learn to select the correct data bit for the output
by looking at the value provided in the address bits. Here
we use a very challenging problem setting with three bits of
address and eight bits of data. Notice that NEAT reported
less than 75% correct answers in an easier version of this
problem with six bits of data and three bits of address [19].

Figure 3 shows surprising results from applying NOTC on
the multiplexer problem. The more the algorithm divides
the input space the better the results, i.e., the higher the
number of cells from the Novelty Map the better the results.
What justifies the need for more divisions of the input? And
why does having a higher number of cells make it faster?

983

984

Table 1: Parameters for Novelty-Organizing Team of Classifiers

Parameter Value

Differential Evolution
CR 0.2
F random ∈ [0.0, 2.0]

Novelty Map
Number of Cells variable
Novelty Metric Uniqueness

Novelty-Organizing Team of Classifiers

Widrow-hoff coefficient 0.1
Number of best individuals 10
Number of novel individuals 10
ι 10
Discount factor 0.99
Initial fitness for novel individuals −1
Initial fitness for best individuals 0
Number of hidden nodes 10
Hall Of Fame’s size 5

0 50000 100000 150000 200000

−
1

0
0

0
−

8
0

0
−

6
0

0
−

4
0

0
−

2
0

0

Number of Trials

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

NOTC 20

NOTC 30

NOTC 40

Figure 3: NOTC applied to a multiplexer problem

with three bits of address and eight bits of data.

NOTC 20, 30 and 40 have respectively 20, 30 and

40 cells in the Novelty Map. The reward is zero

for correct answers and −1 for incorrect ones, with

all the 2048 possibilities being evaluated for every

episode.

the quality of the solutions. With the Novelty Map, it is
not hard to automatically adapt the division of the problem.
The simple addition of cells to the Novelty Map create a finer
division while the removal of cells make for a coarser one.
Notice that Novelty Map can have cells added or removed
on the fly without any problems. Moreover, the Novelty
Maps differing in number of cells can be compared, offering
a guidance to the best number of cells for a given problem.

Maybe another way around this problem would be to im-
prove computational models of individuals. As mentioned
before, merely increasing the complexity of the individuals
does not help, since the search space becomes wider and
harder to search. Therefore, improved learning algorithms
specific to the computational model used may be required.

0 50000 100000 150000 200000

−
2

0
0

−
1

8
0

−
1

6
0

−
1

4
0

−
1

2
0

Number of Trials

A
c
c
u

m
u

la
te

d
 R

e
w

a
rd

NOTC 20

NOTC 30

NOTC 40

Figure 4: NOTC’s performance on the mountain car

problem. NOTC 20, 30 and 40 have respectively 20,

30 and 40 cells in the Novelty Map.

However, even if they do solve with similar quality, the ex-
ponentially increasing difficulty of the multiplexer with the
increase of dimensions might remain still.

Fractured problems are not just difficult problems, they
also bring interesting questions that challenges not only al-
gorithms but our way of thinking about them. We call at-
tention for two points.

First point, some of the fractured problems, like the mul-
tiplexer, possess a basic pattern that once understood makes
the problem trivial. This basic pattern also enables the solu-
tion of higher dimension versions of the same problem very
easily.

Second point, for some of these fractured problems it is
easier to memorize exhaustively the input-output map than
to represent it into a computational model. Therefore, it
raises the question of if a mixture of complementary com-
putational models should be used.

985

10. CONCLUSIONS
To understand further the learning characteristics neces-

sary to solve different classes of problems, here, a study over
(un)fractured problems was conducted. We discussed the re-
lationship between (un)fractured problems and the division
of the input space. From the experiments. the following
conclusions were drawn:

• Fractured problems benefit from a finer division of the
input space, because classifiers such as neural networks
need a higher number of response regions in these prob-
lems. Notice that merely increasing the number of re-
sponse regions of a neural network by increasing its size
or depth does not help, since the search space becomes
too large and deceptive.

• Unfractured problems benefit from a coarser division
of input space, because too much breaks in the input
space cause responses to vary abruptly from one agent
to another, slowing the learning rate.

This article also incentives further work into the remaining
open questions regarding fractured problems. Complemen-
tary computational models or pattern discovery strategies
are the two ideas proposed to face the difficulties of these
types of problems.

11. ACKNOWLEDGMENTS
This work was supported in part by JSPS KAKENHI

Grant Number 24560499.

12. REFERENCES

[1] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An
evolutionary algorithm that constructs recurrent
neural networks. Neural Networks, IEEE Transactions
on, 5(1):54–65, 1994.

[2] M. Anthony and P. L. Bartlett. Neural network
learning: Theoretical foundations. cambridge
university press, 2009.

[3] A. Bonarini. Evolutionary learning of fuzzy rules:
competition and cooperation. In Fuzzy Modelling,
pages 265–283. Springer, 1996.

[4] A. Bonarini, C. Bonacina, and M. Matteucci. Fuzzy
and crisp representations of real-valued input for
learning classifier systems. Learning Classifier
Systems, pages 107–124, 2000.

[5] L. Bull. On using constructivism in neural classifier
systems. Parallel problem solving from nature-PPSN
VII, pages 558–567, 2002.

[6] L. Bull and T. O’Hara. Accuracy-based neuro and
neuro-fuzzy classifier systems. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 905–911. Morgan Kaufmann Publishers Inc.,
2002.

[7] M. Butz, P. Lanzi, and S. Wilson. Function
approximation with XCS: Hyperellipsoidal conditions,
recursive least squares, and compaction. Evolutionary
Computation, IEEE Transactions on, 12(3):355–376,
2008.

[8] M. V. Butz and O. Herbort. Context-dependent
predictions and cognitive arm control with xcsf. In
Proceedings of the 10th annual conference on Genetic

and evolutionary computation, pages 1357–1364.
ACM, 2008.

[9] J. Casillas, B. Carse, and L. Bull. Fuzzy-XCS: A
michigan genetic fuzzy system. Fuzzy Systems, IEEE
Transactions on, 15(4):536–550, 2007.

[10] D. Floreano, P. Dürr, and C. Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62, 2008.

[11] J. Gauci and K. Stanley. Generating large-scale neural
networks through discovering geometric regularities.
In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 997–1004. ACM,
2007.

[12] J. H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. ACM SIGART
Bulletin, (63):49–49, 1977.

[13] J. H. Holmes, P. L. Lanzi, W. Stolzmann, and S. W.
Wilson. Learning classifier systems: New models,
successful applications. Information Processing
Letters, 82(1):23–30, 2002.

[14] G. Howard, L. Bull, and P. Lanzi. Towards continuous
actions in continuous space and time using
self-adaptive constructivism in neural XCSF. In
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1219–1226.
ACM, 2009.

[15] M. Iqbal, W. N. Browne, and M. Zhang. Xcsr with
computed continuous action. In AI 2012: Advances in
Artificial Intelligence, pages 350–361. Springer, 2012.

[16] Y. Kassahun and G. Sommer. Efficient reinforcement
learning through evolutionary acquisition of neural
topologies. In In 13th European Symposium on
Artificial Neural Networks (ESANN). Citeseer, 2005.

[17] N. Kohl and R. Miikkulainen. Evolving neural
networks for fractured domains. In Proceedings of the
10th annual conference on Genetic and evolutionary
computation, pages 1405–1412. ACM, 2008.

[18] N. Kohl and R. Miikkulainen. Evolving neural
networks for strategic decision-making problems. 2009.

[19] N. Kohl and R. Miikkulainen. An integrated
neuroevolutionary approach to reactive control and
high-level strategy. Evolutionary Computation, IEEE
Transactions on, 16(4):472–488, 2012.

[20] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[21] P. Lanzi, D. Loiacono, S. Wilson, and D. Goldberg.
XCS with computed prediction in multistep
environments. In Proceedings of the 2005 conference
on Genetic and evolutionary computation, pages
1859–1866. ACM, 2005.

[22] P. Lanzi and R. Riolo. A roadmap to the last decade
of learning classifier system research (from 1989 to
1999). Learning Classifier Systems, pages 33–61, 2000.

[23] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg. Classifier prediction based on tile coding. In
Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 1497–1504.
ACM, 2006.

[24] M. Nakata, T. Kovacs, and K. Takadama. Xcs-sl: a

986

rule-based genetic learning system for sequence
labeling. Evolutionary Intelligence, pages 1–16, 2015.

[25] N. T. Siebel and G. Sommer. Evolutionary
reinforcement learning of artificial neural networks.
International Journal of Hybrid Intelligent Systems,
4(3):171–183, 2007.

[26] P. Stalph and M. Butz. Learning local linear jacobians
for flexible and adaptive robot arm control. Genetic
programming and evolvable machines, 13(2):137–157,
2012.

[27] K. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
computation, 10(2):99–127, 2002.

[28] R. S. Sutton. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In
Advances in Neural Information Processing Systems 8,
1996.

[29] H. Tran, C. Sanza, Y. Duthen, and T. Nguyen. XCSF
with computed continuous action. In Genetic And
Evolutionary Computation Conference: Proceedings of
the 9 th annual conference on Genetic and
evolutionary computation, volume 7, pages 1861–1869,
2007.

[30] K. Twardowski. Credit Assignment for Pole Balancing
with Learning Classifier Systems. pages 238–245.

[31] R. Urbanowicz and J. Moore. Learning classifier
systems: a complete introduction, review, and
roadmap. Journal of Artificial Evolution and
Applications, 2009:1, 2009.

[32] M. Valenzuela-Rendón. The fuzzy classifier system: A
classifier system for continuously varying variables. In
Proceedings of the Fourth International Conference on
Genetic Algorithms pp346-353, Morgan Kaufmann I,
volume 991, pages 223–230, 1991.

[33] D. V. Vargas, H. Takano, and J. Murata. Continuous
adaptive reinforcement learning with the evolution of
self organizing classifiers. In Development and
Learning and Epigenetic Robotics (ICDL), 2013 IEEE
Third Joint International Conference on, pages 1–2.
IEEE, 2013.

[34] D. V. Vargas, H. Takano, and J. Murata. Self
organizing classifiers and niched fitness. In Proceedings
of the fifteenth annual conference on Genetic and
evolutionary computation conference, pages
1109–1116. ACM, 2013.

[35] D. V. Vargas, H. Takano, and J. Murata. Self
organizing classifiers: first steps in structured
evolutionary machine learning. Evolutionary
Intelligence, 6(2):57–72, 2013.

[36] D. V. Vargas, H. Takano, and J. Murata.
Novelty-organizing team of classifiers-a
team-individual multi-objective approach to
reinforcement learning. In SICE Annual Conference
(SICE), 2014 Proceedings of the, pages 1785–1792.
IEEE, 2014.

[37] D. V. Vargas, H. Takano, and J. Murata.
Novelty-organizing team of classifiers in noisy and
dynamic environments. In Evolutionary Computation,
2015. CEC 2015. IEEE Congress on. IEEE, 2015.

[38] B. Widrow and M. E. Hoff. Adaptive Switching
Circuits. In 1960 IRE WESCON Convention Record,
Part 4, pages 96–104, New York, 1960. IRE.

[39] S. W. Wilson. Classifiers that approximate functions.
Natural Computing, 1(2-3):211–234, 2002.

[40] X. Yao and Y. Liu. A new evolutionary system for
evolving artificial neural networks. Neural Networks,
IEEE Transactions on, 8(3):694–713, 1997.

987

