

Metaheuristics based on Clustering in a Holonic
Multiagent Model for the Flexible Job Shop Problem

Houssem Eddine Nouri
Stratégies d’Optimisation et

Informatique intelligentE (SOIE)
Higher Institute of Management of

Tunis, Bardo, Tunis, Tunisia

houssemeddine.nouri@gmail.com

Olfa Belkahla Driss

Stratégies d’Optimisation et
Informatique intelligentE (SOIE)

Higher Institute of Management of
Tunis, Bardo, Tunis, Tunisia

olfa.belkahla@isg.rnu.tn

Khaled Ghédira

Stratégies d’Optimisation et
Informatique intelligentE (SOIE)

Higher Institute of Management of
Tunis, Bardo, Tunis, Tunisia

khaled.ghedira@isg.rnu.tn

ABSTRACT

The Flexible Job Shop scheduling Problem (FJSP) is a

generalization of the classical Job Shop scheduling Problem (JSP)

allowing to process operations on one machine out of a set of

alternative machines. The FJSP is an NP-hard problem consisting

of two sub-problems, which are the machine assignment and the

operation scheduling problems. In this paper, we propose how to

solve the FJSP by metaheuristics based on clustering in a holonic

multiagent model. Firstly, a Neighborhood-based Genetic

Algorithm (NGA) is applied by a scheduler agent for a global

exploration of the search space. Secondly, a local search

technique is used by a set of cluster agents to guide the research in

promising regions of the search space and to improve the quality

of the NGA final population. To evaluate our approach, numerical

tests are made based on three sets of well known benchmark

instances from the literature of the FJSP, which are Kacem,

Brandimarte, Hurink. The experimental results show the

efficiency of our approach in comparison to other approaches.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling; I.2.11 [Distributed Artificial Intelligence]:

Multiagent systems

General Terms

Algorithms, Management

Keywords

Scheduling, Flexible job shop, Genetic algorithm, Local search,

Clustering, Holonic multiagent

1. INTRODUCTION
The Flexible Job Shop scheduling Problem (FJSP) is a

generalization of the classical Job Shop scheduling Problem (JSP)

that allows to process operations on one machine out of a set of

alternative machines. Hence, the FJSP is more computationally

difficult than the JSP. Furthermore the operation scheduling

problem, the FJSP presents an additional difficulty caused by the

operation assignment problem to a set of available machines. This

problem is known to be strongly NP-Hard even if each job has at

most three operations and there are two machines [9].

To solve this problem, standard metaheuristic methods are used

for an approximate resolution and to find near-optimal solutions

for the FJSP with acceptable computational time. Brandimarte [4]

proposed a hierarchical algorithm based on Tabu Search

metaheuristic for routing and scheduling with some known

dispatching rules to solve the FJSP. In [14] a Tabu Search

procedure is developed for the job shop problem with multi-

purpose machines. For [21], they used Tabu Search techniques

and presented two neighborhood functions allowing an

approximate resolution for the FJSP. Also, a Tabu Search

approach based on a new golf neighborhood for the FJSP is

presented by [2], and in the same year, in [3] another new model

of a distributed Tabu Search algorithm is proposed for the FJSP,

using a cluster architecture consisting of nodes equipped with the

GPU units (multi-GPU) with distributed memory. For the Genetic

Algorithm, it was adopted by [16] with an approach of

localization to solve jointly the assignment and job shop

scheduling problems with partial and total flexibility, and a

second hybridization of this evolutionary algorithm with the fuzzy

logic was presented in [17]. In [13] a new architecture is

developed named LEarnable Genetic Architecture (LEGA) for

learning and evolving solutions for the FJSP, allowing to provide

an integration between evolution and learning in an efficient

manner within a random search process. In addition, [8] adapted a

hybrid Genetic Algorithm (G.A) and a Variable Neighborhood

Descent (V.N.D) for FJSP. The G.A used two vectors to represent

a solution and the disjunctive graph to calculate it. Then, a V.N.D

was applied to improve the G.A final individuals. Recently, [22]

presented a model of low-carbon scheduling in the FJSP

considering three factors, the makespan, the machine workload for

production and the carbon emission for the environmental

influence. A metaheuristic hybridization algorithm was proposed

combining the original Non-dominated Sorting Genetic Algorithm

II (NSGA-II) with a Local Search algorithm based on a

neighborhood search technique. Moreover, a new heuristic was

developed by [23] for the FJSP. This heuristic is based on a

constructive procedure considering simultaneously many factors

having a great effect on the solution quality. Furthermore,

distributed artificial intelligence techniques were used for this

problem, such as the multiagent model proposed by [6] composed

by three classes of agents, job agents, resource agents and an

interface agent. This model is based on a local search method

which is the tabu search to solve the FJSP. Also, [12] proposed a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

GECCO’15 Companion, July 11 - 15, 2015, Madrid, Spain.
© 2015 ACM. ISBN 978-1-4503-3488-4/15/07…$15.00.

DOI: http://dx.doi.org/10.1145/2739482.2768449

997

multiagent model based on a hybridization of two metaheuristics,

a local optimization process using the tabu search to get a good

exploitation of the good areas and a global optimization process

integrating the Particle Swarm Optimization (PSO) to diversify

the search towards unexplored areas.

In this paper, we present how to solve the the flexible job shop

scheduling problem by metaheuristics based on clustering in a

holonic multiagent model. This new approach follows two

principal steps. In the first step, a genetic algorithm is applied by a

scheduler agent for a global exploration of the search space. Then,

in the second step, a local search technique is used by a set of

cluster agents to improve the quality of the final population.

Numerical tests were made to evaluate the performance of our

approach based on three data sets of [17], [4] and [14] for the

FJSP, where the experimental results show its efficiency in

comparison to other approaches.

The rest of the paper is organized as follows. In section 2, we

define the formulation of the FJSP with its objective function and

a simple problem instance. Then, in section 3, we detail the

proposed metaheuristics based on clustering with their holonic

multiagent levels. The experimental and comparison results are

provided in section 4. Finally, section 5 rounds up the paper with

a conclusion.

2. PROBLEM FORMULATION
The flexible job shop scheduling problem (FJSP) could be

formulated as follows. There is a set of n jobs J =

{J1, . . . ,Jn} to be processed on a set of m machines M =

{M1, . . .,Mm}. Each job Ji is formed by a sequence of ni

operations {Oi,1,Oi,2, . . . ,Oi,ni} to be performed successively

according to the given sequence. For each operation Oi,j,

there is a set of alternative machines M(Oi,j) capable of

performing it. The main objective of this problem is to find

a schedule minimizing the end date of the last operation of

the jobs set which is the makespan. The makespan is defined

by Cmax in Equation 1, where Ci is the completion time of

a job Ji.

To explain the FJSP, a sample problem of three jobs and five

machines is shown in Table 1, where the numbers present the

processing times and the tags “–” mean that the operation cannot

be executed on the corresponding machine.

Table 1: A simple instance of the FJSP

3. A METAHEURISTIC HYBRIDIZATION

IN A HOLONIC MULTIAGENT MODEL
Glover [11] elaborated a study about the nature of connections

between the genetic algorithm and tabu search metaheuristics,

searching to show the existing opportunities for creating a hybrid

approach with these two standard methods to take advantage of

their complementary features and to solve difficult optimization

problems. After this pertinent study, the combination of these two

metaheuristics has become more well-known in the literature,

which has motivated many researchers to try the hybridization of

these two methods for the resolution of different complex

problems in several areas.

Ferber [7] defined a multiagent system as an artificial system

composed of a population of autonomous agents, which cooperate

with each other to reach common objectives, while

simultaneously each agent pursues individual objectives.

Furthermore, a multiagent system is a computational system

where two or more agents interact (cooperate or compete, or a

combination of them) to achieve some individual or collective

goals. The achievement of these goals is beyond the individual

capabilities and individual knowledge of each agent [1].

Koestler [18] gave the first definition of the term “holon” in the

literature, by combining the two Greek words “hol” meaning

whole and “on” meaning particle or part. He said that almost

everything is both a whole and a part at the same time. In fact, a

holon is recursively decomposed at a lower granularity level into a

community of other holons to produce a holarchy [5]. Moreover, a

holon may be viewed as a sort of recursive agent, which is a

super-agent composed by a sub-agents set, where each sub-agent

has its own behavior as a complementary part of the whole

behaviour of the super-agent. Holons are agents able to show an

architectural recursiveness [10].

Figure 1. A metaheuristic hybridization in a holonic

multiagent model

In this work, we propose a hybrid metaheuristic approach based

on clustering processing two general steps: a first step of global

exploration using a genetic algorithm to find promising areas in

the search space and a clustering operator allowing to regroup

them in a set of clusters. In the second step, a tabu search

algorithm is applied to find the best individual solution for each

 Cmax = max1≤i≤n (Ci) (1)

Job Operation M1 M2 M3 M4 M5

J1 O11 2 9 4 5 1

O12 - 6 - 4 -

J2 O21 1 - 5 - 6

O22 3 8 6 - -

O23 - 5 9 3 9

J3 O31 - 6 6 - -

O32 3 - - 5 4

998

cluster. The global process of the proposed approach is

implemented in two hierarchical holonic levels adopted by a

recursive multiagent model, named a hybrid Genetic Algorithm

with Tabu Search based on clustering in a Holonic Multiagent

model (GATS+HM), see Figure 1. The first holonic level is

composed by a Scheduler Agent which is the Master/Super-agent,

preparing the best promising regions of the search space, and the

second holonic level containing a set of Cluster Agents which are

the Workers/Sub-agents, guiding the search to the global optimum

solution of the problem. Each holonic level of this model is

responsible to process a step of the hybrid metaheuristic algorithm

and to cooperate between them to attain the global solution of the

problem.

In fact, the choice of this new metaheuristic hybridization is

justified by that the standard metaheuristic methods use generally

the diversification techniques to generate and to improve many

different solutions distributed in the search space, or by using

local search techniques to generate a more improved set of

neighbourhood solutions from an initial solution. But they did not

guarantee to attain promising areas with good fitness converging

to the global optimum despite the repetition of many iterations,

that is why they need to be more optimized. So, the novelty of our

approach is to launch a genetic algorithm based on a

diversification technique to only explore the search space and to

select the best promising regions by the clustering operator. Then,

applying the intensification technique of the tabu search allowing

to relaunch the search from an elite solution of each cluster

autonomously to attain more dominant solutions of the search

space.

The use of a multiagent system gives the opportunity for

distributed and parallel treatments which are very complimentary

for the second step of the proposed approach. Indeed, our

combined metaheuristic approach follows the paradigm of

“Master” and “Workers” which are two recursive hierarchical

levels adaptable for a holonic multiagent model, where the

Scheduler Agent is the Master/Super-agent of its society and the

Cluster Agents are its Workers/Sub-agents.

3.1 Scheduler Agent
The Scheduler Agent (SA) is responsible to process the first

step of the hybrid algorithm by using a genetic algorithm called

NGA (Neighborhood-based Genetic Algorithm) to identify areas

with high average fitness in the search space during a fixed

number of iterations MaxIter. In fact, the goal of using the NGA is

only to explore the search space, but not to find the global

solution of the problem. Then, a clustering operator is integrated

to divide the best identified areas by the NGA in the search space

to different parts where each part is a cluster CLi ∈ CL the set of

clusters, where CL = {CL1,CL2, . . . ,CLN}. In addition, this agent

plays the role of an interface between the user and the system

(initial parameter inputs and final result outputs). According to the

number of clusters N obtained after the integration of the

clustering operator, the SA creates N Cluster Agents (CAs)

preparing the passage to the next step of the global algorithm.

After that, the SA remains in a waiting state until the reception of

the best solutions found by the CA for each cluster. Finally, it

finishes the process by displaying the final solution of the

problem.

3.1.1 Individual’s solution presentation
The flexible job shop problem is composed by two sub-

problems: the machine assignment problem and the operation

scheduling problem, that is why the chromosome representation is

encoded in two parts: Machine Assignment part (MA) and

Operation Sequence part (OS). The first part MA is a vector V1

with a length L equal to the total number of operation and where

each index represents the selected machine to process an

operation indicated at position p, see Figure 2 (a). For example

p = 2, V1(2) is the selected machine M4 for the operation O1,2.

The second part OS is a vector V2 having the same length of V1

and where each index represents an operation Oi,j according to the

predefined operations of the job set, see Figure 2 (b). For example

the operation sequence 1−2−1−3−2−3−2 can be translated to:

(O1,1,M5) → (O2,1,M1) → (O1,2,M4) → (O3,1,M3) → (O2,2,M3) →

(O3,2,M1) → (O2,3,M2).

Figure 2. The chromosome representation of a scheduling

solution

To convert the chromosome values to an active schedule, we

used the priority-based decoding of [8]. This method considers the

idle time which may exist between operations on a machine m,

and which is caused by the precedence constraints of operations

belonging to the same job i. Let Si,j is the starting time of an

operation Oi,j (which can only be started after processing its

precedent operation Oi,(j−1)) with its completion time Ci,j. In

addition, we have an execution time interval [tSm, tEm] starts form

tSm and ends at tEm on a machine m to allocate an operation Oi,j.

So, if j = 1, Si,j takes tSm, else if j ≥ 2, it takes max{tSm,Ci,(j−1)}.

In fact, the availability of the time interval [tSm, tEm] for an

operation Oi,j is validated by verifying if there is a sufficient time

period to complete the execution time pijm of this operation, see

Equation 2:

The used priority-based decoding method allows in each case to

assign each operation to its reserved machine following the

presented execution order of the operation sequence vector V2.

Also, to schedule an operation Oi,j on a machine m, the fixed idle

time intervals of the selected machine are verified to find an

 if j=1, tS
m + pijm ≤ tE

m (2)

if j≥2, max{tS
m, Ci,(j-1)} + pijm ≤ tE

m

999

allowed available period to its execution. So, if a period is found,

the operation Oi,j is executed there, else it is moved to be executed

at the end of the machine m.

Noting that the chromosome fitness is calculated by Fitness(i)

which is the fitness function of each chromosome i and Cmax(i) is

its makespan value, where i ∈ {1, . . . , P} and P is the total

population size, see Equation 3.

3.1.2 Population initialization
The initial population is generated randomly following a

uniform law and based on a neighborhood parameter to make the

individual solutions more diversified and distributed in the search

space. In fact, each new solution should have a predefined

distance with all the other solutions to be considered as a new

member of the initial solution. The used method to determinate

the neighborhood parameter is inspired from [2], which is based

on the permutation level of operations to obtain the distance

between two solutions. In fact, the dissimilarity distance is

calculated by verifying the difference between two chromosomes

in terms of the placement of each operation Oi,j on its alternative

machine set in the machine assignment vector V1 and its execution

order in the operation sequence vector V2. So, if there is a

difference in the vector V1, the distance is incremented by

M(Oi,j) (is the number of possible n placement for each operation

on its machine set, which is the alternative machine number of

each operation Oi,j) because it is in the order of O(n). Then, if

there is a difference in the vector V2, the distance is incremented

by 1 because it is in the order of O(1). Let Chrom1(MA1,OS1)

and Chrom2(MA2,OS2) two chromosomes of two different

scheduling solutions, M(Oi,j) the alternative number of machines

of each operation Oi,j, L is the total number of operations of all

jobs and Dist is the dissimilarity distance. The distance is

calculated firstly by measuring the difference between the

machine assignment vectors MA1 and MA2 which is in order of

O(n), then by verifying the execution order difference of the

operation sequence vectors OS1 and OS2 which is in order of O(1),

we give here how to proceed:

Begin

 Dist=0, k=1

 For k from 1 to L

 If Chrom1(MA
1
(k)) ≠ Chrom2(MA

2
(k))

 Dist = Dist + M(O
i,j
)

 End if

 If Chrom1(OS
1
(k)) ≠ Chrom2(OS

2
(k))

 Dist = Dist + 1

 End if

 End for

 Return Dist

End.

Noting that Distmax is the maximal dissimilarity distance and it

is calculated by Equation 4, representing 100% of difference

between two chromosomes.

3.1.3 Selection operator
The selection operator is used to select the best parent

individuals to prepare them to the crossover step. This operator is

based on a fitness parameter allowing to analyze the quality of

each selected solution. But progressively the fitness values will be

similar for the most individuals. That is why, we integrate the

neighborhood parameter, where we propose a new combined

parent selection operator named Fitness-Neighborhood Selection

Operator (FNSO) allowing to add the dissimilarity distance

criteria to the fitness parameter to select the best parents for the

crossover step. The FNSO chooses in each iteration two parent

individuals until engaging all the population to create the next

generation. The first parent takes successively in each case a

solution i, where i ∈ {1, . . . , P} and P is the total population size.

The second parent obtains its solution j randomly by the roulette

wheel selection method based on the two Fitness and

Neighborhood parameters relative to the selected first parent,

where j ∈ {1, . . . , P} \ {i} in the P population and where j ≠ i.

In fact, to use this random method, we should calculate the

Fitness-Neighborhood total FN for the population, see Equation 5,

the selection probability spk for each individual Ik, see Equation 6,

and the cumulative probability cpk, see Equation 7. After that, a

random number r will be generated from the uniform range [0,1].

If r ≤ cp1 then the second parent takes the first individual I1,

else it gets the kth individual Ik ∈ {I2, . . . , IP} \ {Ii} and where

cpk−1 < r ≤ cpk.

 The Fitness-Neighborhood total for the population:

 The selection probability spk for each individual Ik:

 The cumulative probability cpk for each individual Ik:

 For Equations 5, 6 and 7, k = {1, 2, . . . , P} \ {i}

3.1.4 Crossover operator
The crossover operator has an important role in the global

process, allowing to combine in each case the chromosomes of

two parents in order to obtain new individuals and to attain new

better parts in the search space. In this work, this operator is

applied with two different techniques successively for the parent’s

chromosome vectors MA and OS.

Machine vector crossover.
A uniform crossover is used to generate in each case a mixed

vector between two machine vector parents, Parent1-MA1 and

Parent2-MA2, allowing to obtain two new children, Child1-MA1′

and Child2-MA2′. This uniform crossover is based on two

 



k

h
hk pcp

1

 (7)

.

])][[][/(1

FN

kiodNeighborhokCmax
spk




(6)

  


P

k

kiodNeighborhokCmaxFN
1

])]][[][/(1[. (5)

 Distmax = [𝑀(𝑂𝑖, 𝑗)]𝑖 ,𝑛𝑖
𝑖 ,1 + 𝐿 (4)

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑖 =
1

𝐶𝑚𝑎𝑥 (𝑖)
 (3)

1000

assignment cases, if the generated number is less than 0.5, the first

child gets the current machine value of parent1 and the second

child takes the current machine value of parent2. Else, the two

children change their assignment direction, first child to parent2

and the second child to parent1.

Operation vector crossover.
An improved precedence preserving order-based on crossover

(iPOX), inspired from [20], is adapted for the parent operation

vector OS. This iPOX operator is applied following four steps, a

first step is selecting two parent operation vectors (OS1 and OS2)

and generating randomly two job sub-sets Js1/Js2 from all jobs. A

second step is allowing to copy any element in OS1/OS2 that

belong to Js1/Js2 into child individual OS′1/OS′2 and retain them in

the same position. Then the third step deletes the elements that are

already in the sub-set Js1/Js2 from OS1/OS2. Finally, fill orderly

the empty position in OS′1/OS′2 with the reminder elements of

OS2/OS1 in the fourth step.

3.1.5 Mutation operator
The mutation operator is integrated to promote the children

generation diversity. In fact, this operator is applied on the

chromosome of the new children generated by the crossover

operation. Also, each part of a child chromosome MA and OS has

separately its own mutation technique.

Machine vector mutation.
This first operator uses a random selection of an index from the

machine vector MA. Then, it replaces the machine number in the

selected index by another belonging to the same alternative

machine set.

Operation vector mutation.
This second operator selects randomly two indexes index1 and

index2 from the operation vector OS. Next, it changes the position

of the job number in the index1 to the second index2 and

inversely.

3.1.6 Replacement operator
The replacement operator has an important role to prepare the

remaining surviving population to be considered for the next

iterations. This operator replaces in each case a parent by one of

its children which has the best fitness in its current family.

3.1.7 Clustering operator
By finishing the maximum iteration number MaxIter of the

genetic algorithm, the Scheduler Agent applies a clustering

operator using the hierarchical clustering algorithm of [15] to

divide the final population into N Clusters to be treated by the

Cluster Agents in the second step of the global process. The

clustering operator is based on the neighbourhood parameter

which is the dissimilarity distance between individuals. The

clustering operator starts by assigning each individual Indiv(i) to a

cluster CLi, so if we have P individuals, we have now P clusters

containing just one individual in each of them. For each case, we

fixe an individual Indiv(i) and we verify successively for each

next individual Indiv(j) from the remaining population (where i

and j ∈ {1, . . . , P}, i ≠ j) if the dissimilarity distance Dist

between Indiv(i) and Indiv(j) is less than or equal to a fixed

threshold Distfix (representing a percentage of difference X%

relatively to Distmax, see Equation 8) and where Cluster(Indiv(i))

≠ Cluster(Indiv(j)). If it is the case, Merge(Cluster(Indiv(i)),

Cluster(Indiv(j))), else continue the search for new combination

with the remaining individuals. The stopping condition is by

browsing all the population individuals, where we obtained at the

end N Clusters.

Figure 3. Distribution of the Cluster Agents in the different

clusters of the search space

3.2 Cluster Agents
Each Cluster Agent CAi is responsible to apply successively to

each cluster CLi a local search technique which is the Tabu Search

algorithm to guide the research in promising regions of the search

space and to improve the quality of the final population of the

genetic algorithm. In fact, this local search is executed

simultaneously by the set of the CAs agents, where each CA starts

the research from an elite solution of its cluster searching to attain

new more dominant individual solutions separately in its assigned

cluster CLi, see Figure 3. The used Tabu Search algorithm is

based on an intensification technique allowing to start the research

from an elite solution in a cluster CLi (a promising part in the

search space) in order to collect new scheduling sequence

minimizing the makespan. Let E the elite solution of a cluster

CLi, E′ ∈ N(E) is a neighbor of the elite solution E, GLi is the

Global List of each CAi to receive new found elite solutions by

the remaining CAs, each CLi plays the role of the tabu list with a

dynamic length and Cmax is the makespan of the obtained

solution. So, the search process of this local search starts from an

elite solution E using the move and insert method of [21], where

each Cluster Agent CAi changes the position of an operation Oi,j

from a machine m to another machine n belonging to the same

alternative machine set of this selected operation Oi,j, searching to

generate new scheduling combination E′ ∈ N(E). After that,

verifying if the makespan value of this new generated solution

Cmax(E′) dominates Cmax(E) (Cmax(E′) < Cmax(E)), and if it is

the case CAi saves E′ in its tabu list (which is CLi) and sends it to

all the other CAs agents to be placed in their Global Lists

 Distfix = Distmax × X% (8)

1001

GLs(E′,CAi), to ensure that it will not be used again by them as a

search point. Else continues the neighborhood search from the

current solution E. The stopping condition is by attaining the

maximum allowed number of neighbors for a solution E without

improvement. We give here how to proceed:

Begin

 E ← Elite(CL
i
)

 While N(E) ≠ ∅

 E’ ← {Move and insert(E) | E’ ∈ N(E) | E’ ∉ GL
i
}

 If Cmax(E’) < Cmax(E) and E’ ∉ CL
i

 E ← E’

 CL
i
 ← E’

 Send_to_all(E’,CA
i
)

 End if

 End while

 Return E

End.

By finishing this local search step, the CAs agents terminate the

process by sending their last best solutions to the SA agent, which

considers the best one of them the global solution for the FJSP.

4. EXPERIMENTAL RESULTS

4.1 Experimental setup
The proposed GATS+HM is implemented in java language on a

2.10 GHz Intel Core 2 Duo processor and 3 Gb of RAM memory,

where we use the Integrated Development Environment (IDE)

eclipse to code the algorithm and the multiagent platform Jade to

create the different agents of our holonic model. To evaluate its

efficiency, numerical tests are made based on three sets of well

known benchmark instances in the literature of the FJSP: Kacem

data [17] consisting of 5 problems considering a number of jobs

ranging from 4 to 15, which will be processed on a number of

machines ranging from 5 to 10. Brandimarte data [4] consisting

of 10 problems considering a number of jobs ranging from 10

to 20, which will be processed on a number of machines ranging

from 4 to 15. Hurink edata [14] consisting of 40 problems

(la01-la40) inspired from the classical job shop instances of [19],

where three test problems are generated: rdata, vdata and edata

which is used in this paper.

Due to the non-deterministic nature of the proposed algorithm,

we run it five independent times for each one of the three

instances [17], [4] and [14] in order to obtain significant results.

The computational results are presented by five metrics such as

the best makespan (Best), the average of makespan (Avg Cmax),

the average of CPU time in seconds (Avg CPU), and the standard

deviation of makespan (Dev %) which is calculated by Equation

9. The Mko is the makespan obtained by Our algorithm and Mkc

is the makespan of an algorithm that we chose to Compare to.

The used parameter settings for our algorithm are adjusted

experimentally and presented as follow: the crossover probability

1.0, the mutation probability 1.0 and the maximum number of

iterations 1000. The population size ranged from 15 to 400

depending on the complexity of the problem.

4.2 Experimental comparisons
To show the efficiency of our GATS+HM algorithm, we

compare its obtained results from the three previously cited data

sets with other well known algorithms in the literature of the

FJSP. The chosen algorithms are : the TS of [4], N1-1000 of [14]

(with their literature lower bound LB) and the AL+CGA of [17]

which obtained the first results in the literature for their proposed

instances. The Heuristic of [23] which is a standard heuristic

method. The Hybrid NSGA-II of [22] is a recent hybrid

metaheuristic algorithm. The MATSLO+ of [6] and the

MATSPSO of [12] are two new hybrid metaheuristic algorithms

distributed in multiagent models.

The different comparative results are displayed in the Tables 2,

3 and 4 where the first column takes the name of each instance,

the second column gives the size each instance, with n the number

of jobs and m the number of machines (n×m), and the remaining

columns detail the experimental results of the different chosen

approaches in terms of the best Cmax (Best) and the standard

deviation (Dev %). The bold values in the tables signify the best

obtained results and the N/A means that the result is not available.

4.2.1 Analysis of the comparative results
By analyzing the Table 2, it can be seen that our approach

GATS+HM is the best one which solves the fives instances of

Kacem. In fact, the GATS+HM outperforms the AL+CGA in four

out of five instances, the Hybrid NSGA-II in two out of five

instances, and the Heuristic in three out of five instances. Also,

our approach attains the same results obtained by the chosen

approaches, such as in the case 1 (4×5) for the Hybrid NSGA-II

and the Heuristic; in the case 4 (10×10) for all the three

algorithms; in the case 5 (15×10) for the Hybrid NSGA-II.

From Table 3, the results show that the GATS+HM obtains

nine out of ten best results for the Brandimarte instances. In fact,

our approach outperforms the TS in nine out of ten instances.

Moreover, for the comparison with MATSLO+, our GATS+HM

outperforms it in eight out of ten instances. Furthermore, the

MATSPSO attained the best result for the MK01 instance, but our

approach obtains a set of solutions better than it for the remaining

instances. By solving this second data set, our GATS+HM attains

the same results obtained by some approaches such as the MK01

for MATSLO+, the MK02 for MATSPSO and the MK08 for all

methods.

From the results in Table 4, we can see that the GATS+HM

obtains seven out of ten best results for the Hurink edata instances

(la01-la05) and (la16-la20). Indeed, our approach outperforms the

N1-1000 in eight out of ten instances. Moreover, our GATS+HM

outperforms the MATSLO+ in seven out of ten instances. For the

comparison with the literature lower bound LB, the GATS+HM

attains the same results for the la01, la02, la04, la05, la16, la17

and la20 instances, but it gets slightly worse result for the la03,

la18 and la19 instances. Furthermore, by solving this third data

set, our GATS+HM attains the same results obtained by the

chosen approaches such as in the la01 for the MATSLO+; in the

la02 for the N1-1000 and the MATSLO+; in the la05 for the N1-

1000 and the MATSLO+.

By analyzing the computational time in seconds and the

comparison results of our algorithm in term of makespan, we can

distinguish the efficiency of the new proposed GATS+HM

relatively to the literature of the FJSP. This efficiency is explained

by the flexible selection of the promising parts of the search space

by the clustering operator after the genetic algorithm process and

 Dev = [(Mkc − Mko)/Mkc] × 100% (9)

1002

Instance
Problem

n×m

AL+CGA Hybrid NSGA-II Heuristic GATS+HM

Best Dev (%) Best Dev (%) Best Dev (%) Best
Avg

Cmax

Avg C.P.U

(in seconds)

case 1 4×5 16 31,250 11 0 11 0 11 11,00 0,05

case 2 8×8 15 6,666 15 6,666 15 6,666 14 14,20 0,36

case 3 10×7 15 26,666 N/A -- 13 15,384 11 11,40 0,72

case 4 10×10 7 0 7 0 7 0 7 7,60 1,51

case 5 15×10 23 52,173 11 0 12 8,333 11 11,60 29,71

Instance
Problem

n×m

TS MATSLO+ MATSPSO GATS+HM

Best Dev (%) Best Dev (%) Best Dev (%) Best
Avg

Cmax

Avg C.P.U

(in seconds)

Mk01 10×6 42 4,761 40 0 39 -2,564 40 40,80 0,93

Mk02 10×6 32 15,625 32 15,625 27 0 27 27,80 1,18

Mk03 15×8 211 3,317 207 1,449 207 1,449 204 204,00 1,55

Mk04 15×8 81 20,987 67 4,477 65 1,538 64 65,60 4,36

Mk05 15×4 186 6,989 188 7,978 174 0,574 173 174,80 8,02

Mk06 10×15 86 24,418 85 23,529 72 9,722 65 67,00 110,01

Mk07 20×5 157 8,280 154 6,493 154 6,493 144 144,00 19,73

Mk08 20×10 523 0 523 0 523 0 523 523,00 11,50

Mk09 20×10 369 15,718 437 28,832 340 8,529 311 311,80 79,68

Mk10 20×15 296 25 380 41,578 299 25,752 222 224,80 185,64

Instance
Problem

n×m

LB N1-1000 MATSLO+ GATS+HM

Best Dev (%) Best Dev (%) Best Dev (%) Best
Avg

Cmax

Avg C.P.U

(in seconds)

la01 10×5 609 0 611 0,327 609 0 609 609,00 24,64

la02 10×5 655 0 655 0 655 0 655 655,00 4,65

la03 10×5 550 -3,091 573 1,047 575 1,391 567 567,40 10,67

la04 10×5 568 0 578 1,730 579 1,900 568 569,60 22,13

la05 10×5 503 0 503 0 503 0 503 503,00 10,22

la16 10×10 892 0 924 3,463 896 0,446 892 909,60 73,14

la17 10×10 707 0 757 6,605 708 0,141 707 709,60 116,58

la18 10×10 842 -0,119 864 2,431 845 0,237 843 848,60 34,98

la19 10×10 796 -1,005 850 5,412 813 1,107 804 813,40 36,88

la20 10×10 857 0 919 6,746 863 0,695 857 859,80 70,36

Table 2. Results of the Kacem instances

Table 3. Results of the Brandimarte instances

Table 4. Results of the Hurink edata instances

1003

by applying the intensification technique of the tabu search

allowing to start from an elite solution to attain new more

dominant solutions.

5. CONCLUSION
In this paper, we present a new metaheuristic hybridization

based on clustering in a holonic multiagent model, called

GATS+HM, for the flexible job shop scheduling problem (FJSP).

In this approach, a Neighborhood-based Genetic Algorithm is

adapted by a Scheduler Agent (SA) for a global exploration of the

search space. Then, a local search technique is applied by a set of

Cluster Agents (CAs) to guide the research in promising regions

of the search space and to improve the quality of the final

population. To measure its performance, numerical tests are made

using three well known data sets in the literature of the FJSP. The

experimental results show that the proposed approach is efficient

in comparison to others approaches. In the future work, we will

search to treat other extensions of the FJSP, such as by integrating

new transportation resources constraints in the shop process. So,

we will make improvements to our approach to adapt it to this

new transformation and study its effects on the makespan.

6. REFERENCES
[1] V. Botti and A. Giret. ANEMONA: A Multi-agent

Methodology for Holonic Manufacturing Systems. Springer

Series in Advanced Manufacturing. Springer-Verlag, 2008.

[2] W. Bozejko, M. Uchronski, and M. Wodecki. The new golf

neighborhood for the flexible job shop problem. In

Proceedings of the International Conference on

Computational Science, pages 289–296, May 2010.

[3] W. Bozejko, M. Uchronski, and M. Wodecki. Parallel hybrid

metaheuristics for the flexible job shop problem. Computers

and Industrial Engineering, 59(2):323–333, September 2010.

[4] P. Brandimarte. Routing and scheduling in a flexible job

shop by tabu search. Annals of Operations Research,

41(3):157–183, September 1993.

[5] M. Calabrese. Hierarchical-granularity holonic modelling.

Doctoral thesis, Universita degli Studi di Milano, Milano,

Italy, March 2011.

[6] M. Ennigrou and K. Ghédira. New local diversification

techniques for the flexible job shop problem with a multi-

agent approach. Autonomous Agents and Multi-Agent

Systems, 17(2):270–287, October 2008.

[7] J. Ferber. Multi-Agent Systems: An Introduction to

Distributed Artificial Intelligence. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1st

edition, 1999.

[8] J. Gao, L. Sun, and M. Gen. A hybrid genetic and variable

neighborhood descent algorithm for flexible job shop

scheduling problems. Computers and Operations Research,

35(9):2892–2907, September 2008.

[9] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of

flow shop and job shop scheduling. Mathematics of

Operations Research, 1(2):117–129, May 1976.

[10] A. Giret and V. Botti. Holons and agents. Journal of

Intelligent Manufacturing, 15(5):645–659, 2004.

[11] F. Glover, J. P. Kelly, and M. Laguna. Genetic algorithms

and tabu search: Hybrids for optimization. Computers and

Operations Research, 22(1):111–134, January 1995.

[12] A. Henchiri and M. Ennigrou. Particle swarm optimization

combined with tabu search in a multi-agent model for

flexible job shop problem. In Proceedings of the 4th

International Conference on Swarm Intelligence, Advances

in Swarm Intelligence, pages 385–394, June 2013.

[13] N. B. Ho, J. C. Tay, and E. M. K. Lai. An effective

architecture for learning and evolving flexible job-shop

schedules. European Journal of Operational Research,

179(2):316–333, June 2007.

[14] J. Hurink, B. Jurisch, and M. Thole. Tabu search for the job-

shop scheduling problem with multi-purpose machines.

Operations Research Spektrum, 15(4):205–215, December

1994.

[15] S. C. Johnson. Hierarchical clustering schemes.

Psychometrika, 32(3):241–254, September 1967.

[16] I. Kacem, S. Hammadi, and P. Borne. Approach by

localization and multiobjective evolutionary optimization for

flexible job-shop scheduling problems. IEEE Transactions

on Systems, Man, and Cybernetics, 32(1):1–13, February

2002.

[17] I. Kacem, S. Hammadi, and P. Borne. Pareto-optimality

approach for flexible job-shop scheduling problems:

Hybridization of evolutionary algorithms and fuzzy logic.

Mathematics and Computers in Simulation, 60(3-5):245–

276, September 2002.

[18] A. Koestler. The Ghost in the Machine. Hutchinson, London,

United Kingdom, 1st edition, 1967.

[19] S. Lawrence. Supplement to resource constrained project

scheduling: an experimental investigation of heuristic

scheduling techniques. Technical report, Graduate School of

Industrial Administration, Carnegie-Mellon University,

Pittsburgh, Pennsylvania, 1984.

[20] K. Lee, T. Yamakawa, and K. M. Lee. A genetic algorithm

for general machine scheduling problems. In Proceedings of

the second IEEE international Conference on Knowledge-

Based Intelligent Electronic Systems, pages 60–66, April

1998.

[21] M. Mastrolilli and L. Gambardella. Effective neighbourhood

functions for the flexible job shop problem. Journal of

Scheduling, 3(1):3–20, January 2000.

[22] C. Zhang, P. Gu, and P. Jiang. Low-carbon scheduling and

estimating for a flexible job shop based on carbon footprint

and carbon efficiency of multi-job processing. Journal of

Engineering Manufacture, 39(32):1–15, April 2014.

[23] M. Ziaee. A heuristic algorithm for solving flexible job shop

scheduling problem. The International Journal of Advanced

Manufacturing Technology, 71(1-4):519–528, March 2014.

1004

