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ABSTRACT 

The Flexible Job Shop scheduling Problem (FJSP) is a 

generalization of the classical Job Shop scheduling Problem (JSP) 

allowing to process operations on one machine out of a set of 

alternative machines. The FJSP is an NP-hard problem consisting 

of two sub-problems, which are the machine assignment and the 

operation scheduling problems. In this paper, we propose how to 

solve the FJSP by metaheuristics based on clustering in a holonic 

multiagent model. Firstly, a Neighborhood-based Genetic 

Algorithm (NGA) is applied by a scheduler agent for a global 

exploration of the search space. Secondly, a local search 

technique is used by a set of cluster agents to guide the research in 

promising regions of the search space and to improve the quality 

of the NGA final population. To evaluate our approach, numerical 

tests are made based on three sets of well known benchmark 

instances from the literature of the FJSP, which are Kacem, 

Brandimarte, Hurink. The experimental results show the 

efficiency of our approach in comparison to other approaches.   

Categories and Subject Descriptors 

I.2.8 [Problem Solving, Control Methods, and Search]: 
Scheduling; I.2.11 [Distributed Artificial Intelligence]: 

Multiagent systems 

General Terms 

Algorithms, Management 

Keywords 

Scheduling, Flexible job shop, Genetic algorithm, Local search, 

Clustering, Holonic multiagent 

1. INTRODUCTION 
The Flexible Job Shop scheduling Problem (FJSP) is a 

generalization of the classical Job Shop scheduling Problem (JSP) 

that allows to process operations on one machine out of a set of 

alternative machines. Hence, the FJSP is more computationally 

difficult than the JSP. Furthermore the operation scheduling 

problem, the FJSP presents an additional difficulty caused by the 

operation assignment problem to a set of available machines. This 

problem is known to be strongly NP-Hard even if each job has at 

most three operations and there are two machines [9]. 

To solve this problem, standard metaheuristic methods are used 

for an approximate resolution and to find near-optimal solutions 

for the FJSP with acceptable computational time. Brandimarte [4] 

proposed a hierarchical algorithm based on Tabu Search 

metaheuristic for routing and scheduling with some known 

dispatching rules to solve the FJSP. In [14] a Tabu Search 

procedure is developed for the job shop problem with multi-

purpose machines. For [21], they used Tabu Search techniques 

and presented two neighborhood functions allowing an 

approximate resolution for the FJSP. Also, a Tabu Search 

approach based on a new golf neighborhood for the FJSP is 

presented by [2], and in the same year, in [3] another new model 

of a distributed Tabu Search algorithm is proposed for the FJSP, 

using a cluster architecture consisting of nodes equipped with the 

GPU units (multi-GPU) with distributed memory. For the Genetic 

Algorithm, it was adopted by [16] with an approach of 

localization to solve jointly the assignment and job shop 

scheduling problems with partial and total flexibility, and a 

second hybridization of this evolutionary algorithm with the fuzzy 

logic was presented in [17]. In [13] a new architecture is 

developed named LEarnable Genetic Architecture (LEGA) for 

learning and evolving solutions for the FJSP, allowing to provide 

an integration between evolution and learning in an efficient 

manner within a random search process. In addition, [8] adapted a 

hybrid Genetic Algorithm (G.A) and a Variable Neighborhood 

Descent (V.N.D) for FJSP. The G.A used two vectors to represent 

a solution and the disjunctive graph to calculate it. Then, a V.N.D 

was applied to improve the G.A final individuals. Recently, [22] 

presented a model of low-carbon scheduling in the FJSP 

considering three factors, the makespan, the machine workload for 

production and the carbon emission for the environmental 

influence. A metaheuristic hybridization algorithm was proposed 

combining the original Non-dominated Sorting Genetic Algorithm 

II (NSGA-II) with a Local Search algorithm based on a 

neighborhood search technique. Moreover, a new heuristic was 

developed by [23] for the FJSP. This heuristic is based on a 

constructive procedure considering simultaneously many factors 

having a great effect on the solution quality. Furthermore, 

distributed artificial intelligence techniques were used for this 

problem, such as the multiagent model proposed by [6] composed 

by three classes of agents, job agents, resource agents and an 

interface agent. This model is based on a local search method 

which is the tabu search to solve the FJSP. Also, [12] proposed a 
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multiagent model based on a hybridization of two metaheuristics, 

a local optimization process using the tabu search to get a good 

exploitation of the good areas and a global optimization process 

integrating the Particle Swarm Optimization (PSO) to diversify 

the search towards unexplored areas. 

In this paper, we present how to solve the the flexible job shop 

scheduling problem by metaheuristics based on clustering in a 

holonic multiagent model. This new approach follows two 

principal steps. In the first step, a genetic algorithm is applied by a 

scheduler agent for a global exploration of the search space. Then, 

in the second step, a local search technique is used by a set of 

cluster agents to improve the quality of the final population. 

Numerical tests were made to evaluate the performance of our 

approach based on three data sets of [17], [4] and [14] for the 

FJSP, where the experimental results show its efficiency in 

comparison to other approaches. 

The rest of the paper is organized as follows. In section 2, we 

define the formulation of the FJSP with its objective function and 

a simple problem instance. Then, in section 3, we detail the 

proposed metaheuristics based on clustering with their holonic 

multiagent levels. The experimental and comparison results are 

provided in section 4. Finally, section 5 rounds up the paper with 

a conclusion. 

2. PROBLEM FORMULATION 
The flexible job shop scheduling problem (FJSP) could be 

formulated as follows. There is a set of n jobs J =                        

{J1, . . . ,Jn} to be processed on a set of m machines M =          

{M1, . . .,Mm}. Each job Ji is formed by a sequence of ni 

operations {Oi,1,Oi,2, . . . ,Oi,ni} to be performed successively 

according to the given sequence. For each operation Oi,j,         

there is a set of alternative machines M(Oi,j) capable of 

performing it. The main objective of this problem is to find           

a schedule minimizing the end date of the last operation of         

the jobs set which is the makespan. The makespan is defined      

by Cmax in Equation 1, where Ci is the completion time of           

a job Ji. 

 

To explain the FJSP, a sample problem of three jobs and five 

machines is shown in Table 1, where the numbers present the 

processing times and the tags “–” mean that the operation cannot 

be executed on the corresponding machine. 

 

Table 1: A simple instance of the FJSP 

 

 

 

 

 

 

 

3. A METAHEURISTIC HYBRIDIZATION 

IN A HOLONIC MULTIAGENT MODEL 
Glover [11] elaborated a study about the nature of connections 

between the genetic algorithm and tabu search metaheuristics, 

searching to show the existing opportunities for creating a hybrid 

approach with these two standard methods to take advantage of 

their complementary features and to solve difficult optimization 

problems. After this pertinent study, the combination of these two 

metaheuristics has become more well-known in the literature, 

which has motivated many researchers to try the hybridization of 

these two methods for the resolution of different complex 

problems in several areas. 

Ferber [7] defined a multiagent system as an artificial system 

composed of a population of autonomous agents, which cooperate 

with each other to reach common objectives, while 

simultaneously each agent pursues individual objectives. 

Furthermore, a multiagent system is a computational system 

where two or more agents interact (cooperate or compete, or a 

combination of them) to achieve some individual or collective 

goals. The achievement of these goals is beyond the individual 

capabilities and individual knowledge of each agent [1]. 

Koestler [18] gave the first definition of the term “holon” in the 

literature, by combining the two Greek words “hol” meaning 

whole and “on” meaning particle or part. He said that almost 

everything is both a whole and a part at the same time. In fact, a 

holon is recursively decomposed at a lower granularity level into a 

community of other holons to produce a holarchy [5]. Moreover, a 

holon may be viewed as a sort of recursive agent, which is a 

super-agent composed by a sub-agents set, where each sub-agent 

has its own behavior as a complementary part of the whole 

behaviour of the super-agent. Holons are agents able to show an 

architectural recursiveness [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A metaheuristic hybridization in a holonic 

multiagent model 

In this work, we propose a hybrid metaheuristic approach based 

on clustering processing two general steps: a first step of global 

exploration using a genetic algorithm to find promising areas in 

the search space and a clustering operator allowing to regroup 

them in a set of clusters. In the second step, a tabu search 

algorithm is applied to find the best individual solution for each 

                           Cmax = max1≤i≤n (Ci)                               (1) 

 

Job Operation M1 M2 M3 M4 M5 

J1 O11 2 9 4 5 1 

O12 - 6 - 4 - 

J2 O21 1 - 5 - 6 

O22 3 8 6 - - 

O23 - 5 9 3 9 

J3 O31 - 6 6 - - 

O32 3 - - 5 4 
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cluster. The global process of the proposed approach is 

implemented in two hierarchical holonic levels adopted by a 

recursive multiagent model, named a hybrid Genetic Algorithm 

with Tabu Search based on clustering in a Holonic Multiagent 

model (GATS+HM), see Figure 1. The first holonic level is 

composed by a Scheduler Agent which is the Master/Super-agent, 

preparing the best promising regions of the search space, and the 

second holonic level containing a set of Cluster Agents which are 

the Workers/Sub-agents, guiding the search to the global optimum 

solution of the problem. Each holonic level of this model is 

responsible to process a step of the hybrid metaheuristic algorithm 

and to cooperate between them to attain the global solution of the 

problem. 

In fact, the choice of this new metaheuristic hybridization is 

justified by that the standard metaheuristic methods use generally 

the diversification techniques to generate and to improve many 

different solutions distributed in the search space, or by using 

local search techniques to generate a more improved set of 

neighbourhood solutions from an initial solution. But they did not 

guarantee to attain promising areas with good fitness converging 

to the global optimum despite the repetition of many iterations, 

that is why they need to be more optimized. So, the novelty of our 

approach is to launch a genetic algorithm based on a 

diversification technique to only explore the search space and to 

select the best promising regions by the clustering operator. Then, 

applying the intensification technique of the tabu search allowing 

to relaunch the search from an elite solution of each cluster 

autonomously to attain more dominant solutions of the search 

space. 

The use of a multiagent system gives the opportunity for 

distributed and parallel treatments which are very complimentary 

for the second step of the proposed approach. Indeed, our 

combined metaheuristic approach follows the paradigm of 

“Master” and “Workers” which are two recursive hierarchical 

levels adaptable for a holonic multiagent model, where the 

Scheduler Agent is the Master/Super-agent of its society and the 

Cluster Agents are its Workers/Sub-agents. 

3.1 Scheduler Agent 
The Scheduler Agent (SA) is responsible to process the first 

step of the hybrid algorithm by using a genetic algorithm called 

NGA (Neighborhood-based Genetic Algorithm) to identify areas 

with high average fitness in the search space during a fixed 

number of iterations MaxIter. In fact, the goal of using the NGA is 

only to explore the search space, but not to find the global 

solution of the problem. Then, a clustering operator is integrated 

to divide the best identified areas by the NGA in the search space 

to different parts where each part is a cluster CLi ∈ CL the set of 

clusters, where CL = {CL1,CL2, . . . ,CLN}. In addition, this agent 

plays the role of an interface between the user and the system 

(initial parameter inputs and final result outputs). According to the 

number of clusters N obtained after the integration of the 

clustering operator, the SA creates N Cluster Agents (CAs) 

preparing the passage to the next step of the global algorithm. 

After that, the SA remains in a waiting state until the reception of 

the best solutions found by the CA for each cluster. Finally, it 

finishes the process by displaying the final solution of the 

problem. 

3.1.1 Individual’s solution presentation 
The flexible job shop problem is composed by two sub-

problems: the machine assignment problem and the operation 

scheduling problem, that is why the chromosome representation is 

encoded in two parts: Machine Assignment part (MA) and 

Operation Sequence part (OS). The first part MA is a vector V1 

with a length L equal to the total number of operation and where 

each index represents the selected machine to process an 

operation indicated at position p, see Figure 2 (a). For example     

p = 2, V1(2) is the selected machine M4 for the operation O1,2.   

The second part OS is a vector V2 having the same length of V1 

and where each index represents an operation Oi,j according to the 

predefined operations of the job set, see Figure 2 (b). For example 

the operation sequence 1−2−1−3−2−3−2 can be translated to: 

(O1,1,M5) → (O2,1,M1) → (O1,2,M4) → (O3,1,M3) → (O2,2,M3) → 

(O3,2,M1) → (O2,3,M2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The chromosome representation of a scheduling 

solution 

To convert the chromosome values to an active schedule, we 

used the priority-based decoding of [8]. This method considers the 

idle time which may exist between operations on a machine m, 

and which is caused by the precedence constraints of operations 

belonging to the same job i. Let Si,j is the starting time of an 

operation Oi,j (which can only be started after processing its 

precedent operation Oi,(j−1)) with its completion time Ci,j. In 

addition, we have an execution time interval [tSm, tEm] starts form 

tSm and ends at tEm on a machine m to allocate an operation Oi,j. 

So, if j = 1, Si,j takes tSm, else if j ≥ 2, it takes max{tSm,Ci,(j−1)}.   

In fact, the availability of the time interval [tSm, tEm] for an 

operation Oi,j is validated by verifying if there is a sufficient time 

period to complete the execution time pijm of this operation, see 

Equation 2: 

 

The used priority-based decoding method allows in each case to 

assign each operation to its reserved machine following the 

presented execution order of the operation sequence vector V2. 

Also, to schedule an operation Oi,j on a machine m, the fixed idle 

time intervals of the selected machine are verified to find an 

                             if j=1, tS
m + pijm ≤ tE

m                                  (2)                                                    

if  j≥2, max{tS
m, Ci,(j-1)} + pijm ≤ tE

m 
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allowed available period to its execution. So, if a period is found, 

the operation Oi,j is executed there, else it is moved to be executed 

at the end of the machine m. 

Noting that the chromosome fitness is calculated by Fitness(i) 

which is the fitness function of each chromosome i and Cmax(i) is 

its makespan value, where i ∈ {1, . . . , P} and P is the total 

population size, see Equation 3. 

 

3.1.2 Population initialization 
The initial population is generated randomly following a 

uniform law and based on a neighborhood parameter to make the 

individual solutions more diversified and distributed in the search 

space. In fact, each new solution should have a predefined 

distance with all the other solutions to be considered as a new 

member of the initial solution. The used method to determinate 

the neighborhood parameter is inspired from [2], which is based 

on the permutation level of operations to obtain the distance 

between two solutions. In fact, the dissimilarity distance is 

calculated by verifying the difference between two chromosomes 

in terms of the placement of each operation Oi,j on its alternative 

machine set in the machine assignment vector V1 and its execution 

order in the operation sequence vector V2. So, if there is a 

difference in the vector V1, the distance is incremented by    

M(Oi,j) (is the number of possible n placement for each operation 

on its machine set, which is the alternative machine number of 

each operation Oi,j) because it is in the order of O(n). Then, if 

there is a difference in the vector V2, the distance is incremented 

by 1 because it is in the order of O(1). Let Chrom1(MA1,OS1)   

and Chrom2(MA2,OS2) two chromosomes of two different 

scheduling solutions, M(Oi,j) the alternative number of machines 

of each operation Oi,j, L is the total number of operations of all 

jobs and Dist is the dissimilarity distance. The distance is 

calculated firstly by measuring the difference between the 

machine assignment vectors MA1 and MA2 which is in order of 

O(n), then by verifying the execution order difference of the 

operation sequence vectors OS1 and OS2 which is in order of O(1), 

we give here how to proceed: 

Begin 

 Dist=0, k=1 

 For k from 1 to L  

   If Chrom1(MA
1
(k)) ≠ Chrom2(MA

2
(k)) 

     Dist = Dist + M(O
i,j
) 

   End if 

   If Chrom1(OS
1
(k)) ≠ Chrom2(OS

2
(k)) 

     Dist = Dist + 1 

   End if 

 End for 

 Return Dist 

End. 

Noting that Distmax is the maximal dissimilarity distance and it 

is calculated by Equation 4, representing 100% of difference 

between two chromosomes. 

 

3.1.3 Selection operator 
The selection operator is used to select the best parent 

individuals to prepare them to the crossover step. This operator is 

based on a fitness parameter allowing to analyze the quality of 

each selected solution. But progressively the fitness values will be 

similar for the most individuals. That is why, we integrate the 

neighborhood parameter, where we propose a new combined 

parent selection operator named Fitness-Neighborhood Selection 

Operator (FNSO) allowing to add the dissimilarity distance 

criteria to the fitness parameter to select the best parents for the 

crossover step. The FNSO chooses in each iteration two parent 

individuals until engaging all the population to create the next 

generation. The first parent takes successively in each case a 

solution i, where i ∈ {1, . . . , P} and P is the total population size. 

The second parent obtains its solution j randomly by the roulette 

wheel selection method based on the two Fitness and 

Neighborhood parameters relative to the selected first parent, 

where j ∈ {1, . . . , P} \ {i} in the P population and where j ≠ i.   

In fact, to use this random method, we should calculate the 

Fitness-Neighborhood total FN for the population, see Equation 5, 

the selection probability spk for each individual Ik, see Equation 6, 

and the cumulative probability cpk, see Equation 7. After that, a 

random number r will be generated from the uniform range [0,1]. 

If r ≤ cp1 then the second parent takes the first individual I1,     

else it gets the kth individual Ik ∈ {I2, . . . , IP} \ {Ii} and where 

cpk−1 < r ≤ cpk. 

 The Fitness-Neighborhood total for the population: 

 

 The selection probability spk for each individual Ik: 

 

 The cumulative probability cpk for each individual Ik: 

 

 For Equations 5, 6 and 7, k = {1, 2, . . . , P} \ {i} 

3.1.4 Crossover operator 
The crossover operator has an important role in the global 

process, allowing to combine in each case the chromosomes of 

two parents in order to obtain new individuals and to attain new 

better parts in the search space. In this work, this operator is 

applied with two different techniques successively for the parent’s 

chromosome vectors MA and OS. 

Machine vector crossover. 
A uniform crossover is used to generate in each case a mixed 

vector between two machine vector parents, Parent1-MA1 and 

Parent2-MA2, allowing to obtain two new children, Child1-MA1′ 

and Child2-MA2′. This uniform crossover is based on two 

                               



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1
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                     Distmax =   [𝑀(𝑂𝑖, 𝑗)]𝑖 ,𝑛𝑖
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assignment cases, if the generated number is less than 0.5, the first 

child gets the current machine value of parent1 and the second 

child takes the current machine value of parent2. Else, the two 

children change their assignment direction, first child to parent2 

and the second child to parent1. 

Operation vector crossover. 
An improved precedence preserving order-based on crossover 

(iPOX), inspired from [20], is adapted for the parent operation 

vector OS. This iPOX operator is applied following four steps, a 

first step is selecting two parent operation vectors (OS1 and OS2) 

and generating randomly two job sub-sets Js1/Js2 from all jobs. A 

second step is allowing to copy any element in OS1/OS2 that 

belong to Js1/Js2 into child individual OS′1/OS′2 and retain them in 

the same position. Then the third step deletes the elements that are 

already in the sub-set Js1/Js2 from OS1/OS2. Finally, fill orderly 

the empty position in OS′1/OS′2 with the reminder elements of 

OS2/OS1 in the fourth step. 

3.1.5 Mutation operator 
The mutation operator is integrated to promote the children 

generation diversity. In fact, this operator is applied on the 

chromosome of the new children generated by the crossover 

operation. Also, each part of a child chromosome MA and OS has 

separately its own mutation technique. 

Machine vector mutation. 
This first operator uses a random selection of an index from the 

machine vector MA. Then, it replaces the machine number in the 

selected index by another belonging to the same alternative 

machine set. 

Operation vector mutation. 
This second operator selects randomly two indexes index1 and 

index2 from the operation vector OS. Next, it changes the position 

of the job number in the index1 to the second index2 and 

inversely. 

3.1.6 Replacement operator 
The replacement operator has an important role to prepare the 

remaining surviving population to be considered for the next 

iterations. This operator replaces in each case a parent by one of 

its children which has the best fitness in its current family. 

3.1.7 Clustering operator 
By finishing the maximum iteration number MaxIter of the 

genetic algorithm, the Scheduler Agent applies a clustering 

operator using the hierarchical clustering algorithm of [15] to 

divide the final population into N Clusters to be treated by the 

Cluster Agents in the second step of the global process. The 

clustering operator is based on the neighbourhood parameter 

which is the dissimilarity distance between individuals. The 

clustering operator starts by assigning each individual Indiv(i) to a 

cluster CLi, so if we have P individuals, we have now P clusters 

containing just one individual in each of them. For each case, we 

fixe an individual Indiv(i) and we verify successively for each 

next individual Indiv(j) from the remaining population (where i 

and j ∈ {1, . . . , P}, i ≠ j) if the dissimilarity distance Dist 

between Indiv(i) and Indiv(j) is less than or equal to a fixed 

threshold Distfix (representing a percentage of difference X% 

relatively to Distmax, see Equation 8) and where Cluster(Indiv(i)) 

≠ Cluster(Indiv(j)). If it is the case, Merge(Cluster(Indiv(i)), 

Cluster(Indiv(j))), else continue the search for new combination 

with the remaining individuals. The stopping condition is by 

browsing all the population individuals, where we obtained at the 

end N Clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Distribution of the Cluster Agents in the different 

clusters of the search space 
 

3.2 Cluster Agents 
Each Cluster Agent CAi is responsible to apply successively to 

each cluster CLi a local search technique which is the Tabu Search 

algorithm to guide the research in promising regions of the search 

space and to improve the quality of the final population of the 

genetic algorithm. In fact, this local search is executed 

simultaneously by the set of the CAs agents, where each CA starts 

the research from an elite solution of its cluster searching to attain 

new more dominant individual solutions separately in its assigned 

cluster CLi, see Figure 3. The used Tabu Search algorithm is 

based on an intensification technique allowing to start the research 

from an elite solution in a cluster CLi (a promising part in the 

search space) in order to collect new scheduling sequence 

minimizing the makespan. Let E the elite solution of a cluster  

CLi, E′ ∈ N(E) is a neighbor of the elite solution E, GLi is the 

Global List of each CAi to receive new found elite solutions by  

the remaining CAs, each CLi plays the role of the tabu list with a 

dynamic length and Cmax is the makespan of the obtained 

solution. So, the search process of this local search starts from an 

elite solution E using the move and insert method of [21], where 

each Cluster Agent CAi changes the position of an operation Oi,j 

from a machine m to another machine n belonging to the same 

alternative machine set of this selected operation Oi,j, searching to 

generate new scheduling combination E′ ∈ N(E). After that, 

verifying if the makespan value of this new generated solution 

Cmax(E′) dominates Cmax(E) (Cmax(E′) < Cmax(E)), and if it is 

the case CAi saves E′ in its tabu list (which is CLi) and sends it to 

all the other CAs agents to be placed in their Global Lists 

                             Distfix = Distmax × X%                              (8) 
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GLs(E′,CAi), to ensure that it will not be used again by them as a 

search point. Else continues the neighborhood search from the 

current solution E. The stopping condition is by attaining the 

maximum allowed number of neighbors for a solution E without 

improvement. We give here how to proceed: 

Begin 

 E ← Elite(CL
i
) 

 While N(E) ≠  ∅   

  E’ ← {Move and insert(E) | E’ ∈ N(E) | E’ ∉ GL
i
} 

  If Cmax(E’) < Cmax(E) and E’ ∉  CL
i
 

    E ← E’ 

    CL
i
 ← E’ 

    Send_to_all(E’,CA
i
) 

  End if 

 End while 

 Return E 

End. 

By finishing this local search step, the CAs agents terminate the 

process by sending their last best solutions to the SA agent, which 

considers the best one of them the global solution for the FJSP. 

4. EXPERIMENTAL RESULTS 

4.1 Experimental setup 
The proposed GATS+HM is implemented in java language on a 

2.10 GHz Intel Core 2 Duo processor and 3 Gb of RAM memory, 

where we use the Integrated Development Environment (IDE) 

eclipse to code the algorithm and the multiagent platform Jade to 

create the different agents of our holonic model. To evaluate its 

efficiency, numerical tests are made based on three sets of well 

known benchmark instances in the literature of the FJSP: Kacem 

data [17] consisting of 5 problems considering a number of jobs 

ranging from 4 to 15, which will be processed on a number of 

machines ranging from 5 to 10. Brandimarte data [4] consisting 

of 10 problems considering a number of jobs ranging from 10     

to 20, which will be processed on a number of machines ranging 

from 4 to 15. Hurink edata [14] consisting of 40 problems    

(la01-la40) inspired from the classical job shop instances of [19], 

where three test problems are generated: rdata, vdata and edata 

which is used in this paper. 

Due to the non-deterministic nature of the proposed algorithm, 

we run it five independent times for each one of the three 

instances [17], [4] and [14] in order to obtain significant results. 

The computational results are presented by five metrics such as 

the best makespan (Best), the average of makespan (Avg Cmax), 

the average of CPU time in seconds (Avg CPU), and the standard 

deviation of makespan (Dev %) which is calculated by Equation 

9. The Mko is the makespan obtained by Our algorithm and Mkc 

is the makespan of an algorithm that we chose to Compare to. 

The used parameter settings for our algorithm are adjusted 

experimentally and presented as follow: the crossover probability 

1.0, the mutation probability 1.0 and the maximum number of 

iterations 1000. The population size ranged from 15 to 400 

depending on the complexity of the problem. 

4.2 Experimental comparisons 
To show the efficiency of our GATS+HM algorithm, we 

compare its obtained results from the three previously cited data 

sets with other well known algorithms in the literature of the 

FJSP. The chosen algorithms are : the TS of [4], N1-1000 of [14] 

(with their literature lower bound LB) and the AL+CGA of [17] 

which obtained the first results in the literature for their proposed 

instances. The Heuristic of [23] which is a standard heuristic 

method. The Hybrid NSGA-II of [22] is a recent hybrid 

metaheuristic algorithm. The MATSLO+ of [6] and the 

MATSPSO of [12] are two new hybrid metaheuristic algorithms 

distributed in multiagent models. 

The different comparative results are displayed in the Tables 2, 

3 and 4 where the first column takes the name of each instance, 

the second column gives the size each instance, with n the number 

of jobs and m the number of machines (n×m), and the remaining 

columns detail the experimental results of the different chosen 

approaches in terms of the best Cmax (Best) and the standard 

deviation (Dev %). The bold values in the tables signify the best 

obtained results and the N/A means that the result is not available. 

4.2.1 Analysis of the comparative results 
By analyzing the Table 2, it can be seen that our approach 

GATS+HM is the best one which solves the fives instances of 

Kacem. In fact, the GATS+HM outperforms the AL+CGA in four 

out of five instances, the Hybrid NSGA-II in two out of five 

instances, and the Heuristic in three out of five instances. Also, 

our approach attains the same results obtained by the chosen 

approaches, such as in the case 1 (4×5) for the Hybrid NSGA-II 

and the Heuristic; in the case 4 (10×10) for all the three 

algorithms; in the case 5 (15×10) for the Hybrid NSGA-II. 

From Table 3, the results show that the GATS+HM obtains 

nine out of ten best results for the Brandimarte instances. In fact, 

our approach outperforms the TS in nine out of ten instances. 

Moreover, for the comparison with MATSLO+, our GATS+HM 

outperforms it in eight out of ten instances. Furthermore, the 

MATSPSO attained the best result for the MK01 instance, but our 

approach obtains a set of solutions better than it for the remaining 

instances. By solving this second data set, our GATS+HM attains 

the same results obtained by some approaches such as the MK01 

for MATSLO+, the MK02 for MATSPSO and the MK08 for all 

methods. 

From the results in Table 4, we can see that the GATS+HM 

obtains seven out of ten best results for the Hurink edata instances 

(la01-la05) and (la16-la20). Indeed, our approach outperforms the 

N1-1000 in eight out of ten instances. Moreover, our GATS+HM 

outperforms the MATSLO+ in seven out of ten instances. For the 

comparison with the literature lower bound LB, the GATS+HM 

attains the same results for the la01, la02, la04, la05, la16, la17 

and la20 instances, but it gets slightly worse result for the la03, 

la18 and la19 instances. Furthermore, by solving this third data 

set, our GATS+HM attains the same results obtained by the 

chosen approaches such as in the la01 for the MATSLO+; in the 

la02 for the N1-1000 and the MATSLO+; in the la05 for the N1-

1000 and the MATSLO+. 

By analyzing the computational time in seconds and the 

comparison results of our algorithm in term of makespan, we can 

distinguish the efficiency of the new proposed GATS+HM 

relatively to the literature of the FJSP. This efficiency is explained 

by the flexible selection of the promising parts of the search space 

by the clustering operator after the genetic algorithm process and 

                   Dev = [(Mkc − Mko)/Mkc] × 100%                    (9) 
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Instance 
Problem 

n×m 

AL+CGA Hybrid NSGA-II Heuristic GATS+HM 

Best Dev (%) Best Dev (%) Best Dev (%) Best 
Avg 

Cmax 

Avg C.P.U 

(in seconds) 

case 1 4×5 16 31,250 11 0 11 0 11 11,00 0,05 

case 2 8×8 15 6,666 15 6,666 15 6,666 14 14,20 0,36 

case 3 10×7 15 26,666 N/A -- 13 15,384 11 11,40 0,72 

case 4 10×10 7 0 7 0 7 0 7 7,60 1,51 

case 5 15×10 23 52,173 11 0 12 8,333 11 11,60 29,71 

 

Instance 
Problem 

n×m 

TS MATSLO+ MATSPSO GATS+HM 

Best Dev (%) Best Dev (%) Best Dev (%) Best 
Avg 

Cmax 

Avg C.P.U 

(in seconds) 

Mk01 10×6 42 4,761 40 0 39 -2,564 40 40,80 0,93 

Mk02 10×6 32 15,625 32 15,625 27 0 27 27,80 1,18 

Mk03 15×8 211 3,317 207 1,449 207 1,449 204 204,00 1,55 

Mk04 15×8 81 20,987 67 4,477 65 1,538 64 65,60 4,36 

Mk05 15×4 186 6,989 188 7,978 174 0,574 173 174,80 8,02 

Mk06 10×15 86 24,418 85 23,529 72 9,722 65 67,00 110,01 

Mk07 20×5 157 8,280 154 6,493 154 6,493 144 144,00 19,73 

Mk08 20×10 523 0 523 0 523 0 523 523,00 11,50 

Mk09 20×10 369 15,718 437 28,832 340 8,529 311 311,80 79,68 

Mk10 20×15 296 25 380 41,578 299 25,752 222 224,80 185,64 

 

Instance 
Problem 

n×m 

LB N1-1000 MATSLO+ GATS+HM 

Best Dev (%) Best Dev (%) Best Dev (%) Best 
Avg 

Cmax 

Avg C.P.U 

(in seconds) 

la01 10×5 609 0 611 0,327 609 0 609 609,00 24,64 

la02 10×5 655 0 655 0 655 0 655 655,00 4,65 

la03 10×5 550 -3,091 573 1,047 575 1,391 567 567,40 10,67 

la04 10×5 568 0 578 1,730 579 1,900 568 569,60 22,13 

la05 10×5 503 0 503 0 503 0 503 503,00 10,22 

la16 10×10 892 0 924 3,463 896 0,446 892 909,60 73,14 

la17 10×10 707 0 757 6,605 708 0,141 707 709,60 116,58 

la18 10×10 842 -0,119 864 2,431 845 0,237 843 848,60 34,98 

la19 10×10 796 -1,005 850 5,412 813 1,107 804 813,40 36,88 

la20 10×10 857 0 919 6,746 863 0,695 857 859,80 70,36 

 

Table 2. Results of the Kacem instances 

 

Table 3. Results of the Brandimarte instances 

 

Table 4. Results of the Hurink edata instances 
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by applying the intensification technique of the tabu search 

allowing to start from an elite solution to attain new more 

dominant solutions. 

5. CONCLUSION 
In this paper, we present a new metaheuristic hybridization 

based on clustering in a holonic multiagent model, called 

GATS+HM, for the flexible job shop scheduling problem (FJSP). 

In this approach, a Neighborhood-based Genetic Algorithm is 

adapted by a Scheduler Agent (SA) for a global exploration of the 

search space. Then, a local search technique is applied by a set of 

Cluster Agents (CAs) to guide the research in promising regions 

of the search space and to improve the quality of the final 

population. To measure its performance, numerical tests are made 

using three well known data sets in the literature of the FJSP. The 

experimental results show that the proposed approach is efficient 

in comparison to others approaches. In the future work, we will 

search to treat other extensions of the FJSP, such as by integrating 

new transportation resources constraints in the shop process. So, 

we will make improvements to our approach to adapt it to this 

new transformation and study its effects on the makespan. 
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