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ABSTRACT
In tree-based genetic programming (GP) with sub-tree
crossover, the parent contributing the root portion of the
tree (the root parent) often contributes more to the seman-
tics of the resulting child than the non-root parent. Previ-
ous research demonstrated that when the root parent had
greater fitness than the non-root parent, the fitness of the
child tended to be better than if the reverse were true. Here
we explore the significance of that asymmetry by introduc-
ing the notion of crossover bias, where we bias the system
in favor of having the more fit parent as the root parent.

In this paper we apply crossover bias to several problems.
In most cases we found that crossover bias either improved
performance or had no impact. We also found that the ef-
fectiveness of crossover bias is dependent on the problem,
and significantly dependent on other parameter choices.

While this work focuses specifically on sub-tree crossover
in tree-based GP, artificial and biological evolutionary sys-
tems often have substantial asymmetries, many of which re-
main understudied. This work suggests that there is value
in further exploration of the impacts of these asymmetries.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming-
Program transformation

Keywords
genetic programming; crossover bias; root parent; crossover
asymmetry; sub-tree crossover

1. INTRODUCTION
As Figure 1 illustrates, the widely used sub-tree crossover

operator in tree-based genetic programming (GP) [16] is an
inherently asymmetric operation, with one parent contribut-
ing the root node and, in most cases, a substantially larger
number of nodes than the other parent. This asymmetry has
been noted before, e.g., [11] where they refer to the parent
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Figure 1: Sub-tree crossover, illustrating the asym-
metric role of the root and non-root parents.

that contributes the root node as the root parent and the
other parent as the non-root parent. It has also been pre-
viously observed [4, 10, 12] that the root parent often con-
tributes more to the semantics of the resulting individual.
This is in part because the root parent typically contributes
more overall nodes, and because the nodes closest to the root
of the tree frequently have a stronger impact on the result
of evaluating the tree in question. While the specific impact
of this asymmetry depends on the details of the function set
and the particular trees chosen as parents, asymmetry has a
substantial e↵ect on the semantics of the o↵spring in many
common GP settings.

An important impact of this asymmetry was recently
noted in [10], where it was observed that the fitness of the
o↵spring tended to improve when the root parent had bet-
ter fitness than the non-root parent. To explore this further,
we implemented what we refer to as crossover bias, which
allowed us to probabilistically force the GP system to as-
sign the individual with the greater fitness to be the root
parent. After reviewing some related work (Section 2), we
apply crossover bias (Section 3) to a variety of test prob-
lems (Section 4). The results (Section 5) make it clear that
crossover bias can have a substantial impact on the perfor-
mance of GP runs, but that the results are heavily param-
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Algorithm 1 Crossover bias

Require: Two individuals are chosen as parents: RP (root
parent) and NRP (non-root parent).
if random(0, 1)  XO bias then . Do we force bias?

if fitness(RP) worse than fitness(NRP) then
RP, NRP := NRP, RP . Swap so RP is more fit

end if
end if

eter dependent and, to a lesser degree problem dependent.
In general, however, we find (Section 6) that incorporating
some crossover bias is, at least in these problems, usually
either advantageous or neutral.

2. RELATED WORK
Several previous papers have deliberately created asym-

metries between parents (e.g., [5, 19]) as a mechanism to
increase diversity and (in the case of [19]) combat bloat.

There has also been a blossoming of work in the last few
years based on the semantics of GP trees (e.g., [12, 13]). This
includes a number of proposed mechanisms that encourage
or force semantic di↵erences (asymmetries) between parents
and children [1, 21]. Some [22] also limit the di↵erences
between parents and o↵spring, in some sense reducing the
impact of asymmetries between the parents, and smoothing
out the fitness landscape as a result. These proposals typi-
cally focus on the semantic relationship between parents and
children, however, and don’t directly take into account any
asymmetries between the parents.

3. CROSSOVER BIAS
To better understand parent asymmetries and the impact

of bias in crossover, we implemented crossover bias with a
parameter specifying the probability of forcing the more fit
parent to be the root parent when performing crossover, as
detailed in Algorithm 1. Every time a crossover event was
to be performed, we would use this probability to decide
whether to force the more fit parent to be the root parent.
Note that when crossover bias isn’t applied, there is still a
50% chance that the root parent is the more fit parent.

In this paper we focus on five levels of crossover bias:

• 0.00 bias - no crossover bias is applied, i.e., just stan-
dard sub-tree crossover; a 50% probability of the more
fit parent being the root parent;

• 0.25 bias - system forced to use the more fit parent as
the root parent in 25% of cases; a 62.5% total proba-
bility of the more fit parent being the root parent;

• 0.50 bias - system forced to use the more fit parent as
the root parent in 50% of cases; a 75% total probability
of the more fit parent being the root parent;

• 0.75 bias - system forced to use the more fit parent as
the root parent in 75% of cases; a 87.5% total prob-
ability of the more fit parent being the root parent;
and

• 1.00 bias - system forced to always use the more fit
parent as the root parent, sometimes referred to as
“with crossover bias”.

We also experimented with reverse bias, where the weaker
parent was always forced to be the root parent. In general,
the results for reverse bias showed no statistically signifi-
cant di↵erence from standard crossover (no bias), so in the
interest of simplification we’ve omitted reverse bias from the
remainder of the paper.

4. EXPERIMENTAL SETUP
To better understand the impact of crossover bias on GP

performance, we experimented with five problems: K Land-
scapes with K = 6 [23], ORDERTREE [8], U.S. Change,
Sine regression [16], and Pagie-1 regression [15]. Three of
these (K Landscapes, ORDERTREE, and Pagie-1 regres-
sion) are taken from recent benchmark suggestions [24]. The
U.S. Change problem [26] has proven to be an interesting
problem in evolutionary program synthesis [7], and sine re-
gression is the example problem used in earlier work on the
impact of root and non-root parents [10]. All experiments
were run using a copy of ECJ 211 that we modified to sup-
port crossover bias.

The one problem not precisely described elsewhere in the
literature is the U.S. Change problem. Here the task is to
take as input an amount, and to return as output the min-
imum number of coins required to make that amount using
(a subset of) standard U.S. coins with amounts 25, 10, 5,
and 1. So, for example, given 118 as input, the result should
be 9 since

4⇥ 25 + 1⇥ 10 + 1⇥ 5 + 3⇥ 1 = 118,

and this set of 4+1+1+3 = 9 coins is the minimal set making
a total of 118. Our function set for this problem was +, -,
⇥, %,2 mod,3 min, and max. The terminal set consisted
of the input x, integer ephemeral random constants taken
uniformly from the range [�50, 50], and the set of constants
{0, 1, 4, 5, 9, 10, 24, 25}. The test cases were all inputs in the
range [0, 150).

All our experiments used the previously published set-
tings, function sets, fitness functions, etc., with the excep-
tion of the parameters listed in Table 1,4 which are shared
throughout these experiments. Our evolutionary system is
generational, with all new individuals being generated via
subtree crossover (i.e., no mutation or reproduction) unless
there is a non-zero elitism percentage. Our primary goal
was to better understand the impact of crossover bias, so
we performed runs with a variety of crossover bias proba-
bilities. In addition, we wanted to see how crossover bias
might interact with some other commonly manipulated pa-
rameters as listed in Table 1. Unless otherwise noted, all
plots, etc., in what follows will include results from all pos-
sible combinations of values in Table 1. Each box plot in
Figure 3, for example, includes the results of 100 runs for

1http://cs.gmu.edu/˜eclab/projects/ecj/
2Protected integer division (quotient), returning 1 if the de-
nominator is 0.
3Also returns 1 if the denominator is 0.
4The function set for Pagie-1 specified in [15] is simply +, -,
⇥, and % (protected division). The function set given in [9]
and implemented in ECJ is “koza2”, which also includes var-
ious trigonometric and logarithmic functions. The perfor-
mance of GP varies substantially between the two function
sets; here we follow the original Pagie-1 paper and use the
simpler function set.
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Parameter Values
Crossover bias 0, 0.25, 0.5, 0.75, and 1
Tournament size 2, 3, 5, and 7
Elitism % 0 and 1%
Population size 1,024 and 10,240
# of generations 100
# of runs per treatment 100

Table 1: Shared parameters
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Impact of crossover bias over time, sine regression

Figure 2: Impact of crossover bias over time on the
sine symbolic regression problem with bias-e↵ective

and non-bias-e↵ective parameter sets. In the left-
hand panel (bias-e↵ective settings), the curves stack
in order (top to bottom) from crossover bias 0 to
crossover bias 1.

each of the combinations of all four tournament sizes, both
elitism proportions, and both population sizes.

In our experimentation we observed that there were quite
substantial interactions between crossover bias and some of
the other parameter settings. In particular, we found that
there are parameter values where crossover bias appears to
have a substantial and significant impact, and other param-
eter settings where crossover bias has almost no e↵ect on
the results. Based on these observed patterns, we found
it useful to identify two specific subsets of the parameter
settings listed in Table 1: “bias-e↵ective settings” and “non-
bias-e↵ective settings”. The bias-e↵ective settings are binary
tournaments, no elitism, and population size of 10,240; the
non-bias-e↵ective settings, conversely, are tournament size
7, non-zero elitism percentage, and population size 1,024.
These terms will be used in the remainder of the paper,
which will also include some discussion of why crossover bias
might interact with these parameters in this way.

To illustrate the impact of these parameter settings, Fig-
ure 2 shows the fitness (absolute error) over time for the
sine regression problem (see Section 5.3.2 for more on the
sine regression results). The bias-e↵ective settings (left-hand
panel) show a clear di↵erence in the performance as a func-
tion of crossover bias, where the non-bias-e↵ective settings
(right hand panel) show almost no di↵erence as a function
of the crossover bias probability.

5. RESULTS
All tests of di↵erences in fitness or hits in this section are

performed using pairwise Wilcoxon tests with Holm correc-
tions. Tests of di↵erences in the number of successes are per-
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Numerous treatments

Figure 3: Impact of crossover bias on fitness for the
K Landscapes problem, over all the combinations of
parameters in Table 1.

formed using pairwise tests of proportions (chi-squared) with
Holm corrections. All statistics calculations were performed
with R [18] and all plots were generated using the ggplot2
package [25]. Statistical significance will require p  0.05.

5.1 Structural Problems
Most GP problems evaluate the evolved trees on a set

of inputs, looking for some desired behavior or semantics.
Structural problems (also referred to as constructed prob-
lems), however, have fitness functions that are entirely based
on the overall structure of the evolved trees (e.g., size, shape,
distribution of particular leaves) without any sort of “evalu-
ation” being involved.

5.1.1 K Landscapes Problem
Fitnesses for the K Landscape problem are between 0 and

1, with a fitness of 1 being a perfect solution. Figure 3 shows
the impact of crossover bias on this problem across all the
combinations of parameter values in Table 1. Increasing the
amount of crossover bias consistently improves the fitness
of the results. All the di↵erences are statistically significant
(p < 0.012) except for the di↵erence between bias probabil-
ity 0.75 and 1.00.

Compare this to the results shown in Figure 4, which plots
the same data separated out by tournament size. It is clear
that for binary tournaments, increasing the crossover bias
probability continues to improve the fitness – all the di↵er-
ences are strongly statistically significant (p < 6 ⇥ 10�08).
This continues to be true for tournament size 3; all the dif-
ferences are statistically significant except for those between
bias 0.50 and 0.75, which was very close (p = 0.056). None
of the di↵erences for tournament size 5 are significant. For
tournament size 7, however, it looks like the reverse is true,
where increasing crossover bias actually hurts fitness. Al-
most none of the di↵erences for tournament size 7 are sta-
tistically significant with the only exception being the dif-
ference between 0.25 and 1.00 (p = 0.021).

Figure 5 filters out only the data gathered using the bias-
e↵ective treatment, as defined in Section 4. It is clear
that the impact of crossover bias is much stronger in this
case than in the more general case shown in Figure 3.
Here all the di↵erences are strongly statistically significant
(p < 10�11). In addition to improvements in fitness, increas-
ing the crossover bias also increases the number of “perfect”
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Figure 4: Impact of crossover bias on fitness for
the K Landscapes problem, for various tournament
sizes.
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Figure 5: Impact of crossover bias on fitness for the
K Landscapes problem, restricted to bias-e↵ective
parameter settings.

solutions discovered when using the bias e↵ective settings.
Out of 100 runs with a crossover bias setting of 1.00, 15
of these runs resulted in the discovery of a “perfect” solu-
tion. By comparison, only 1 or 2 runs out of 100 resulted in
“perfect” solutions for each of the other crossover bias proba-
bilities. These di↵erences in the number of perfect solutions
are statistically significant (p  0.03).

5.1.2 ORDERTREE Problem
It should be noted that, for the ORDERTREE problem we

used the full set of parameters outlined in Section 4, with
one exception: the population size for the ORDERTREE
runs was limited to 1,024. This was a consequence of the
large trees generated for this problem, resulting in out of
memory errors for the larger population size of 10,240.

ORDERTREE has a di�culty tuning parameter n; we
used n = 10, which meant that the fitnesses ranged from 0
to 1,022 with larger values being better. The details for the
ORDERTREE fitness computation are described in [8].

Figure 6 shows the impact of crossover bias across all
parameter combinations. For binary tournaments, adding
crossover bias leads to improved performance when com-
pared to no crossover bias, but we observed a drop in fitness
from bias 0.75 to bias 1.00, where the fitness for 1.00 is actu-
ally slightly below that for 0.50 as well. All the binary tour-
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Figure 6: Impact of crossover bias on fitness for
ORDERTREE problem for multiple tournament
sizes.
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Figure 7: Impact of crossover bias on the number of
hits for the U.S. Change problem for all the combi-
nations of parameters in Table 1.

nament di↵erences are statistically significant (p < 0.03),
with the exception of the di↵erence between bias 0.25 and
bias 1.00, so bias 0.75 is the clear winner in this scenario.
This drop in fitness for bias 1.00 is consistent across the other
three tournament sizes as well. However, it is also appar-
ent from the figure that in general the impact of crossover
bias lessens with the larger tournament sizes, both in the
increase in fitness up to bias 0.75, and the drop from there
to bias 1.00.

5.2 U.S. Change Problem
In contrast to the structural problems discussed in the

previous section, which used fitness as the measure of suc-
cess of a run, for the U.S. Change problem we measured
success in “hits” (the number of test cases that are correctly
solved). There are 150 test cases in our implementation, so
an optimal program will have a score of 150 hits.

Figure 7 shows the impact of crossover bias on the number
of hits for the U.S. Change problem across the full collec-
tion of parameter settings. This suggests that in general
there is little consistent impact of crossover bias; while most
of the di↵erences in this plot are not statistically signifi-
cant, two are: the di↵erences between crossover bias 0.00
and crossover bias 0.50 and 0.75 are both statistically sig-
nificant (p  0.015), even if numerically small.
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Figure 8: Impact of crossover bias on the number of
hits for the U.S. Change problem, limited to bias-
e↵ective parameters.
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Figure 9: Impact of crossover bias on the number of
successful runs for the U.S. Change problem when
using bias-e↵ective parameters.

However, if we limit our attention to the bias-e↵ective
parameter settings defined in Section 4, then we find that
crossover bias has a substantial and statistically significant
impact, as is seen in Figure 8. Here the bulk of these pairwise
di↵erences are statistically significant (p < 0.0002). The
major exception is the di↵erence between crossover bias 0.75
and 1.00 (p = 0.43). Two other adjacent pairs have p-values
slightly above 0.05: crossover bias 0.25 vs. 0.50 (p = 0.0504),
and 0.50 vs. 0.75 (p = 0.0802).

If complete success was considered vital (which might be
the case if we were evolving software for use in a production
system), then it would make sense to see if crossover bias
has a significant impact on the success rate. Figure 9 shows
the number of successes for the various crossover bias val-
ues when using the bias-e↵ective parameter settings. None
of the adjacent di↵erences (for example, crossover bias 0.50
vs. 0.75) are statistically significant, while most of the non-
adjacent di↵erences (for example, crossover bias 0.25 vs.
0.75) are statistically significant, with the exceptions being
crossover bias 0.00 vs. 0.50, and bias 0.50 vs. 1.00 (p = 0.094
in both cases).

5.3 Regression Problems
Regression problems attempt to evolve a function that is

able to match a given set of input-output pairs. Success is
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Figure 10: Impact of crossover bias on the num-
ber of hits for the Pagie-1 symbolic regression prob-
lem, broken out across the four di↵erent tournament
sizes. The maximum number of possible hits is 676.
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Figure 11: Impact of crossover bias on the num-
ber of hits for the Pagie-1 symbolic regression prob-
lem, broken out by tournament size, limited to bias-
e↵ective elitism (0) and population size (10,240).

here measured in hits, where a “hit” is awarded when the
output of the evolved function is within 0.01 of the target
value.

5.3.1 Pagie-1 Problem
Figure 10 shows the impact of crossover bias on the num-

ber of hits for the Pagie-1 regression problem, separated out
by tournament size. Figure 11 is limited to population size
10,240 and no elitism.

Focusing on the binary tournament data in Figure 11,
the di↵erences between crossover bias 0.00 (standard subtree
crossover) and all the other positive crossover bias values are
statistically significant (p < 0.0002). None of the di↵erences
among 0.25, 0.50, 0.75, and 1.00 are statistically significant,
however, and none of the di↵erences for tournament sizes 3,
5, or 7 are statistically significant. This indicates that for
binary tournaments, including crossover bias substantially
and significantly improves the hit rate, although all bias
rates above 0.25 are very similar. For larger tournament
sizes, however, it appears that adding crossover bias doesn’t
have a significant e↵ect and in some cases (e.g., tournament
sizes 5 and 7 in Figure 10) may hurt performance.
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Figure 12: Impact of crossover bias on the sine sym-
bolic regression problem with bias-e↵ective settings.
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Figure 13: Impact of crossover bias on the sine sym-
bolic regression problem with non-bias-e↵ective set-
tings.

5.3.2 Sine Problem
For the sine regression problem, we limited our runs to

bias-e↵ective and non-bias-e↵ective settings as defined in
Section 4.

Figure 12 shows the results for the number of hits for
the sine regression problem using bias-e↵ective settings. All
these di↵erences are statistically significant (p < 10�5) ex-
cept for the di↵erence between the bias of 0.75 and 1.00.
In Figure 2, the left panel illustrates the impact of crossover
bias over time when using the bias-e↵ective settings, demon-
strating that the e↵ects appear early in the run. Here, the
fitnesses are consistently di↵erent throughout the time of
the runs, with higher crossover bias settings arriving at fit-
ter individuals earlier in the runs, although the di↵erences
are shrinking towards the end as many runs find fairly fit
individuals.

Figure 13 shows the results for the sine regression prob-
lem using the non-bias-e↵ective parameter settings; none of
these di↵erences are statistically significant. In Figure 2,
the right panel illustrates the impact of crossover bias over
time when using the non-bias-e↵ective settings, demonstrat-
ing that with these settings the runs tend to be highly similar
throughout the duration of the runs, regardless of crossover
bias setting.

6. DISCUSSION
In general our results indicate that adding crossover bias

improves performance, either generally (Figure 3) or when
combined with certain other parameter choices (e.g., Fig-
ure 10). In some cases the improvements induced by
crossover bias are quite substantial (e.g., Figures 5, 9,
and 12), while in other situations the improvements were
quite small in magnitude even when statistically signifi-
cant (Figure 3). Not surprisingly, however, crossover bias
is not universally helpful, and there are settings where some
crossover bias improves performance more than when always
applying crossover bias (Figure 6), and other settings where
all tested crossover bias amounts were detrimental (tourna-
ment sizes 5 and 7 in Figure 10).

One general trend seems to be that crossover bias is more
e↵ective when using the bias-e↵ective parameter settings,
namely smaller tournaments (size 2 instead of 7), larger
populations (10,240 instead of 1,024), and no elitism. One
possible explanation for this pattern is that when using the
non-bias-e↵ective settings, the di↵erence in fitness between
the two parents is likely to be closer than when using bias-
e↵ective settings; this reduction in the di↵erence between
the fitness of the parents is thus likely to minimize the im-
pact of crossover bias.

To test this hypothesis, we looked at the impact of tour-
nament size on the relative di↵erence in parent fitness for
the K Landscapes problem and the sine regression problem.
For each crossover event, we compute the relative di↵erence
in parent fitness as

|fA � fB |/(fA + fB)

where fA and fB are the fitnesses of the two chosen parents
A and B. This has a minimum value of 0 when the two
fitnesses are the same, and a maximum value approaching 1
for the case where one of the values is nearly 0.

Figure 14 shows the distribution of the relative di↵erences
in parent fitness for the K Landscapes problem both with
(right-hand panel) and without (left-hand panel) crossover
bias. For tournament size 7, the di↵erence in fitness drops
significantly as the run progresses; this, combined with the
substantial improvements in fitness, suggests that both of
the parents are highly fit. When using binary tournaments,
the relative di↵erences in parent fitness remains fairly stable
and higher than for tournament size 7, which would suggest
that crossover bias would continue to be e↵ective through-
out the run when using binary tournaments. We see similar
results in the sine regression problem, as illustrated in Fig-
ure 15.

Our results also indicate that crossover bias may increase
certain types of selection pressure, which could potentially
increase the likelihood of premature convergence. There is
a heightened focus on the better of the two parents which
increases the chance of the more fit parent’s semantics be-
ing carried across into the next generation. This might limit
the diversity of the root structures causing premature con-
vergence. Further research is needed to understand if this
does in fact lead to premature convergence in some cases,
but it’s possible, for example, that this explains the fact
that using some crossover bias (0.75) is better than always
using crossover bias in the ORDERTREE problem (see, e.g.,
Figure 6).
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Figure 14: Plot of the normalized di↵erences in par-
ent fitnesses for the K Landscapes problem. The
left-hand (and higher) boxplot in each pair of box-
plots is for the binary tournament runs.
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Figure 15: Plot of the normalized di↵erences in par-
ent errors for the sine symbolic regression problem.
The left-hand (and higher) boxplot in each pair of
boxplots is for the binary tournament runs.

7. CONCLUSIONS
Based on previous observations of interesting asymmetries

in the behavior of sub-tree crossover (e.g., [10]), we intro-
duced the idea of crossover bias, where we probabilistically
force the more fit parent to be the root parent when per-
forming crossover. We then applied this new bias to sev-
eral di↵erent problems. In general, we found that adding
crossover bias either helps or is neutral, although there were
cases where its e↵ect was detrimental.

Given these results, it seems worthwhile to at least try
crossover bias, especially in settings where there are reasons
to suspect that there are substantial di↵erences between
parental fitnesses. This is likely to be the case wherever
selection pressure is weak (e.g., our use of binary tourna-
ments), but could also happen when there are unavoidable
steep changes in fitness, or in settings where the fitness func-
tion may vary over either time or as a function of some other
variable such as location.

A question to consider based on these results is whether
or not we should use larger tournaments instead of crossover

bias, since in many cases the results with tournament size
7 without crossover bias was as good or better than those
obtained with binary tournaments and crossover bias, e.g.,
Figure 4. According to Gustafson et al. [6], however, mat-
ings between similar parents are more likely to produce no
change in fitness, whereas a more diverse crossover increases
the chances of o↵spring improving fitness. Larger tourna-
ments are more likely to select two parents that are similar,
at least in fitness, as seen in Figures 14 and 15; an excellent
illustration of this can be seen in Figure 2 in [2]. Another
attempt to find a balance of diversity between parents is
called sexual selection, proposed by Goh et al. [5]. Their
sexual selection system mates individuals chosen at random
(with no regard to fitness) with individuals chosen via tour-
nament selection. This creates a strong asymmetry between
the parents which appears to increase diversity in certain
circumstances in ways that improve performance. Based on
these examples, there may be circumstances where combin-
ing crossover bias with a weaker selection mechanism might
be a reasonable alternative to using a larger tournament size.

Another outstanding question is how crossover bias a↵ects
generalization, especially since it’s possible that crossover
bias increases selection pressure and could consequently en-
courage overfitting. We didn’t explore this question here,
but it would be useful to expand the existing work to in-
clude validation to see what impact, if any, crossover bias
has on how well evolved solutions generalize to unseen data.

While this paper focuses on asymmetry in the context of
tree-based GP and sub-tree crossover, it’s important to note
that asymmetries like this are common in many evolution-
ary systems, both biological and artificial. Much eukaryote
reproduction is sexual, and brings with it numerous sex-
linked traits and related asymmetries; this may play an im-
portant role in speciation [17], arguably one of the most cru-
cial of biological asymmetries. Many evolutionary computa-
tion systems other than tree-based GP also have significant
asymmetries. Linear GP systems [3] and stack-based GP
systems [20], for example, have asymmetries where the last
instructions executed can have a disproportionate impact on
the results. Similarly, changes near the front of grammatical
evolution [14] strings will have a disproportionate impact by
determining the important early choices in the grammar pro-
ductions. Generally, these asymmetries weren’t intentional,
but were instead simple artifacts of other system design de-
cisions. Hence, the potential impact of these asymmetries
has been largely unstudied. The results presented here sug-
gest that it may be important to more thoroughly explore
the impact of such asymmetries, both to better understand
the performance and behavior of existing systems, but also
as an aid to the design and discovery of new tools like re-
combination operators that leverage these asymmetries.

Acknowledgements
Many thanks to the members of the Hampshire College
Computational Intelligence Lab for suggestions and feedback
as this work developed, with particular thanks to Thomas
Helmuth, William La Cava, and Lee Spector. Thanks also
to Thomas Helmuth for introducing us to the U.S. Change
problem. Thanks to W. B. Langdon and our anonymous
reviewers for valuable feedback and numerous suggestions.

David Donatucci’s work was supported in part by a Mor-
ris Academic Partners grant from the O�ce for Academic
A↵airs and Dean at the University of Minnesota, Morris.

1085



8. REFERENCES
[1] L. Beadle and C. G. Johnson. Semantically driven

crossover in genetic programming. In IEEE World
Congress on Computational Intelligence, pages
111–116, 2008.

[2] G. D. Boetticher and K. Kaminsky. The assessment
and application of lineage information in genetic
programs for producing better models. In Information
Reuse and Integration, 2006 IEEE International
Conference on, pages 141–146, Sept 2006.

[3] M. F. Brameier and W. Banzhaf. Linear genetic
programming. Springer Science & Business Media,
2007.

[4] B. Burlacu, M. A↵enzeller, M. Kommenda,
S. Winkler, and G. Kronberger. Visualization of
genetic lineages and inheritance information in genetic
programming. In Proceedings of the 15th annual
conference companion on Genetic and evolutionary
computation, pages 1351–1358. ACM, 2013.

[5] K. Goh, A. Lim, and B. Rodrigues. Sexual selection
for genetic algorithms. Artificial Intelligence Review,
19(2):123–152, 2003.

[6] S. Gustafson, E. Burke, and N. Krasnogor. On
improving genetic programming for symbolic
regression. In Evolutionary Computation, 2005. The
2005 IEEE Congress on, volume 1, pages 912–919
Vol.1, Sept 2005.

[7] T. Helmuth and L. Spector. General program
synthesis benchmark suite. In Proceedings of the 17th
Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, New York, NY, USA,
2015. ACM.

[8] T.-H. Hoang, N. X. Hoai, N. T. Hien, R. I. McKay,
and D. Essam. ORDERTREE: a new test problem for
genetic programming. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pages 807–814. ACM, 2006.

[9] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec,
R. Harper, K. De Jong, et al. Genetic programming
needs better benchmarks. In Proceedings of the 14th
annual conference on Genetic and evolutionary
computation, pages 791–798. ACM, 2012.

[10] N. F. McPhee, D. Donatucci, and M. K. Dramdahl.
Analysis of genetic programming ancestry using a
graph database. In Proceedings of Midwest Instruction
and Computing Symposium. MICS, 2014.

[11] N. F. McPhee and N. J. Hopper. Analysis of genetic
diversity through population history. In Proceedings of
the Genetic and Evolutionary Computation
Conference, volume 2, pages 1112–1120. GECCO,
1999.

[12] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic
building blocks in genetic programming. In
Proceedings of the 11th European Conference on
Genetic Programming, EuroGP’08, pages 134–145,
Berlin, Heidelberg, 2008. Springer-Verlag.

[13] A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming. In Parallel
Problem Solving from Nature-PPSN XII, pages 21–31.
Springer, 2012.

[14] M. O’Neill and C. Ryan. Grammatical evolution:
evolutionary automatic programming in an arbitrary
language, volume 4. Springer Science & Business
Media, 2003.

[15] L. Pagie and P. Hogeweg. Evolutionary consequences
of coevolving targets. Evolutionary computation,
5(4):401–418, 1997.

[16] R. Poli, W. B. Langdon, and N. F. McPhee. A Field
Guide to Genetic Programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[17] A. Qvarnström and R. I. Bailey. Speciation through
evolution of sex-linked genes. Heredity, 102(1):4–15,
2009.

[18] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014.

[19] C. Ryan. Pygmies and civil servants. In Advances in
Genetic Programming, pages 243–263. MIT Press,
1994.

[20] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and
Evolvable Machines, 3(1):7–40, Mar. 2002.

[21] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and
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